The Family Nosodendridae (Coleoptera: Derodontoidea) of Japan and Taiwan

Total Page:16

File Type:pdf, Size:1020Kb

The Family Nosodendridae (Coleoptera: Derodontoidea) of Japan and Taiwan Japanese Journal of Systematic Entomology, 21 (1): 35–58. May 30, 2015. The Family Nosodendridae (Coleoptera: Derodontoidea) of Japan and Taiwan Hiroyuki YOSHITOMI1), Toshio KISHIMOTO2)* and Chi-Feng LEE3) 1)Ehime University Museum, Bunkyo 3, Matsuyama, 790-8577 Japan E-mail: [email protected] 2)Japan Wildlife Research Center, Koutoubashi 3-3-7, Sumida-ku, Tokyo, 130-8606 Japan * Present address: Museum of Natural and Environmental History, Shizuoka, Ooya 5762, Suruga-ku, Shizuoka, 422-8017 Japan 3)Applied Zoology Division, Taiwan Agricultural Research Institute, 189 Chung-Cheng Road, Wufeng 41362, Taichung, Taiwan E-mail: [email protected] Abstract The Japanese and Taiwanese species of the genus Nosodendron is revised. The genus is subdivided into two subgenera: Nosodendron and Dendrodipnis. Four species are recognized, including two new species, Nosodendron (D.) ogasawaraense and N. (D.) taiwanense, described in this paper. The larvae of three species, N. (N.) asiaticum, N. (D.) coenosum, and N. (D.) ogasawar- aense, are described. Key words: new species, larvae, distribution, associated plants, filter feeding. Introduction recorded (Háva, 2014), and the adults and larvae of these species had not been reviewed. In the present paper, we The adaptation to aquatic habitats by members of review the Japanese and Taiwanese species of the genus Coleoptera evolved independently in some clades, and Nosodendron, with biological notes and descriptions of the there are various degrees of adaptation (Jäch, 1998). The larval stages. families of water beetles (= water adapted beetles) are known from three suborders: Myxophaga (all families), Adephaga Materials and Methods (mainly Dytiscoidea), and Polyphaga (part of the family in Hydrophiloidea, Byrrhoidea, Scirtoidea, and so on). In General observations and dissections were made under the derivative group of Polyphaga (i.e., Tenebrionoidea, a Leica MZ95 stereomicroscope. Microstructures of the Chrysomeroidea, and “Cucujioidea”), whose members are dissected parts were studied in pure glycerine under an mostly phytophagy, saprophagy, mycophagy, and detritophagy, Olympus BH-2 compound microscope. After observation, aquatic adaptation is rare except for aquatic plant feeders. the dissected parts were mounted on the same card with the The family Nosodendridae (wounded-tree beetles) specimen. Photographs (Figs. 1, 9, 10) were taken under a inhabits tree sap, and contains 82 species under three genera Leica MZ95 and combined in Helicon® Focus ver. 4.70.5 Pro from all over the world (Háva, 2005, 2014). The genus (Helicon Soft® Limited). Some structures were observed with Nosoglobulus Háva, 2003 includes 3 species from the Oriental a SEM (Hitachi S-225), after coating with gold (Figs. 2–6), Region, the genus Nosotetocus Scudder, 1892 includes 3 fossil and a digital microscope HiROX KH-1300, and images were species from the Miocene in Colorado, and the remaining captured with the 2D measurement software SHX-13M ver. Nosodendron is the most diverse genus (75 present and 1 2.9.0 (Fig. 11). fossil species) distributed in all zoogeographical Region. Morphological terminology follows Leschen & Beutel Considering their habitat (tree sap and slime flux), the family (2010), Lawrence (1991), and Kiselyova & McHugh (2006). adapts to a kind of aquatic habitat, but there are few studies of its behavior and morphology. BPBM: Bishop Museum, Honolulu, Hawaii The phylogenetic positions of the family Nosodendridae EUMJ: Ehime University Museum, Matsuyama, Japan and superfamily Derodontoidea are uncertain. Based on KUMJ: Kyushu University Museum, Japan the phylogenetic analysis of the adult morphology, Beutel NSMT: National Science Museum, Tsukuba (1996) showed this family is a sister group of the family TARI: Taiwan