Flocculation and Filtration of Sludge Operational Comparison Between the Wastewater Treatment

Total Page:16

File Type:pdf, Size:1020Kb

Flocculation and Filtration of Sludge Operational Comparison Between the Wastewater Treatment Flocculation and filtration of sludge Operational comparison between the wastewater treatment plants in Garmerwolde and Heerenveen Garmerwolde Heerenveen Marc Meijerink s2022176 Bedumerstraat 23a 9716 BA Groningen 4-7-2013 Supervisor: Prof. Ir. M.W.M Boesten Abstract This report is written in order to get insight in the processes present at the wastewater treatment plants in Garmerwolde and Heerenveen. A literature study is done to make an operational comparison between the two plants. The comparison consists of a description of the hardware present including how is it used and controlled. The comparison is mainly focused on flocculation and filtration. Both processes are used to dewater sludge, which is a side product from the purification of sewage water. The main difference in flocculation between the two plants is the concentration of the added polyelectrolyte (PE) and the mixing of this PE with the sludge stream. Garmerwolde uses a 1 wt% PE solution and a dynamic mixing system. On the other hand Heerenveen uses a 0.15 wt% PE solution and a static mixing system. It is expected that the way of mixing has much influence on the properties of the flakes and therefore the dewatering ability during filtration. In both plants filtration is done by chamber filter presses. The presses are operated in the same way; however Garmerwolde (25.87% DSC) achieves a higher dry solid content of the sludge cake than Heerenveen (23.69% DSC). This is the result of a higher dry solid content of the sludge stream into the presses due to digestion. However, also the efficiency of the chamber filter press is higher in Garmerwolde. In addition, experiments are conducted with a flocculation set-up. This is done to see if the process conditions for flocculation are the optimal conditions. The result for Garmerwolde (145 gram FeCl3/kg D.S.; 12.5 gram PE/kg D.S.) was quite different than the current coagulant and flocculent dosage (65 gram FeCl3/kg D.S.; 7.5 gram PE/kg D.S.), but for Heerenveen the results (75 gram FeCl3/kg D.S.; 7 gram PE/kg D.S.) were almost similar (55 gram FeCl3/kg D.S.; 7 gram PE/kg D.S.). However, the flocculation set-up is a quantitative method and is primarily used to determine the range where coagulation and flocculation occurs. 2 Preface This report is a thesis written for my bachelor assignment. The thesis should reflect the acquired learned skills in the bachelor degree program of Chemical Engineering at the University of Groningen. The project started at 22 April 2013 and it took three months to complete this thesis. Half the time was spend on experiments with a flocculation set-up. The other half was used to gather background information and to do a comparative literature study between wastewater treatment plants in Garmerwolde and Heerenveen. Multiple trips were made to the plants for information from engineers and process operators. I would like to thank Prof. Ir. M.W.M. Boesten for the given guidance and the fundamental for this thesis. Furthermore I would like to thank A. Haijer from Water and Energy Solutions for extra support and for assistance with the equipment and the chemicals. I also want to thank O. Bouius, W.G. Poiesz, D. van der Elst and S. Slump for their information about the WWTP in Garmerwolde and Heerenveen. Without their help, this thesis couldn’t have been written. Marc Meijerink 3 Table of Contents Abstract ........................................................................................................................................... 2 Preface............................................................................................................................................. 3 Abbreviations .................................................................................................................................. 7 1. Introduction ............................................................................................................................. 8 1.1 WWTP Garmerwolde....................................................................................................... 8 1.2 WWTP Heerenveen.......................................................................................................... 9 1.3 Previous work................................................................................................................. 10 1.4 Assignment ..................................................................................................................... 11 2. Theory ................................................................................................................................... 12 2.1 Sludge ............................................................................................................................. 12 2.2 Digestion ........................................................................................................................ 13 2.3 Sludge Conditioning....................................................................................................... 14 2.4 Coagulation .................................................................................................................... 15 2.5 Flocculation .................................................................................................................... 16 2.6 Filtration ......................................................................................................................... 17 2.6.1 Theory ..................................................................................................................... 17 2.6.2 Filtration history...................................................................................................... 19 2.6.3 Filtration techniques................................................................................................ 20 3. Process description................................................................................................................ 24 3.1 WWTP Garmerwolde..................................................................................................... 24 3.1.1 Introduction ............................................................................................................. 24 3.1.2 Hardware ................................................................................................................. 24 3.1.3 P&ID ....................................................................................................................... 31 3.1.4 Key numbers ........................................................................................................... 