Chapter 6 Digestive Enzymes of the Cockroach C

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 6 Digestive Enzymes of the Cockroach C Chapter 6 Digestive Enzymes of the Cockroach C. Leon Harris Department of Biological Sciences State University College of Arts and Science Plattsburgh, New York 12901 C. Leon Harris is Associate Professor at the State University Col- lege of Arts and Science at Plattsburgh, New York, where he has taught Principles of Animal Physiology for nine years. He earned degrees in physics and in biophysics at Virginia Polytechnic Insti- tute and Pennsylvania State University. His major area of research is the neural control of behavior in the cockroach. He is now writing a book on historical and philosophical aspects of evolution. 112 Digestive Enzymes Introduction This experiment on digestion in cockroaches is an important part of my senior-level course in animal physiology, not only because it reinforces the lectures in digestion and enzymes, but also because it clarifies the fundamen- tals of statistics and introduces students to the critical thinking required in transforming data into a scientifically valid conclusion. The experiment also has the advantage of employing current research techniques. (See for example Bland and House 197 1.) Yet, even freshmen in a general biology laboratory can complete the experiment in three hours, except for the protease test which requires brief observations overnight. Not the least advantage, from the in- structor's point of view, is the study's inexpensiveness and ease of preparation. It uses common reagents and inexpensive cockroaches (see Appendix A), and requires less than three hours to prepare if the materials are at hand. My upper-level undergraduates work in pairs, with each pair preparing en7yme extracts from homogenized salivary glands, crop, midgut and hindgut of a single cockroach, and also a control consisting of a heated mixture from the other extracts. Each pair of students then tests each extract and the control for either sucrase or lipase or amylase and protease. (Since the last two assays are so simple, the same students do both, using the same extracts.) Students rank the enzyme activities for each section on a scale from 0 to 3, with the control defined as 0. The instructor compiles the data and returns them to students to calculate the means and standard errors (optional) for each section. They then use the sign test to determine whether activity in each section is significantly greater than that in the control, or greater in one section than in another section with significant activity. I? the sign test, P is determined simply from the proportion of cases in which the activity from one section was greater than in the control or in another section. (See Appendix B.) This non- parametric test is so transparent that students find that it clarifies basic principles of statistics, even (or especially!) if the students have already had a statistics course. Because the conclusions are based on compiled data, the results are immune to the effects of an occasional aberrant cockroach or student. From the data, students can deduce which sections of the cockroach digestive system contain the enzymes. However, inferring from this which section actually secretes the enzyme is not always straightforward. Enzymes may travel from one section to another and not be rinsed off the tissue before the extract is prepared. Thus, even though all the enzymes are supposed to be secreted only by the midgut, except for amylase which is also secreted by the salivary glands, the crop sometimes shows significant activity. Students should be able to infer that this activity could be due to the much greater mass of tissue adsorbing enzymes from other sections. Students should also be able to suggest that significant enzyme activity in the hindgut might be due to its being "downstream" and hard to clean. Secretion of enzymes by Digestive Enzymes 113 the hindgut would make little sense, because nutrients could not be absorbed from the hindgut into the hemolymph. Initially students are apt to view these deviations from what "the book says" as failures. Perhaps the most valuable lesson from the experiment is that whoever wrote the book was smart enough not to accept data at face value. Of course it is necessary te emphasize the difference between fudging data to get the "right" conclusion, and interpreting data in the discussion of a report. In addition to interpreting data, I also . suggest that in report discussions students compare functions of the sections of the cockroach digestive system with analogous organs of mammals. Student Material The strategy of digestion in cockroaches is similar to that in humans and in other vertebrates: food passes from mouth to anus through a tube where it is mixed with digestive enzymes. A cockroach's meal, like yours, is first mixed with saliva. It