Ann. Geophys., 33, 671–686, 2015 www.ann-geophys.net/33/671/2015/ doi:10.5194/angeo-33-671-2015 © Author(s) 2015. CC Attribution 3.0 License. Observation- and numerical-analysis-based dynamics of the Uttarkashi cloudburst C. Chaudhuri1, S. Tripathi1,2, R. Srivastava1, and A. Misra1 1Department of Civil Engineering, Indian Institute of Technology, Kanpur, India 2Centre for Environmental Science and Engineering, Indian Institute of Technology, Kanpur, India Correspondence to: C. Chaudhuri (
[email protected]) Received: 26 November 2014 – Revised: 9 March 2015 – Accepted: 5 May 2015 – Published: 3 June 2015 Abstract. A Himalayan cloudburst event, which occurred on 1 Introduction 3 August 2012 in the Uttarkashi (30.73◦ N, 78.45◦ E) region of Uttarakhand, India, was analyzed. The near-surface atmo- spheric variables were analyzed to study the formation, evo- The interactions between the synoptic-scale circulation and lution, and triggering mechanisms of this cloudburst. In or- hydrological cycle at mountains are highly complex and non- der to improve upon the understanding provided by the ob- linear in nature (Maraun et al., 2010). Even a moderate servations, numerical simulations were performed using the amount of rain may cause severe events in hills, e.g., flash Weather Research and Forecasting (WRF) model, configured floods and landslides (Borga et al., 2014). A cloudburst, also with a single domain at 18 km resolution. The model was known as rain gush or rain gust, is an extreme form of precip- tuned using variation of different parameterizations (convec- itation in which a high intensity of rain falls over a localized tive, microphysical, boundary layer, radiation, and land sur- area (Das et al., 2006).