33 3.2 WWTP Heerenveen........................................................................................................ 35 3.2.1 Introduction ............................................................................................................. 35 3.2.2 Hardware ................................................................................................................. 36 3.2.3 P&ID ....................................................................................................................... 42 3.2.4 Key numbers ........................................................................................................... 43 4. Experimental ......................................................................................................................... 46 4 4.1 Introduction .................................................................................................................... 46 4.2 Preparations .................................................................................................................... 46 4.2.1 Equipment ............................................................................................................... 46 4.2.2 Chemicals................................................................................................................ 47 4.2.3 Assumptions............................................................................................................ 47 4.2.4 Experimental method .............................................................................................. 47 5. Results and Discussion ......................................................................................................... 49 5.1 Introduction .................................................................................................................... 49 5.2 Coagulation and flocculation experiments ..................................................................... 49 5.2.1 Garmerwolde........................................................................................................... 49 5.2.2 Heerenveen.............................................................................................................. 51 5.2.3 Discussion ............................................................................................................... 53 5.3 Main differences between the WWTPs.......................................................................... 54 5.3.1 Water treatment....................................................................................................... 54 5.3.2 Sludge pre-treatment ............................................................................................... 55 5.3.3 Sludge Conditioning ............................................................................................... 56 5.3.4 Filter press..............................................................................................................
Recommended publications
  • Cost Analysis of the Impacts on Municipal Utilities and Biosolids Management to Address PFAS Contamination
    Cost Analysis of the Impacts on Municipal Utilities and Biosolids Management to Address PFAS Contamination October 2020 Table of Contents Executive Summary Section 1 Background 1.1 Biosolids ................................................................................................................................................................ 1-1 Section 2 Data on Actual Costs to Wastewater and Biosolids Management Programs from PFAS 2.1 Introduction ......................................................................................................................................................... 2-1 2.2 NEBRA Survey ..................................................................................................................................................... 2-1 2.2.1 Background ............................................................................................................................................. 2-1 2.2.2 Results ...................................................................................................................................................... 2-2 2.3 Expanded Utility Survey ................................................................................................................................. 2-2 2.3.1 Background ............................................................................................................................................. 2-2 2.3.2 Results .....................................................................................................................................................
    [Show full text]
  • Landfill Leachate Pretreatment Process Evaluation and Pilot Study
    Landfill Leachate Pretreatment Process Evaluation and Pilot Study Richard Claus – Hazen and Sawyer, P.C. John Butler – Rumpke Consolidated Companies, Inc. Dan Miklos – Hazen and Sawyer, P.C. Presentation Overview Part 1 – Overview of Study, Piloting, and Design Introduction Timeline of Study, Evaluation, & Disposal Wastewater Characterization & Pretreatment Study Timeline of Piloting and Design Pretreatment Design Presentation Overview Part 2 – Pilot Treatment Sessil Media Trickling Filter Pilot Chemical Treatment Jar Testing and Pilot Considered ElectroCell Piloting Next Steps Introduction Rumpke Sanitary Landfill Cincinnati, OH, Colerain Township, Northwest Hamilton County Rumpke Consolidated Companies, Inc. Family Owned, Operated since 1945 One of the largest landfills in the nation, largest in Ohio Rumpke Colerain Township Landfill Introduction Northwest Area Landfill Portion of landfill undergoing a reaction since August, 2009 Source of extremely strong leachate Averaging 120-degrees Fahrenheit Average Volumes of 120,000 GPD (2010-2011) to 200,000 GPD (2012) Northwest Lift Station Lift Station No. 2 Pilot and Tanker Loadout Locations Northwest Area Landfill Introduction – NW Area Leachate Current Characteristics COD 30,000 to 50,000 mg/L BOD5 20,000 to 30,000 mg/L TSS 1,000 – 2,000 mg/L TKN 1,500 – 2,500 mg/L Fe 250 – 700 mg/L Ca 1,500 – 3,700 mg/L Temperature 120 degrees F Introduction – NW Area Leachate On –Going Issues Pipe scaling/clogging during conveyance Odors during handling/disposal Costs for disposal Study, Evaluation, and Disposal Timeline August, 2009 – Increasing leachate strength from Northwest Area August, 2010 to May, 2011 – Wastewater Characterization & Pretreatment Study August, 2011 to June, 2012 – Treatment Piloting and Pretreatment Design Study, Evaluation, and Disposal Timeline - Continued Historically until October 7, 2011 – “Blended” Flow Sewer Discharge into MSDGC Collection System NW Area Leachate (Approx.