then enters the crop (foregut), which can store up to a two month's supply of food. The contents of the crop eventually pass through the proventriculus (gizzard), which crushes solids and acts as a valve. The food then enters the midgut, which includes eight ceca at the anterior end. Almost all of the absorption of nutrients takes place in the midgut. The remaining material goes into the hindgut, which is joined to the midgut at the site of attachment of the Malpighian tubules, which are analogous to the vertebrate kidney. Finally, feces are formed in the rectum. Although the overall process of digestion in cockroaches is similar to that in vertebrates, there are important differences in detail. For example, nutrients are not absorbed into capillaries in cockroaches, which lack circulatory vessels. Instead, the nutrients are absorbed directly into the body fluid (hemolymph) surrounding the digestive system. A second major difference is the absence of mucus to protect the inner lining of the cockroach gut. Instead, there is a continuously formed semi-permeable sac--the peritrophic membrane--which contains the food in the midgut, and a layer of impermeable chitin to protect the crop and hindgut. (Chitin is the material which also forms the exoskele- ton.) Cockroaches are notoriously omnivorous. We therefore expect them to employ a variety of digestive enzymes. From exp&ience we know that they digest sucrose, proteins, starch and fats, so we Gould expect that somewhere in their digestive systems are secreted sucrase (invertase), protease, amylase and lipase. The question we wish to answer is "Where in the cockroach digestive system are these four kinds of enzymes secreted?". The first step in answering that question is to test the ability of extracts of the salivary glands, crop, midgut, and hindgut to digest sucrose, gelatin, starch and olive oil. High digestive activity in a section suggests, but does not prove that the enzyme is produced and secreted in that section. 114 Digestive Enzymes Malpighian tubules Figure 6.1. A. Adult American cockroaches, Periplaneta americana. Male, ventral view; female, dorsal view. Males may be distinguished from females by their more slender body and by the pair of styles on the anal segment. One style is visible between the hind legs of the male. The length of each cockroach, excluding antennae, is approximately 2 cm. B. Digestive system of the American cockroach. The gut is brown, the salivary glands are white, and the reservoir is transparent. The Malpighian tubules are yellow, and the tracheae are white. Digestive Enzymes 115 Instructor's Materials I. Preparation of enzyme extracts A. Obtain a large cockroach which has been immobilized by CO,, by cooling in a freezer for 15 min, or by holding it under warm water. B. Cut the anus transversely to free the rectum, and remove the digestive tract by carefully pulling on the head. The entire digestive tract should come out with the attached head. Often the tract breaks at the proventriculus; if this happens cut open the abdomen and pull out the midgut and hindgut. Place the digestive tract into a watch- glass containing insect saline. C. Using the dissecting microscope, identify and separate the salivary glands, crop, midgut and hindgut. The salivary glands are particu- larly difficult; they look like small white globules of fat just behind the head. Often the salivary glands are lost. If the glands are not present, leave a blank under S in the data. Discard the proventriculus and large tracheae. Also discard the part of the gut where the Mal- pighian tubules are attached. Small trachae may be included since they do not secrete digestive enzymes. D. Cut open the crop and rinse. If possible, gently squeeze solids out of the midgut and hindgut, since these may have absorbed enzymes from other parts of the digestive tract. E. Label 4 depressions of a spot plate S, C, M and H. Add 5 drops of water to each of the 4 depressions. Place the sections isolated in step C above into the appropriate depressions: S salivary glands (with reservoirs) C crop M midgut and ceca (hereafter referred to as midgut) H hindgut F. Grind each section with the blunt glass rod to release enzymes from the cells. IMPORTANT: rinse the glass rod thoroughly when going from one section to another. G. Use a separate Pasteur pipette to withdraw the liquid extract from each depression. Combine 1 drop of each extract into a fifth 10-ml test tube labelled K; the rest of the extract in-each pipette goes into the appropriate 10-ml test tube labelled S, 'C, M and H. IMPORTANT: keep the pipettes in correct order. They will be used in step I and for the protease and amylase tests. H. Each extract should just fill the rounded bottom of the test tube (.2 ml). If necessary, add water to increase volume. I. Place test tube K, containing the mixture from the four sections, into a boiling water bath for 15 min.
