Thesis Rests with the Author

Total Page:16

File Type:pdf, Size:1020Kb

Thesis Rests with the Author University of Bath PHD Ganoderma stem rot of oil palm (Elaeis guineensis): Mode of infection, epidemiology and biological control Rees, Robert William Award date: 2006 Awarding institution: University of Bath Link to publication Alternative formats If you require this document in an alternative format, please contact: [email protected] General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 09. Oct. 2021 i Ganoderma Stem Rot of Oil Palm (Elaeis guineensis): Mode of Infection, Epidemiology and Biological Control Submitted by Robert William Rees For the degree of Ph.D. of the University of Bath 2006 Copyright© Attention is drawn to the fact that the copyright of this thesis rests with the author. This copy of the thesis has been supplied on the condition that anyone who consults it is understood to recognise that its copyright rests with the author and that no quotation from the thesis and no information derived from it may be published without prior consent of the author. This thesis may be made available for the consultation within the University library and may be photocopied or lent to other libraries for the purpose of consultation. f a * UMI Number: U223403 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. Dissertation Publishing UMI U223403 Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 ERSITY OF BATH LIBRARY 2 7 JUL 2007 ii Acknowledgements I would like to express my gratitude to my supervisors Dr Richard Cooper and Dr Julie Flood for their endless help and advice during this project. I’d especially like to thank Richard for his thorough and rapid editing of this manuscript. If this thesis is readable, he is due a large portion of the credit. I owe a huge debt of thanks to Julie for keeping me focused on the important issues relating to the project, for giving me moral support when I needed it and for being so extremely supportive of my career development, thank you very much. I’d also like to acknowledge the great help extended to me by Dr Rob Jackson, who was a great source of advice regarding molecular strategies during the project. This Ph.D. was conducted in association with LONSUM and many experiments were carried out at Bah Lias research station (BLRS). I would like to pay special thanks to Dr Hugh Foster for supporting this project, for extending me help and for being such a good breakfast/lunch/dinner companion during my visits. I am also extremely grateful to Yonnes Hasan for his invaluable assistance with logistics and practical implementation of field trials; without his help my work at Bah Lias would have been impossible. In addition, Oslan deserves tremendous credit for helping me implement the often complicated trials and for monitoring trials with incredible efficiency, I will always be very grateful. I would also like to thank Dr Steven Nelson for his help, advice and discussions on all things oil palm. I am also very appreciative of the bacon butties, roast beef lunches and the occasional beer with him and Adrine during the visits. Also, Ganoderma is a troubling beast to work with and I would like to extend my thanks to Dr Frederick Breton for our mutual Ganoderma griping sessions, his good humour and friendship. Ursula Potter was incredibly helpful for the electron microscopy studies during this project. I would also like to acknowledge the valuable contributions made to this project by Francis Briscoe, Alex Barker, Sarah Norman and Benjamin N. Short. I’d like to express my deep gratitude to Ben. Alongside his excellent work on microscopy of infected oil palm roots, which was invaluable as the basis for further ultrastructure studies of oil palm infection, I’d like to thank him for being such a good friend; an absolute legend. During my time at Bath the department was a terrific place to be and numerous people can accept culpability for this; A1 Garfunkle, ‘The General’ aka Ben Short, Tommy Gun, Hilton Macmhaoinigh, Emmsy, Rob Jacko Jackson, Jess Pollitt, Kate Hanrott, Saara Nuutinen, Jane Dickinson, Gaffer Paul Whitley, Dave Clark 5, Pete Millichap, Shifaan, the always serious Chris and Carolyn, Liz Harrison, Iaonnis, Cath Haigh, Mark Hornsey, Amelia Preedy, Ben Heath, Vicky Fleming, Reto Bazzani, Richard Parker, Shazia and all the members of lab 1.52 and write-up room 1.55. iv Abbreviations AFLP Amplified fragment length polymorphism AIR Alcohol insoluble residue (plant cell walls) ANOVA Analysis