    [Show full text]
  • PFAS in Influent, Effluent, and Residuals of Wastewater Treatment Plants (Wwtps) in Michigan
    Evaluation of PFAS in Influent, Effluent, and Residuals of Wastewater Treatment Plants (WWTPs) in Michigan Prepared in association with Project Number: 60588767 Michigan Department of Environment, Great Lakes, and Energy April 2021 Evaluation of PFAS in Influent, Effluent, and Residuals of Project number: 60588767 Wastewater Treatment Plants (WWTPs) in Michigan Prepared for: Michigan Department of Environment, Great Lakes, and Energy Water Resources Division Stephanie Kammer Constitution Hall, 1st Floor, South Tower 525 West Allegan Street P.O. Box 30242 Lansing, MI 48909 Prepared by: Dorin Bogdan, Ph.D. Environmental Engineer, Michigan E-mail: [email protected] AECOM 3950 Sparks Drive Southeast Grand Rapids, MI 49546 aecom.com Prepared in association with: Stephanie Kammer, Jon Russell, Michael Person, Sydney Ruhala, Sarah Campbell, Carla Davidson, Anne Tavalire, Charlie Hill, Cindy Sneller, and Thomas Berdinski. Michigan Department of Environment, Great Lakes, and Energy Water Resources Division Constitution Hall 525 West Allegan P.O. Box 30473 Lansing, MI 48909 Prepared for: Michigan Department of Environment, Great Lakes, and Energy AECOM Evaluation of PFAS in Influent, Effluent, and Residuals of Project number: 60588767 Wastewater Treatment Plants (WWTPs) in Michigan Table of Contents 1. Introduction ......................................................................................................................................... 1 2. Background ........................................................................................................................................
    [Show full text]
  • Dewatering of a Biological Industrial Sludge by Electrokinetics-Assisted Filter Press
    G Model SEPPUR-10125; No. of Pages 6 ARTICLE IN PRESS Separation and Purification Technology xxx (2011) xxx–xxx Contents lists available at ScienceDirect Separation and Purification Technology journal homepage: www.elsevier.com/locate/seppur Dewatering of a biological industrial sludge by electrokinetics-assisted filter press Gordon C.C. Yang ∗, Min-Cong Chen, Chun-Fu Yeh Institute of Environmental Engineering & Center for Emerging Contaminants Research, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan article info abstract Keywords: The objective of this work was to evaluate the performance of biological industrial sludge dewatering Filter press by a pilot-scale filter press assisted by electrokinetics (EK). In all experiments the following conditions Biological industrial sludge were kept constant: (1) dry solids content in the sludge feed: 5.0 wt%; and (2) constant electric-current Dewatering mode. Application of 1 A and 4 A of electric current for 45 min for dewatering was capable of yielding Electrokinetics sludge filter cakes with moisture contents of 65.0% and 53.2%, respectively. However, the former would Electroosmotic permeability provide a better compromise between the residual moisture content and the electricity cost. This practice has been shown to be cost-effective. The reduction of sludge moisture content might be ascribed to the mechanisms of mechanical pressure, electroosmosis, and ohmic heating in said dewatering system. The estimated electroosmotic permeability was found to be comparable to that of reported by other researchers. © 2011 Elsevier B.V. All rights reserved. 1. Introduction developed. It is well known that the flow of water induced by an electrical potential difference is not limited by pore size.