Recommended publications
  • Journal of Insect Physiology 81 (2015) 21–27
    Journal of Insect Physiology 81 (2015) 21–27 Contents lists available at ScienceDirect Journal of Insect Physiology journal homepage: www.elsevier.com/locate/jinsphys Revisiting macronutrient regulation in the polyphagous herbivore Helicoverpa zea (Lepidoptera: Noctuidae): New insights via nutritional geometry ⇑ Carrie A. Deans a, , Gregory A. Sword a,b, Spencer T. Behmer a,b a Department of Entomology, Texas A&M University, TAMU 2475, College Station, TX 77843, USA b Ecology and Evolutionary Biology Program, Texas A&M University, TAMU 2475, College Station, TX 77843, USA article info abstract Article history: Insect herbivores that ingest protein and carbohydrates in physiologically-optimal proportions and con- Received 7 April 2015 centrations show superior performance and fitness. The first-ever study of protein–carbohydrate regula- Received in revised form 27 June 2015 tion in an insect herbivore was performed using the polyphagous agricultural pest Helicoverpa zea. In that Accepted 29 June 2015 study, experimental final instar caterpillars were presented two diets – one containing protein but no car- Available online 30 June 2015 bohydrates, the other containing carbohydrates but no protein – and allowed to self-select their protein– carbohydrate intake. The results showed that H. zea selected a diet with a protein-to-carbohydrate (p:c) Keywords: ratio of 4:1. At about this same time, the geometric framework (GF) for the study of nutrition was intro- Nutrition duced. The GF is now established as the most rigorous means to study nutrient regulation (in any animal). Protein Carbohydrates It has been used to study protein–carbohydrate regulation in several lepidopteran species, which exhibit Physiology a range of self-selected p:c ratios between 0.8 and 1.5.
    [Show full text]
  • Phenotypic Impacts of PBAN RNA Interference in an Ant, Solenopsis Invicta, and a Moth, Helicoverpa Zea ⇑ ⇑ Man-Yeon Choi A, , Robert K
    Journal of Insect Physiology 58 (2012) 1159–1165 Contents lists available at SciVerse ScienceDirect Journal of Insect Physiology journal homepage: www.elsevier.com/locate/jinsphys Phenotypic impacts of PBAN RNA interference in an ant, Solenopsis invicta, and a moth, Helicoverpa zea ⇑ ⇑ Man-Yeon Choi a, , Robert K. Vander Meer a, , Monique Coy b, Michael E. Scharf b,c a U. S. Department of Agriculture, Agricultural Research Service, Center of Medical, Agricultural and Veterinary Entomology (CMAVE), 1600 SW, 23rd Drive, Gainesville, FL 32608, USA b Department of Entomology and Nematology, University of Florida, Gainesville, FL 32608, USA c Department of Entomology, Purdue University, West Lafayette, IN 47907, USA article info abstract Article history: Insect neuropeptide hormones represent more than 90% of all insect hormones. The PBAN/pyrokinin fam- Received 30 January 2012 ily is a major group of insect neuropeptides, and they are expected to be found from all insect groups. Received in revised form 1 June 2012 These species-specific neuropeptides have been shown to have a variety of functions from embryo to Accepted 5 June 2012 adult. PBAN is well understood in moth species relative to sex pheromone biosynthesis, but other poten- Available online 13 June 2012 tial functions are yet to be determined. Recently, we focused on defining the PBAN gene and peptides in fire ants in preparation for an investigation of their function(s). RNA interference (RNAi) technology is a Keywords: convenient tool to investigate unknown physiological functions in insects, and it is now an emerging PBAN method for development of novel biologically-based control agents as alternatives to insecticides.
    [Show full text]
  • Insect Physiology
    Insect Physiology Syllabus for ENY 6401– 3 credit hours Instructor: Daniel Hahn E-mail: Through the course E-learning site in Sakai – this is the best way to reach me! Phone: 352-273-3968 Office: ENY 3112 Office hours: 1 hour after each scheduled lecture and by appointment, I am happy to talk on the phone or Skype with distance students. Delivery options: Please note that this course is delivered in three different ways each with a separate section number based on delivery format. 1) Students in Gainesville will meet with me for a live lecture every Tuesday and Thursday. Gainesville-based students are expected to attend lectures and participate in interactive discourse during the lecture period and in online forums. 2) Students at UF REC sites will tune in for the live lectures using the Polycom system every Tuesday and Thursday. Polycom-based students are expected to attend lectures and participate in interactive discourse during the lecture period and in online forums. 3) Students taking this course by asynchronous distance delivery will use the UF E- learning system. Asynchronous distance students will have access to recorded video lectures via the web. Asynchronous students are expected to keep pace with Gainesville and Polycom students and participate through interactive discussion forums given weekly. Meeting time: On campus and by Polycom Tuesdays and Thursdays from 12:50-2:45 (periods 6 & 7 – 3 contact hours within these periods), distance video delivery will be asynchronous on the web. Meeting location: Steinmetz Hall (ENY) RM# 1027 or your local Polycom unit. Course Objectives: Understand the functions and structures involved in selected physiological systems in insects.