of variance BCA Biological control agent BLRS Bah Lias research station BSR Basal stem rot CABI Centre for Agriculture and Biosciences International CAGE Cellulose acetate gel electrophoresis CBH Cellobiohydrolase CBL Column barrier layer CODIT Compartmentalisation of decay in trees CPO Crude palm oil CTAB Cetylmethylammonium bromide CWDE Cell wall degrading enzymes 2,4-DAPG 2,4-diacetylphloroglucinol DMSO Dimethyl sulphoxide ED50 Effective Dose 50 EDTA Ethylenediaminetetraacetic acid EG Endo-glucanase ELISA Enzyme-linked immunosorbent assay FD Frond debris FFB Fresh fruit bunch FP Fallen palms GFP Green fluorescent protein GM Gunung Malayo estate GSM Ganoderma selective medium IM P Integrated management practice ITS Intergenic transcribed spacer Lac Laccase LiP Lignin peroxidase MES 2-N-morpholino ethanesulphonic acid MLST Multilocus sequence typing M nP Manganese peroxidase MtDNA Mitochondrial DNA NMR Nuclear magnetic resonance PAGE Polyacrylamide gel electrophoresis PCA Phenazine-1 -carboxamide PCR Polymerase chain reaction PDA Potato dextrose agar PEG Polyethylene glycol PG Endo-polygalacturonase PGL Polygalacturonide lyase PGPR Plant growth promoting rhizobacteria PKO Palm kernel oil PNG Papua New Guinea PR Pathogenesis-related proteins PyAW Pyridine: acetic acid: water RAMS Randomly amplified microsatellites RAPD Randomly amplified polymorphic DNA RBB Remazol brilliant blue rDNA Ribosomal DNA RFLP Restriction fragment length polymorphism RH Relative humidity RISR Rhizobacteria-induced systemic resistance RVU Relative viscometric units SAR Systemic acquired resistance SBJ Sonneibijangkar estate SDW Sterile distilled water SEM Scanning electron microscopy SIG Somatic incompatibility group TAD Take-all decline TE Tris EDTA TEM Transmission electron microscopy TSM Trichoderma selective medium UPGMA Unweighted pairgroup method with arithmetic USR Upper stem rot UV Ultra violet vi Ganoderma Stem Rot of Oil Palm (Elaeis guineensis): Mode o f Infection, Epidemiology and Biological Control Stem rot of oil palm, caused by Ganoderma boninense, a white-rot basidiomycete, is the main threat to oil palm production in South East Asia. Indonesia and Malaysia produce 80% of the world’s palm oil, but losses can reach 50% by the time palms reach 15 years. G. boninense can infect both roots and lower stems where it is called basal stem rot (BSR) or upper stems when it is referred to as upper stem rot (USR). Reproducible root infection was obtained using small, infested wood blocks as inoculum and revealed that intimate association of palm roots with the inoculum source was a prerequisite. This method of infection also showed variation in pathogen aggressiveness and has potential for resistance screening. Under field conditions, temperatures of exposed field soil exceeded 40°C, but Ganoderma is inhibited above 35 °C; shading markedly enhanced infection and may explain late disease appearance when canopy closure creates shade. Ultrastructure combined with biochemistry revealed that G. boninense rapidly degraded starch, lignin and cellulose and caused extensive breakdown of root cortical cell walls. Subsequent enzyme analysis showed production of all major enzyme groups, which are potential pathogenicity factors. Randomly amplified microsatellites (RAMS) were used to study epidemiology. High genetic variation of isolates was observed within fallen palms and some BSR infected trees contained several isolates of Ganoderma, whereas all isolates within USR infected trees were clonal, thus BSR and USR infections appear distinct. Basidiospores may be important for USR infections and were detected in very high numbers ( ca . 2,000 - 10,000/m3) in plantation air samples. Scanning electron microscopy (SEM) revealed that these spores have the potential to germinate on various wounded palm surfaces. Biocontrol is a possible means of disease control and several
Recommended publications
  • Association of Ceracis Cornifer (Mellié)(Coleoptera: Ciidae) With