    [Show full text]
  • Eutectic Freeze Crystallization for Table Salt
    Eutectic Freeze Crystallization on Sodium Chloride Analysis of a full experimental cycle Master of Science Thesis Document number: 2461 Bruno (J.J.) Verbeek Wb1179829 29-07-2011 Eutectic Freeze Crystallization on Sodium Chloride 2 Eutectic Freeze Crystallization on Sodium Chloride Faculty: Process Equipment For obtaining the degree of Master of Science in Sustainable Process- & Energy Technology Exam committee: Prof. dr. G.J. Witkamp Dr. L Hartmann K. Yasadi Copyright © BJJ Verbeek All rights reserved 3 Eutectic Freeze Crystallization on Sodium Chloride Contents Acknowledgement ........................................................................................................................................ 6 Abstract ......................................................................................................................................................... 7 Table of figures ............................................................................................................................................. 9 Nomenclature ............................................................................................................................................. 11 1. Introduction ........................................................................................................................................ 13 1.1. Eutectic freeze crystallization ..................................................................................................... 14 1.2. Sodium chloride solutions ..........................................................................................................
    [Show full text]
  • The Recovery and Purification of Fermentation Products the Choice of Recovery Process Is Based on the Following Criteria
    The Recovery and Purification of Fermentation Products The choice of recovery process is based on the following criteria: Product intracellular or extracellular Concentration of the product in the fermentation broth. Physical and chemical properties of the desired product Intended use of the product. Minimal acceptable standard of purity. Magnitude of bio-hazard of the product or broth. Impurities in the fermenter broth. Market price for the product. How to reduce purification cost Selection of a micro-organism which does not produce pigments or undesirable metatlolites Modification of the fermentation to reduce the production of metabolites Precise timing of harvesting pH control after harvesting Temperature treatment after harvesting Addition of flocculating agents Use of enzymes to attack cell walls The recovery and purification of many compounds may be achieved by a number of alternative routes. The decision to follow a particular route involves comparing the following factors to determine the most appropriate under a given set of circumstances: Capital and Processing costs Throughput requirements Yield potential and Product quality Technical expertise available Conformance to regulatory requirements Waste treatment needs Continuous or batch processing Automation Personnel health and safety REMOVAL OF MICROBIAL CELLS AND OTHER SOLID MATTER Use of electrophoresis and dielectrophoresis to exploit the charged properties of microbial cells, ultrasonic treatment to improve flocculation characteristics and magnetic separations. FOAM SEPARATION Foam separation depends on using methods which exploit differences in surface activity of materials. The material may be whole cells or molecules such as a protein or colloidal, and is selectively adsorbed or attached to the surface of gas bubbles rising through a liquid, to be concentrated or separated and finally removed by skimming.
    [Show full text]
  • Separation Expertise for Your Success in the Iron Ore Industry
    SEPARATION EXPERTISE FOR YOUR SUCCESS IN THE IRON ORE INDUSTRY ASK YOUR SEPARATION SPECIALIST YOUR IDEAS YOUR NEEDS YOUR BUSINESS YOUR SEPARATION SPECIALIST 2 How can we make your iron ore production more profitable? How will your business continue to grow despite changing iron ore prices? What equipment will give you reliable performance with minimal residual moisture? What will it take to boost capacity at the lowest possible cost? A SOLUTION TO IMPROVE EVERY PROCESS YOUR SEPARATION SPECIALIST Having served large producers like Jindal along with For all customers, it’s just a matter of reducing investment smaller operators such as CML Metals and Stoilensky and operating costs for high-throughput applications. GOK, we know the complex challenges you face. Other times, the aim is to reduce wastewater from tailings From difficult ore bodies to boosting availability, each treatment in remote deserts. Whatever the situation, solution demands a unique level of expertise. the core challenge is to find the most efficient, reliable solution for your separation needs. YOUR PARTNER IN INNOVATION To many customers, we’re known as the partner of choice for high-capacity concentrate dewatering with the lowest operating costs. In one case, this meant PRODUCTS increasing throughput to more than 500 t/h per machine, with half the total footprint of traditional solutions. In a different brownfield project, the result was the world’s largest hyperbaric disc filter in iron ore production, with a KNOWLEDGE guaranteed residual moisture content of 7% requested at high throughput and clear filtrate. RESOURCES YOU CAN COUNT ON Whether it’s thickening or filtration, concentrate or tailings, the list of success stories goes on and on.