    [Show full text]
  • Some Aspects of Tracheal Ventilation in The
    SOME ASPECTS OF TRACHEAL VENTILATION IN THE COCKROACH, BYRSOTRIA FUMIGATA (GUERIN) DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By THEODORE BLOW MYERS, B.Sc., M.Sc. The Ohio State University 1958 Approved by: /L Adviser Department of Zoology and Entomology ACKNOWLEDGMENT In the preparation of this dissertation the author has been under obligation to a number of persons. It is a pleasure to be able to acknowledge some of these debts. Special thanks go to Dr. Prank W. Fisk, upon whose direction the problem was undertaken and under whose direction the work was carried out. His friendly/ counsel and sincere interest are deeply appreciated. The writer also wishes to thank Dr. Robert M. Geist:, head of the Biology Department of Capital University, who provided encouragement, facilities, and time for the research that has been undertaken. ii CONTENTS Chapter Page I. INTRODUCTION............................. 1 II. M E T H O D ............ 12 The Experimental A n i m a l .............. 12 Dissection............................ 13 The Insect Spirograph,................ 15 III. THE NERVOUS SYSTEM ...................... 21 IV. TRACHEAL VENTILATION ...................... 27 'V. VENTILATION. EXPERIMENTS ................... 44 Decerebrate Ventilation.............. 44 Decapitate Ventilation............... 49 Thoracic and Abdominal Exposure to C02 • • 54 Exposure of the Head to C02 ...... 60 Ventilation in the Isolated Abdomen .... 62 Ventilation Without Thoracic Ganglia .... 65 Ventilation Without Abdominal Ganglia ... 69 Ventilation and Nerve Cord S e c ti on.... 72 VI. CONCLUSIONS ................................ 75 LITERATURE CITED.................................. 80 AUTOBIOGRAPHY.................................... 84 iii LIST OF ILLUSTRATIONS Figure Page 1. The Insect Spirograph 16 2.
    [Show full text]
  • Location and Function of Serotonin in the Central and Peripheral Nervous System of the Colorado Potato Beetle
    LOCATION AND FUNCTION OF SEROTONIN IN THE CENTRAL AND PERIPHERAL NERVOUS SYSTEM OF THE COLORADO POTATO BEETLE Theo van Haeften CENTRALE LANDBOUWCATALOGUS 0000 0513 9270 Promoter: dr. L.M. Schoonhoven Emeritus-hoogleraar in deEntomologi e (fysiologie der insekten) Co-promotor: dr. H. Schooneveld Universitair hoofddocent Vakgroep Entomologie !,\J/\J O&ZOI , /£Y f Theo van Haeften LOCATION AND FUNCTION OF SEROTONIN IN THE CENTRAL AND PERIPHERAL NERVOUS SYSTEM OF THE COLORADO POTATO BEETLE Proefschrift ter verkrijging van de graad van doctor in de landbouw- en milieuwetenschappen op gezag van de rector magnificus dr. H.C. van der Plas in het openbaar te verdedigen op woensdag 23jun i 1993 des namiddags te half twee in de Aula van de Landbouwuniversiteit te Wageningen JO 582153 Voor mijn ouders Voor mijn broers en zussen Voor Olga mnOTHEEK CANDBOUWUNIVERSHECI WAGENINGEM Coverdesign: Frederik von Planta ISBN 90-5485-141-4 fUl'JU' CUAI IbHI Stellingen 1. Serotoninerge functionele compartimenten in het ventrale zenuwstelsel van de Coloradokever zijn ontstaan als gevolg van ganglionfusie. Dit proefschrift. 2. Fysiologische effecten, die optreden na toediening van serotonine aan "in vitro" darm- preparaten, dienen met voorzichtigheid te worden geinterpreteerd, omdat het optreden van deze effecten sterk afhankelijk is van de gekozen bioassay en de fysio­ logische uitgangsconditie van deze preparaten. Dit proefschrift. Banner SE, Osborne RH, Cattell KJ. Comp Biochem Physiol [C] (1987) 88: 131-138. Cook BJ, Eraker J, Anderson GR. J Insect Physiol (1969) 15:445-455 . 3. De aanwezigheid van omvangrijke serotoninerge neurohemale netwerken in de kop van de Coloradokever duidt op een snelle afbraak van serotonine in de hemolymph.