    April - June 2003 359 SCIENTIFIC NOTE Association of Ceracis cornifer (Mellié) (Coleoptera: Ciidae) with the Bracket Fungus Pycnoporus sanguineus (Basidiomycetes: Polyporaceae) FABIANO GUMIER-COSTA1, CRISTIANO LOPES-ANDRADE2 AND ADILSON A. ZACARO1 1Depto. Biologia Geral; 2Depto. Biologia Animal, Universidade Federal de Viçosa, 36571-000, Viçosa, MG Neotropical Entomology 32(2):359-360 (2003) Associação de Ceracis cornifer (Mellié) (Coleoptera: Ciidae) com o Fungo Pycnoporus sanguineus (Basidiomycetes: Polyporaceae) RESUMO - Duas novas coletas de Ceracis cornifer (Mellié) na Região Sudeste do Brasil são relatadas, descrevendo a associação dessa espécie com o fungo orelha-de-pau Pycnoporus sanguineus. A associação de outras espécies do grupo Ceracis furcifer Mellié com esse fungo é discutida. PALAVRAS-CHAVE: Ciinae, micetobionte, basidiocarpo ABSTRACT - Two new records of Ceracis cornifer (Mellié) in the Southeast Region of Brazil are presented here, describing the association of this species with the bracket fungus Pycnoporus sanguineus. The association of other species of the Ceracis furcifer Mellié group with this fungus is discussed. KEY WORDS: Ciinae, mycetobiont, basidiocarp Ciids are minute fungus-feeding beetles, which live in obtained. In the second collection eight basiodiocarps of close association with some macrofungi (Lawrence 1971, the fungus with developed fruiting bodies were observed. Lopes-Andrade 2002). These minute beetles are considered In both cases, the ciids were breeding in the living host mycetobiont because all instars depend upon the fungus for fungi. food and shelter (Scheerpeltz & Höfler 1948, Navarrete- There are three New World species that are known to Heredia 1991). The host preference of the Nearctic and breed in P. sanguineus: Cer. monocerus Lawrence, Cis Japanese ciids is well known (Lawrence 1973, Kawanabe creberrinus Mellié and Cer.
    [Show full text]
  • Phylogenetic Classification of Trametes
    TAXON 60 (6) • December 2011: 1567–1583 Justo & Hibbett • Phylogenetic classification of Trametes SYSTEMATICS AND PHYLOGENY Phylogenetic classification of Trametes (Basidiomycota, Polyporales) based on a five-marker dataset Alfredo Justo & David S. Hibbett Clark University, Biology Department, 950 Main St., Worcester, Massachusetts 01610, U.S.A. Author for correspondence: Alfredo Justo, [email protected] Abstract: The phylogeny of Trametes and related genera was studied using molecular data from ribosomal markers (nLSU, ITS) and protein-coding genes (RPB1, RPB2, TEF1-alpha) and consequences for the taxonomy and nomenclature of this group were considered. Separate datasets with rDNA data only, single datasets for each of the protein-coding genes, and a combined five-marker dataset were analyzed. Molecular analyses recover a strongly supported trametoid clade that includes most of Trametes species (including the type T. suaveolens, the T. versicolor group, and mainly tropical species such as T. maxima and T. cubensis) together with species of Lenzites and Pycnoporus and Coriolopsis polyzona. Our data confirm the positions of Trametes cervina (= Trametopsis cervina) in the phlebioid clade and of Trametes trogii (= Coriolopsis trogii) outside the trametoid clade, closely related to Coriolopsis gallica. The genus Coriolopsis, as currently defined, is polyphyletic, with the type species as part of the trametoid clade and at least two additional lineages occurring in the core polyporoid clade. In view of these results the use of a single generic name (Trametes) for the trametoid clade is considered to be the best taxonomic and nomenclatural option as the morphological concept of Trametes would remain almost unchanged, few new nomenclatural combinations would be necessary, and the classification of additional species (i.e., not yet described and/or sampled for mo- lecular data) in Trametes based on morphological characters alone will still be possible.
    [Show full text]
  • Caveats of Fungal Barcoding: a Case Study in Trametes S.Lat
    Caveats of fungal barcoding: a case study in Trametes s.lat. (Basidiomycota: Polyporales) in Vietnam reveals multiple issues with mislabelled reference sequences and calls for third-party annotations Authors: Lücking, Robert, Truong, Ba Vuong, Huong, Dang Thi Thu, Le, Ngoc Han, Nguyen, Quoc Dat, et al. Source: Willdenowia, 50(3) : 383-403 Published By: Botanic Garden and Botanical Museum Berlin (BGBM) URL: https://doi.org/10.3372/wi.50.50302 BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-of-use. Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Downloaded From: https://bioone.org/journals/Willdenowia on 10 Feb 2021 Terms of Use: https://bioone.org/terms-of-use Willdenowia Annals of the Botanic Garden and Botanical Museum Berlin ROBERT LÜCKING1*, BA VUONG TRUONG2, DANG THI THU HUONG3, NGOC HAN LE3, QUOC DAT NGUYEN4, VAN DAT NGUYEN5, ECKHARD VON RAAB-STRAUBE1, SARAH BOLLENDORFF1, KIM GOVERS1 & VANESSA DI VINCENZO1 Caveats of fungal barcoding: a case study in Trametes s.lat.