    [Show full text]
  • The Imhoflot G-Cell – an Advanced Pneumatic Flotation Technology for the Recovery of Coal Slurry from Impoundments
    THE IMHOFLOT G-CELL – AN ADVANCED PNEUMATIC FLOTATION TECHNOLOGY FOR THE RECOVERY OF COAL SLURRY FROM IMPOUNDMENTS M. J. G. Battersby Maelgwyn Mineral Services Ltd Llandudno, Wales, UK J. V. Brown Maelgwyn Mineral Services Limited Llandudno, Wales, UK R. M. Imhof Maelgwyn Mineral Services Ltd Dorsten, Germany 2 ABSTRACT large amounts of ultra fine high volatility coal there is the possibility that these ponds can give rise to spontaneous There is a plethora of former industrial sites where coal combustion at some time in the future. Both these mining operations have left large slurry impoundments. possibilities pose a major risk to the environment. These contain raw washed fines, which have previously been too expensive to process to requisite grades for There have been many attempts to recover coal from commercial use. New technology has been developed for tailings impoundments. Very few have been economically fine material processing, namely the Imhoflot pneumatic successful no matter which technology has been applied. flotation G-Cell. This froth flotation technique is a highly Whilst there are many different and valid reasons efficient means of concentrating coal and is particularly recorded for their failure the most common is that the appropriate to the nature of materials encountered in project had not been able to bear the burden of the capital tailings ponds. The high volumetric throughput resulting cost of a plant required to process the material to an from the vastly reduced residence time in the cell allows acceptable standard. Unlike a new mine where a planned for drastically reduced equipment sizes when compared to life of mine of twenty years would not be uncommon, a conventional flotation cells.
    [Show full text]
  • Liquid / Solids Separation in Wastewater Treatment & Biosolids Dewatering
    LIQUID / SOLIDS SEPARATION IN WASTEWATER TREATMENT & BIOSOLIDS DEWATERING Chemical Products Lab Testing Plant Trials LIQUID / SOLIDS SEPARATION APPLICATIONS Influent Water Clarification Process Water Recycling Primary Wastewater Clarification Secondary Clarification Sludge Thickening Sludge Dewatering LIQUID / SOLIDS SEPARATION UNIT OPERATIONS Clarifiers (Many Types) WATER Filters (Many Types) OR WASTE Dissolved Air Flotation Units WATER Induced Air/Gas Flotation Units Belt Presses Centrifuges SLUDGE Screw Presses DEWATERING Plate and Frame Presses Vacuum Filters (Rotary & Horizontal) LIQUID / SOLIDS SEPARATION PRODUCT TYPES Coagulants (+) Low Mol Wt Organic Inorganic Blended Flocculants (+ , ---, 0 ) High Mol Wt Dry Emulsion Solution OilOil----FreeFree Flocculants COAGULANTS AND FLOCCULANTS Act on Insoluble Particles in Water Oils, Grease, Blood, Insoluble Organics, Clay, Silicates, Metal Oxides/Hydroxides Dirt, Dust, Rust & Metal Filings Can Act on Charged Organic Compounds Anionic Surfactants, Soaps & Dispersants Do Not Act on Most Dissolved Solids Salts, Acids, Nonionic Surfactants, Ammonia or Soluble Organic Compounds such as Sugar, Alcohols, etc. SUSPENSION CHEMISTRY THE KEY TO EFFECTIVE LIQUID / SOLIDS SEPARATION SUSPENDED SOLIDS VARIABLES Surface Charge MOST Charge Density Particle Size IMPORTANCE Composition Particle Density Particle Shape LEAST MICROSCOPIC FORCES ELECTROSTATIC BROWNIAN VAN DER WAALS GRAVITY Colloidal Particle in Water +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ Almost all Particles +++
    [Show full text]
  • A Review of the Rotary Pressure Filter for the Filtration of a Liquefied Gas Slurry
    A REVIEW OF THE ROTARY PRESSURE FILTER FOR THE FILTRATION OF A LIQUEFIED GAS SLURRY Barry A. Perlmutter BHS-Filtration Inc. Barry A. Perlmutter is President and Managing Director of BHS-Filtration Inc., a subsidiary of BHS-Sonthofen GmbH. Barry has over 30 years of technical and marketing experience in the field of solid-liquid separation, filtration, centrifugation and drying. He has published and lectured worldwide and has been responsible for introducing and creating growth for many European companies into the marketplace. He has a BS in Chemistry from Albany State, NY, MS from the School of Engineering at Washington University, St. Louis and an MBA from the University of Illinois. ABSTRACT In the manufacturing of this specialty chemical, the pilot plant examined the process to determine the most effective method for filtration to develop a production process. A study was undertaken, by plant engineering and development, to examine the use of a rotary pressure filter to develop the overall process operations for product quality and production rates. This paper reviews the basics of two alternatives: rotary pressure filter and pressurized drum filters. The technologies are reviewed for the filtration of a liquefied gas slurry. The article continues with the discussion of the process testing in the laboratory and in the field to evaluate the Rotary Pressure Filter. The lab testing used a BHS pressurized pocket leaf filter with 20 cm 2 of filter area while the fieldwork was conducted on a Rotary Pressure Filter with a filter area of 0.18 m 2. The paper discusses test procedures, data collection, filter media selection and other process parameters.