    [Show full text]
  • Anatomy and Physiology of the Digestive Tract of Drosophila Melanogaster
    | FLYBOOK DEVELOPMENT AND GROWTH Anatomy and Physiology of the Digestive Tract of Drosophila melanogaster Irene Miguel-Aliaga,*,1 Heinrich Jasper,†,‡ and Bruno Lemaitre§ *Medical Research Council London Institute of Medical Sciences, Imperial College London, W12 0NN, United Kingdom, yBuck Institute for Research on Aging, Novato, California 94945-1400, ‡Immunology Discovery, Genentech, Inc., San Francisco, California 94080, and xGlobal Health Institute, School of Life Sciences, École polytechnique fédérale de Lausanne, CH-1015 Lausanne, Switzerland ORCID ID: 0000-0002-1082-5108 (I.M.-A.) ABSTRACT The gastrointestinal tract has recently come to the forefront of multiple research fields. It is now recognized as a major source of signals modulating food intake, insulin secretion and energy balance. It is also a key player in immunity and, through its interaction with microbiota, can shape our physiology and behavior in complex and sometimes unexpected ways. The insect intestine had remained, by comparison, relatively unexplored until the identification of adult somatic stem cells in the Drosophila intestine over a decade ago. Since then, a growing scientific community has exploited the genetic amenability of this insect organ in powerful and creative ways. By doing so, we have shed light on a broad range of biological questions revolving around stem cells and their niches, interorgan signaling and immunity. Despite their relatively recent discovery, some of the mechanisms active in the intestine of flies have already been shown to be more widely applicable to other gastrointestinal systems, and may therefore become relevant in the context of human pathologies such as gastrointestinal cancers, aging, or obesity. This review summarizes our current knowledge of both the formation and function of the Drosophila melanogaster digestive tract, with a major focus on its main digestive/absorptive portion: the strikingly adaptable adult midgut.
    [Show full text]
  • Community Resources for Science
    Bay Area Scientists in Schools Presentation Plan Lesson Name Insect Physiology Presenter(s) Candice Torres, Natalia Chousou-Polydouri, Lisa Fernandez Grade Level 5th Standards Connection(s) life sciences: multicellular organisms have specialized structures Abstract: This extremely hands-on presentation will explore insect physiology and the systems humans and insects have in common. An introductory activity involving the entire classroom will give students the opportunity to experience the insect sense of smell. Through crafts, games, and puzzles, three different stations will demonstrate the insect skeletal, circulatory, and digestive systems. Vocabulary/Definitions: physiology: the science of organisms and how their bodies work exoskeleton: a hard shell that supports and protects an insect molting: shedding the entire exoskeleton circulatory system: body parts that circulate fluid with nutrients and oxygen hemolymph: insect blood digestive system: body parts that digest and help food move Materials: We will bring all materials necessary for the presentation. The introductory activity requires scented strips of paper. Station 1: straws and string. Station 2: rectangular planter full of water, food coloring, tubes, pumps. Station 3: puzzles & party blowers. Classroom Set-up: Three different learning stations will be set up beforehand by the presenters. If possible, the circulatory system station should be conducted outside, because it involves water. The students will separate into three groups and rotate to each station. Classroom Visit 1. Personal Introduction: ____3_____ Minutes We are students from UC Berkeley, in the Environmental, Science, Policy and Management Department. We belong to a group called Organisms and the Environment, and we all study different organisms. Candice studies ants, Natalia studies spiders, and Lisa studies mealybugs (each of us will introduce ourselves).