    [Show full text]
  • Insect Fauna Compared Between Six Polypore Species in a Southern Norwegian Spruce Forest
    --------------------------FaunanorY. Ser. B 42: 21-26.1995 Insect fauna compared between six polypore species in a southern Norwegian spruce forest Bj0rn 0kland 0kland, B. 1995. Insect fauna compared between six polypore species in a southern Norwegian spruce forest. - Fauna norv. Ser. B 42: 21-26. Beetles and gall midges were reared from dead fruiting bodies of the polypore species Phellinus tremulae, Piptoporus betulinus, Fomitopsis pinicola, Pycnoporus cinnabari­ nus, Fomes fomentarius and Inonotus radiatus. The number of species differed signifi­ cantly among the polypore species. The variation in species richness conformed well with the hypothesis that more insect species may utilize a fungi species with (1) increasing durational stability, and (2) increasing softness of the carpophores. Strong preferance for certain polypore species was indicated for most of the Cisidae species, and a few species in the other families of beetles and gall midges (Diptera). The host preferances of the Cisidae species were in good agreement with records from other parts of Scandinavia. The host records in two of the gall midge species are new. Many of the species were too low-frequent for an evaluation of host preferances. Bjf/Jrn 0kland, Norwegian Forest Research Institute, Hf/Jgskolevn. 12, 1432 As, Norway. INTRODUCTION Karst., Fomes fomentarius (Fr.) Kickx, Piptoporus betulinus (Fr.) Karst., Phellinus A large number of mycetophagous insects uti­ tremulae (Bond.) Bond.& Borisov, Pycnoporus lize fruiting bodies of wood-rotting fungi as cinnabarinus (Fr.) Karst. and Inonotus radiatus food and breeding sites (Gilberston 1984). The (Fr.) Karst. All six species form sporocarps of a species breeding in Polyporaceae display vary- bracket type, and are associated with different t ing degree of host specificity.
    [Show full text]
  • Funghi E Natura Gruppo Di Padova
    FUNGHI E NATURA www.ambpadova.it Anno 46° ~ 2° semestre 2019 Gruppo di Padova notiziario micologico semestrale riservato agli associati FUNGHI E NATURA www.ambpadova.it Anno 46° ~ 2° semestre 2019 Associazione Micologica Bresadola Gruppo di Padova Foto di Copertina www.ambpadova.it Boletus Notizie Utili reticulatus e-mail: [email protected] Foto di Sede a Padova Via Bezzecca 17 Riccardo Menegazzo C/C/ Postale 14153357 C.F. 00738410281 Quota associativa anno 2019: € 25,00 incluse ricezioni di: “Rivista di Micologia” Gruppo di Padova edita da AMB Nazionale e “Funghi e Natura” notiziario micologico semestrale riservato agli associati del Gruppo di Padova. Incontri e serate ad Albignasego (PD) nella Casa delle Associazioni, in via Damiano Chiesa, angolo Via Fabio Filzi Presidente Riccardo Novella (tel.335 7783745) SOMMARIO Vice Pres. Rossano Giolo (tel. 049 9714147). Segretario Funghi e Natura 31 Luglio 2019 Paolo Bordin (tel. 049 8725104). Tesoriere: Ida Varotto (tel. 347 9212708). Dalla segreteria pag. 3 Direttore Gruppo di Studio: Paolo Di Piazza(tel. 349 4287268). di Paolo Bordin Vicedirettore Gruppo di Studio: Riccardo Menegazzo. Gomphidius tyrrhenicus Resp. attività ricreative: D. Antonini & M. Antonini Ennio Albertin (tel. 049 811681). Resp. organizzazione mostre ed erbario: di Rossano Giolo pag. 5 Andrea Cavalletto Resp. pubbliche relazioni: Cronaca di una serata da Ida Varotto (tel. 347 9212708) e Gino Segato. ricordare Gestione materiale e allestimento mostre: Ennio Albertin. di Alberto Parpajola pag. 8 Coordinatore Funghi e Natura: Lepiota andegavensis: Alberto Parpajola e-mail: [email protected] rarissima specie raccolta Consiglio Direttivo: sui Colli Euganei R. Novella ,E. Albertin, P. Bordin, A. Cavalletto, R.