    [Show full text]
  • Development of Solid-Liquid Separation Technologies in Bioprocessing Christopher Robert Koza Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2012 Development of solid-liquid separation technologies in bioprocessing Christopher Robert Koza Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Chemical Engineering Commons, and the Environmental Engineering Commons Recommended Citation Koza, Christopher Robert, "Development of solid-liquid separation technologies in bioprocessing" (2012). Graduate Theses and Dissertations. 12813. https://lib.dr.iastate.edu/etd/12813 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Development of solid-liquid separation technologies in bioprocessing by Christopher Robert Koza A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Civil Engineering (Environmental Engineering) Program of Study Committee: Hans van Leeuwen, Co-major Professor Stephanie Jung, Co-major Professor Shihwu Sung Iowa State University Ames, Iowa 2012 Copyright © Christopher Robert Koza, 2012. All rights reserved ii TABLE OF CONTENTS ABSTRACT iii CHAPTER 1. INTRODUCTION 1 Introduction 1 Thesis Organization 3 CHAPTER 2. LITERATURE REVIEW 4 Ethanol Industry 4 Solid-Liquid Separation 26 References 41 CHAPTER 3. A PILOT STUDY ON DEWATERING FUNGAL BIOMASS FROM A NOVEL CORN ETHANOL BIOPROCESS 45 Abstract 45 Introduction 46 Methods and Materials 49 Results and Discussion 57 Conclusion 65 Acknowledgements 66 References 67 CHAPTER 4.
    [Show full text]
  • National Manual of Good Practice for Biosolids
    Material Matters, Inc. Material Matters, Inc. Material Matters, Inc. Material Matters, Inc. Material Matters, Inc. Material Matters, Inc. Material Matters, Inc. Material Matters, Inc. Material Matters, Inc. National Manual of Good Practice for Biosolids Material Matters, Inc. Material Matters, Inc. Material Matters, Inc. Last Updated January 2005 View the Document Control Log for a Summary of Revisions Material Matters, Inc. Material Matters, Inc. Material Matters, Inc. Material Matters, Inc. Material Matters, Inc. Material Matters, Inc. NATIONAL MANUAL OF GOOD PRACTICE FOR BIOSOLIDS Table of Contents Material Matters, Inc. Material Matters, Inc. Material Matters, Inc. Introduction Acknowledgements 1 Public Acceptance 1.1 Sharing Public Perception 1.1.1 Environmental Benefits 1.1.2 Community Benefits 1.2 Analyzing Operations 1.3 Dealing with Odors 1.4 Developing Effective Communication 1.4.1 Communication Approaches: Proactive Reactive 1.4.2 Communication Tools 1.5 Environmental Management System Connections Material Matters, Inc. 1.6 MessageMaterial DevelopmentMatters, Inc. Material Matters, Inc. 1.6.1 Risk Communications 1.6.2 Information Examples with Land Application 1.6.3 Presenting Messages Effectively 1.6.4 Developing Outreach 1.7 Maintaining Support 2 Federal and State Regulations 2.1 Federal Regulations 2.1.1 History and Background 2.1.2 Standards for the use or Disposal of Biosolids 2.2 General Requirements – 40CFR Part 503.12 2.2.1 Land Application 2.2.2 Surface Disposal 2.2.3 Incineration Material Matters, Inc. 2.3 RiskMaterial
    [Show full text]