    [Show full text]
  • Jaws That Snap: Control of Mandible Movements in the Ant Mystrium ¨ Wulfila Gronenberg A,*, Bert Holldobler A, Gary D
    Journal of Insect Physiology 44 (1998) 241–253 Jaws that snap: control of mandible movements in the ant Mystrium ¨ Wulfila Gronenberg a,*, Bert Holldobler a, Gary D. Alpert b a Theodor Boveri Institut, Lehrstuhl fu¨r Verhaltensphysiologie und Soziobiologie der Universita¨t, Am Hubland, D-97074 Wu¨rzburg, Germany b Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA Received 26 June 1997; received in revised form 22 September 1997 Abstract Ants of the genus Mystrium employ a peculiar snap-jaw mechanism in which the closed mandibles cross over to deliver a stunning blow to an adversary within about 0.5 ms. The mandible snapping is preceded by antennation and antennal withdrawal. The strike is initiated by contact of the adversary with mechanosensory hairs at the side of the mandible, and is powered by large yet slow closer muscles whose energy is stored by a catapult mechanism. Recording of closer muscle activity indicates that the mandibles are not triggered by any fast muscle. Instead, we suppose that activity differences between the left and right mandible muscles imbalance a pivot at the mandible tip and release the strike. The likelihood for the strike to occur can be modulated by an alarm pheromone. The presence of specialized sensilla and of a complex muscle receptor organ shows that the mandibles are also adapted to functions other than snapping and suggests that the force of the mandible can be finely adjusted for other tasks. 1998 Elsevier Science Ltd. All rights reserved. Keywords: Fast movements; Functional morphology; Insect mechanoreceptors; Motor control 1. Introduction including the genus Mystrium, have very small or no eyes at all, so presumably they find their prey guided Ants belonging to the genus Mystrium employ a pecu- mainly by olfactory and mechanical cues.
    [Show full text]
  • Similar Metabolic Rate-Temperature Relationships After Acclimation at Constant and Fluctuating Temperatures in Caterpillars of a Sub-Antarctic Moth
    Western University Scholarship@Western Biology Publications Biology Department 2-1-2016 Similar metabolic rate-temperature relationships after acclimation at constant and fluctuating temperatures in caterpillars of a sub-Antarctic moth. Steven L Chown Tanya M Haupt Brent J Sinclair Follow this and additional works at: https://ir.lib.uwo.ca/biologypub Part of the Biology Commons Citation of this paper: Chown, Steven L; Haupt, Tanya M; and Sinclair, Brent J, "Similar metabolic rate-temperature relationships after acclimation at constant and fluctuating temperatures in caterpillars of a sub-Antarctic moth." (2016). Biology Publications. 90. https://ir.lib.uwo.ca/biologypub/90 Similar metabolic rate-temperature relationships after acclimation at constant and fluctuating temperatures in caterpillars of a sub-Antarctic moth Steven L. Chowna,*, Tanya M. Hauptb,1, Brent J. Sinclairc aSchool of Biological Sciences, Monash University, Victoria 3800, Australia bCentre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa cDepartment of Biology, The University of Western Ontario, London, Ontario N6A 5B7, Canada 1Current address: Department of Environmental Affairs, Oceans and Coasts Branch, Marine Biodiversity and Ecosystem Research, Private Bag X2, Roggebaai 8012, South Africa *Corresponding author. Tel: + 61 3 9905 0097 E-mail address: [email protected] (S.L. Chown) 1 ABSTRACT Temperature compensation in whole-animal metabolic rate is one of the most controversial of the responses thought to characterize insects from low temperature environments. Temperature compensation may either involve a change in absolute values of metabolic rates or a change in the slope of the metabolic rate – temperature relationship. Moreover, assessments of compensation may be complicated by animal responses to fluctuating temperatures.
    [Show full text]
  • The Amazing Complexity of Insect Midgut Cells: Types, Peculiarities, and Functions
    Cell and Tissue Research (2019) 377:505–525 https://doi.org/10.1007/s00441-019-03076-w REVIEW The amazing complexity of insect midgut cells: types, peculiarities, and functions Silvia Caccia1 & Morena Casartelli2 & Gianluca Tettamanti3 Received: 10 May 2019 /Accepted: 8 July 2019 /Published online: 29 July 2019 # Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract The insect midgut epithelium represents an interface between the internal and the external environment and it is the almost unique epithelial tissue by which these arthropods acquire nutrients. This epithelium is indeed able to produce digestive enzymes and to support vectorial transport of small organic nutrients, ions, and water. Moreover, it plays a key role in the defense against pathogenic microorganisms and in shaping gut microbiota. Another important midgut function is the ability to produce signaling molecules that regulate its own physiology and the activity of other organs. The two main mature cell types present in the midgut of all insects, i.e., columnar and endocrine cells, are responsible for these functions. In addition, stem cells, located at the base of the midgut epithelium, ensure the growth and renewal of the midgut during development and after injury. In insects belonging to specific orders, midgut physiology is deeply conditioned by the presence of unique cell types, i.e., goblet and copper cells, which confer peculiar features to this organ. This review reports current knowledge on the cells that form the insect midgut epithelium, focusing attention on their morphological and functional features. Notwithstanding the apparent structural simplicity of this organ, the properties of the cells make the midgut a key player in insect development and homeostasis.