    [Show full text]
  • Manaus, BRAZIL Macrofungi of the Adolpho Ducke Botanical Garden
    Manaus, BRAZIL Macrofungi of the Adolpho Ducke Botanical Garden 1 Douglas de Moraes Couceiro, Kely da Silva Cruz, Maria Aparecida da Silva & Maria Aparecida de Jesus Instituto Nacional de Pesquisas da Amazônia, Coordenação de Tecnologia e Inovação, Manaus - AM Photos by Douglas de Moraes Couceiro, Kely da Silva Cruz, Maria Aparecida da Silva, and Maria Aparecida de Jesus, except where indicated. Produced by: Douglas de Moraes Couceiro with support from the Laboratory of Wood Pathology. Abbreviations: Ascomycota (A), Basidiomycota (B), Pileus (P), Hymenophore (H) © Douglas Couceiro [[email protected]] [fieldguides.fieldmuseum.org] [929] version 1 9/2017 1 Auricularia delicata 2 Camillea leprieurii 3 Camillea leprieurii 4 Caripia montagnei Auriculariales, Auriculariaceae (B) Xylariales, Xylariaceae (A) Xylariales, Xylariaceae (A) Agaricales, Omphalotaceae (B) 5 Clavaria zollingeri 6 Cookeina tricholoma 7 Crepidotus cf. variabilis 8 Dacryopinax spathularia Agaricales, Clavariaceae (B) Pezizales, Sarcoscyphaceae (A) Agaricales, Inocybaceae (B) Dacrymycetales, Dacrymycetaceae (B) 9 Daldinia concentrica 10 Favolus tenuiculus 11 Favolus tenuiculus 12 Flabellophora obovata Xylariales, Xylariaceae (A) Polyporales, Polyporaceae (B, P) Polyporales, Polyporaceae (B, H) Polyporales, Polyporaceae (B) 13 Flavodon flavus 14 Fomes fasciatus 15 Fomes fasciatus 16 Ganoderma applanatum Polyporales, Meruliaceae (B, H) Polyporales, Polyporaceae (B, P) Polyporales, Polyporaceae (B, H) Polyporales, Ganodermataceae (B, P) 17 Ganoderma applanatum 18 Geastrum
    [Show full text]
  • Diversity and Distribution of Polyporales in Peninsular Malaysia (Kepelbagaian Dan Taburan Polyporales Di Semenanjung Malaysia)
    Sains Malaysiana 41(2)(2012): 155–161 Diversity and Distribution of Polyporales in Peninsular Malaysia (Kepelbagaian dan Taburan Polyporales di Semenanjung Malaysia) MOHAMAD HASNUL BOLHASSAN, NOORLIDAH ABDULLAH*, VIKINESWARY SABARATNAM, HATTORI TSUTOMU, SUMAIYAH ABDULLAH, NORASWATI MOHD. NOOR RASHID & MD. YUSOFF MUSA ABSTRACT Macrofungi of the order Polyporales are among the most important wood decomposers and caused economic losses by decaying the wood in standing trees, logs and in sawn timber. Diversity and distribution of Polyporales in Peninsular Malaysia was investigated by collecting basidiocarps from trunks, branches, exposed roots and soil from six states (Johor, Kedah, Kelantan, Negeri Sembilan, Pahang and Selangor) in Peninsular Malaysia and Federal Territory Kuala Lumpur. This study showed that the diversity of Polyporales were less diverse than previously reported. The study identified 60 species from five families; Fomitopsidaceae, Ganodermataceae, Meruliaceae, Meripilaceae, and Polyporaceae. The common species of Polyporales collected were Fomitopsis feei, Amauroderma subrugosum, Ganoderma australe, Earliella scabrosa, Lentinus squarrosulus, Microporus xanthopus, Pycnoporus sanguineus and Trametes menziesii. Keywords: Macrofungi; Polyporales ABSTRAK Makrokulat daripada Order Polyporales adalah antara pereput kayu yang sangat penting dan telah diketahui bahawa banyak spesies Polyporales menyebabkan kerugian daripada aspek ekonomi dengan menyebabkan pereputan pada pokok- pokok kayu, balak serta kayu gergaji. Kepelbagaian dan
    [Show full text]
  • A Revised Family-Level Classification of the Polyporales (Basidiomycota)
    fungal biology 121 (2017) 798e824 journal homepage: www.elsevier.com/locate/funbio A revised family-level classification of the Polyporales (Basidiomycota) Alfredo JUSTOa,*, Otto MIETTINENb, Dimitrios FLOUDASc, € Beatriz ORTIZ-SANTANAd, Elisabet SJOKVISTe, Daniel LINDNERd, d €b f Karen NAKASONE , Tuomo NIEMELA , Karl-Henrik LARSSON , Leif RYVARDENg, David S. HIBBETTa aDepartment of Biology, Clark University, 950 Main St, Worcester, 01610, MA, USA bBotanical Museum, University of Helsinki, PO Box 7, 00014, Helsinki, Finland cDepartment of Biology, Microbial Ecology Group, Lund University, Ecology Building, SE-223 62, Lund, Sweden dCenter for Forest Mycology Research, US Forest Service, Northern Research Station, One Gifford Pinchot Drive, Madison, 53726, WI, USA eScotland’s Rural College, Edinburgh Campus, King’s Buildings, West Mains Road, Edinburgh, EH9 3JG, UK fNatural History Museum, University of Oslo, PO Box 1172, Blindern, NO 0318, Oslo, Norway gInstitute of Biological Sciences, University of Oslo, PO Box 1066, Blindern, N-0316, Oslo, Norway article info abstract Article history: Polyporales is strongly supported as a clade of Agaricomycetes, but the lack of a consensus Received 21 April 2017 higher-level classification within the group is a barrier to further taxonomic revision. We Accepted 30 May 2017 amplified nrLSU, nrITS, and rpb1 genes across the Polyporales, with a special focus on the Available online 16 June 2017 latter. We combined the new sequences with molecular data generated during the Poly- Corresponding Editor: PEET project and performed Maximum Likelihood and Bayesian phylogenetic analyses. Ursula Peintner Analyses of our final 3-gene dataset (292 Polyporales taxa) provide a phylogenetic overview of the order that we translate here into a formal family-level classification.
    [Show full text]
  • Polyporaceae of Iowa: a Taxonomic, Numerical and Electrophoretic Study Robert John Pinette Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1983 Polyporaceae of Iowa: a taxonomic, numerical and electrophoretic study Robert John Pinette Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Botany Commons Recommended Citation Pinette, Robert John, "Polyporaceae of Iowa: a taxonomic, numerical and electrophoretic study " (1983). Retrospective Theses and Dissertations. 8954. https://lib.dr.iastate.edu/rtd/8954 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity. 2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed.
    [Show full text]
  • An Overview of Aphyllophorales (Wood Rotting Fungi) from India
    Int.J.Curr.Microbiol.App.Sci (2013) 2(12): 112-139 ISSN: 2319-7706 Volume 2 Number 12 (2013) pp. 112-139 http://www.ijcmas.com Review Article An overview of Aphyllophorales (wood rotting fungi) from India Kiran Ramchandra Ranadive* Waghire College, Saswad, Tal-Purandar, Dist. Pune, Maharashtra (India) *Corresponding author A B S T R A C T K e y w o r d s During field and literature surveys, a rich mycobiota was observed in the vegetation of India. The heavy rainfall and high humidity favours the growth of Fungi; Aphyllophoraceous fungi. The present work materially adds to our knowledge of Aphyllophorales; Poroid and Non-Poroid Aphyllophorales from all over India. A total of more than Basidiomycetes; 190 genera of 52 families and total 1175 species of from poroid and non-poroid semi-evergreen Aphyllophorales fungi were reported from Indian literature till 2012.The checklist gives the total count of aphyllophoraceous fungal diversity from India which is also forest.. a valued addition for comparing aphyllophoraceous diversity in the world. Introduction Aphyllophorales order was proposed by in culture are recognized by Stalper. Rea, after Patouillard, for Basidiomycetes (Stalper,1978). having macroscopic basidiocarps in which the hymenophore is flattened Much of the literature of the order is based (Thelephoraceae), club-like on the traditional family groupings and as (Clavariaceae), tooth-like (Hydnaceae) or under the current re-arrangements, one has the hymenium lining tubes family may exhibit several different types (Polyporaceae) or some times on lamellae, of hymenophore (e.g. Gomphaceae has the poroid or lamellate hymenophores effuse, clavarioid, hydnoid and being tough and not fleshy as in the cantharelloid hymenophores).