    [Show full text]
  • Behavioral and Developmental Homeostasis in the Fire Ant
    Journal of Insect Physiology 46 (2000) 933–939 www.elsevier.com/locate/jinsphys Behavioral and developmental homeostasis in the fire ant, Solenopsis invicta Deby Lee Cassill *, Walter R. Tschinkel Department of Biological Science, Florida State University, Tallahassee, FL 32306-3050, USA Received 28 May 1999; accepted 5 October 1999 Abstract The von Bertalanffy rule (1960) predicts that low incubation temperature during larval development will result in larger adult body size. If larval development in social insects followed this rule, then low incubation temperature would induce the development of larger workers and possibly even sexuals. To test this prediction, the effect of incubation temperature on larval development, larval meal size, larval tending and worker recruitment to food in the fire ant, Solenopsis invicta was investigated. Temperatures tested where within the range at which brood remains viable. Contrary to the predictions of the von Bertalanffy rule, worker size was unaffected by incubation temperature, and sexuals were reared at the high rather than the low incubation temperature. Moreover, larval meal size, the rate of larval tending by workers and the total number of workers recruited to food were unaffected by temperature. Mechanisms regulating developmental and behavioral homeostasis were as follows: the duration of larval development and the rate of larval growth changed proportionately with temperature such that the mean and variation of pupal size was unaffected by incubation temperature. Larvae solicited at the same rate, swallowed at the same rate and swallowed for the same duration such that meal size was unaffected by incubation temperature. On the brood pile, fewer workers tended brood at higher incubation temperatures, but worker tempo increased; as a result, brood tending was not adversely affected by incubation temperature.
    [Show full text]
  • Digestive System of the Cricket, Teleogryllus Commodus Walker
    Faculty of Veterinary Medicine and Animal Science Department of Anatomy, Physiology and Biochemistry Morphology and localization of carbonic anhydrase in the alimentary canal of the Swedish house cricket, Acheta domesticus (Orthoptera: Gryllidae) Elina Thorsson Uppsala 2018 Degree Project 30 credits within the Veterinary Medicine Programme ISSN 1652-8697 Examensarbete 2018:88 Morphology and localization of carbonic anhydrase in the alimentary canal of the Swedish house cricket, Acheta domesticus (Orthoptera: Gryllidae) Digestionskanalens morfologi och lokalisation av karbanhydras hos den svenska hussyrsan, Acheta domesticus (Orthoptera: Gryllidae) Elina Thorsson Supervisor: Lena Holm, Department of Anatomy, Physiology and Biochemistry Examiner: Anna Jansson, Department of Anatomy, Physiology and Biochemistry Degree Project in Veterinary Medicine Credits: 30 Level: Second cycle, A2E Course code: EX0830 Place of publication: Uppsala Year of publication: 2018 Number of part of series: Examensarbete 2018:88 ISSN: 1652-8697 Online publication: http://stud.epsilon.slu.se Key words: house cricket, acheta domesticus, gryllidae, anatomy, histology, morphophysiology digestive tract, alimentary canal, gastrointestinal tract, gut, carbonic anhydrase Nyckelord: hussyrsa, acheta domesticus, gryllidae, anatomi, histologi, morfofysiologi, mag-tarmkanal, digestionskanal, karbanhydras Sveriges lantbruksuniversitet Swedish University of Agricultural Sciences Faculty of Veterinary Medicine and Animal Science Department of Anatomy, Physiology and Biochemistry SUMMARY There is a growing interest in using insects as part of the human diet. Actors such as the Swedish University of Agricultural Sciences (SLU) and Nordic Food Labs are investigating the potential use of insects as a source of protein and nutrients for the western human population. This degree project in veterinary medicine is part of the SLU project; Eating crickets- an appetizing solution for today´s global problems which aims to develop a new sustainable protein source based on the Swedish house cricket, A.
    [Show full text]