    [Show full text]
  • Molecular Phylogenetic Identification of Wood Inhabiting Fungi Isolated from Dampa Tiger Reserve Forest
    © 2019 JETIR April 2019, Volume 6, Issue 4 www.jetir.org (ISSN-2349-5162) MOLECULAR PHYLOGENETIC IDENTIFICATION OF WOOD INHABITING FUNGI ISOLATED FROM DAMPA TIGER RESERVE FOREST 1Zohmangaiha, 2Josiah MCVabeikhokhei, 3John Zothanzama. Dept of Environmental Science, Mizoram University. ABSTRACT. In this study, we investigated the taxonomic identities and phylogenetic relationships of fungal species isolated from Dampa Tiger Reserve Forest using a combination of morphological and molecular approaches. Twenty two fungal isolates were selected for molecular phylogenetic analysis using nuclear ribosomal DNA sequences, including both the internal transcribed spacers (ITS1 and ITS2) and the 5.8S gene region. The 22 species were identified to the species level based on fungal sequences with known identities in GenBank. Keywords: Internal transcribed spacer, Basidiomycetes, Phylogenetic analysis, Molecular analysis I. Introduction Fungal species are important components of biodiversity in tropical forests, where they are major contributors to the maintenance of the earth’s ecosystem, biosphere and biogeochemical cycle (Satish et al., 2007; Panda et al., 2010). Fungi have beneficial roles in nutrient cycling, agriculture, biofertilizers, antibiotics, food and biotechnological industries (Hawksworth 1991; Hawksworth and Colwell 1992; Lodge 1997; Pointing and Hyde 2001; Manoharachary et al., 2005). The objective of this study was to characterized the fungal species of the protected forest of Dampa Tiger Reserve in Mizoram. The site occupies an area of 500 sq. km. and lies in west Mizoram in northeastern India, along the border between India and Bangladesh. The hills and forests in this 'Land of the highlanders' are considered by biologists to be "biogeographic highways" connecting India to Malayan and Chinese regions.
    [Show full text]
  • Redalyc.LACCASE ACTIVITY of Pycnoporus Cinnabarinus GROWN in DIFFERENT CULTURE SYSTEMS
    Revista Mexicana de Ingeniería Química ISSN: 1665-2738 [email protected] Universidad Autónoma Metropolitana Unidad Iztapalapa México Villegas, E.; Téllez-Téllez, M.; Rodríguez, A.; Carreón-Palacios, A.E.; Acosta-Urdapilleta, M.L.; Kumar-Gupta, V.; Díaz-Godínez, G. LACCASE ACTIVITY OF Pycnoporus cinnabarinus GROWN IN DIFFERENT CULTURE SYSTEMS Revista Mexicana de Ingeniería Química, vol. 15, núm. 3, 2016, pp. 703-710 Universidad Autónoma Metropolitana Unidad Iztapalapa Distrito Federal, México Available in: http://www.redalyc.org/articulo.oa?id=62048168003 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Vol. 15, No. 3 (2016) 703-710 Revista Mexicana de Ingeniería Química LACCASE ACTIVITY OF PycnoporusCONTENIDO cinnabarinus GROWN IN DIFFERENT CULTURE SYSTEMS ACTIVIDADVolumen DE LACASA 8, número 3, DE 2009Pycnoporus / Volume 8, cinnabarinusnumber 3, 2009CRECIDO EN DIFERENTES SISTEMAS DE CULTIVO E. Villegas2, M. Tellez-T´ ellez´ 3, A. Rodr´ıguez2, A.E. Carreon-Palacios´ 1, M.L. Acosta-Urdapilleta3, 213 Derivation and applicationV. Kumar-Guptaof the Stefan-Maxwell4, G. Dequations´ıaz-God ´ınez1* 1Laboratory of Biotechnology, Research Center for Biological Sciences, Autonomous University of Tlaxcala, Tlaxcala, Mexico. 2Laboratory of Structure-Function (Desarrollo y aplicación and Protein de las Engineering, ecuaciones de Biotechnology Stefan-Maxwell) Research Center of the Autonomous University of Stephen Whitaker the State of Morelos, Cuernavaca, Morelos. 3 Laboratory of Mycology, Biology Research Center, Autonomous University of the State of Morelos, Cuernavaca, Morelos. 4Molecular Glycobiotechnology Group, Discipline of Biochemistry, National University of Ireland Galway, Galway, Ireland.
    [Show full text]