Agricultural Research Institute, Taichung, Derodontidae. Lawrence et al. (2011), analyzing numerous Taiwan characters of the adults and larvae, showed this family has TUAJ: Tokyo University of Agriculture, Atsugi, Japan Morphological abbreviations used in the measurements a sister group relationship with the superfamily Scirtoidea are as follows: EL — length of elytra in suture; EW — (excluding Clambidae), and this group plus Derodontidae are maximum width of elytra; HL — length of head; PL — situated in the basal clade of Tenebrionoidea + Cucujoidea length of pronotum in median line; PW — maximum width + Chrysomeloidea + Curculionidae. Also, molecular of pronotum; TL — total length (HL+PL+EL). The average is phylogenetic studies could not clarify the taxonomic status given in parentheses after the range. of Nosodendridae in the suborder Polyphaga. The family was situated in the basal-most taxon in Polyphaga except for Derodontoidea, Scirtoidea and Historoidea (Hunt et al., 2007), Systematics or showed a sister group relationship with Scarabaeoidea Genus Nosodendron Latreille, 1804 (Bocak et al., 2014). From Japan and Taiwan, two Nosodendron species were Nosodendron Latreille, 1804: 146. ––– Háva, 2014: 14 [world Ⓒ Japanese Society of Systematic Entomology 36 Yoshitomi, H., T. Kishimoto and C.-F. Lee Fig. 1. Dorsal habitus of Nosodendron spp. A, N. (N.) asiaticum; B, N. (D.) coenosum; C, N. (D.) ogasawaraense (holotype); D, N. (D.) taiwanense (holotype). Scales = 1.0 mm. May 30, 2015, JJSE 21 (1) Nosodendridae of Japan and Taiwan 37 Fig. 2. SEM photographs of Nosodendron (N.) asiaticum. A–C, Elytra; D–F, pronotum. catalogue]. Other synonyms see Zahradník & Háva convex dorsally, flattened ventrally, slightly to strongly (2014). Type species: Shaeridium fasciculare Olivier, shining. Coloration of body generally black. Dorsal surface 1790. covered with short erect setae or glabrous, with setal patches in the subgenus Nosodendron. Additional diagnosis. Close description of the family Gena with shallow concavity covered with short setae (Fig. Nosodendridae and the genus Nosodendron see Ivie (2002) 4A, C). Labrum (Fig. 8A, B) free, transverse, front margin and Leschen & Beutel (2010) for the adults, and Beutel (1996), straight (Fig. 8A) or shallowly concave (Fig. 8B). Mandibles Ge et al. (2007), Hayes & Chu (1946), Lawrence (1991) and (Fig. 8G, H) almost symmetrical, subtriangular, with pointed Leschen & Beutel (2010) for the larvae. apical tooth and small and obtuse subapical tooth. Maxillae Adults. Body hemispherical to oblong-oval, strongly (Fig. 8C, D) with 3-segmented short maxillary palpi. Labium May 30, 2015, JJSE 21 (1) 38 Yoshitomi, H., T. Kishimoto and C.-F. Lee Fig. 3. SEM photographs of Nosodendron (Dendrodipnis) taiwanense sp. nov. (A, B, D, E) and N. (D.) ogasawaraense sp. nov. (C, F). A, Pronotum and its punctures (D); B, C, elytra and its punctures (E, F). (Fig. 8E, F) deeply excised at front margin, with 2-segmented Elytra punctate sparsely to closely, lacking any maculations labial palpi. Mentum (Fig. 6) large, trapezoidal, subparallel- and striae, with plectrum (Fig. 4D–F) in humeral part of inner sided (Fig. 6B–D) or contracted in apical 1/3 (Fig. 6A), surface. Hind wings well deveroped; venation as shown in covered with large and shallow punctures (Fig. 6E, F), with Fig. 7B, C; flight activity present (see biological notes of each special concavities in some species (e.g., Yoshitomi, 2013b). species) or absent (Leschen & Beutel, 2010). Mesoventrite Antennae (Figs. 4B, 7A, C) relatively short, 11-segmented; (Fig. 5F) with deep median impression for reception of segments IX–XI forming club, closely covered with prosternal process. Legs (Fig. 5E) short and flat. Fore legs recumbent short setae. Scutellar shield small, triangular. received to excavation of hypomeron; mid legs received to May 30, 2015, JJSE 21 (1) Nosodendridae of Japan and Taiwan 39 Fig. 4. SEM photographs of Nosodendron (Dendrodipnis) ogasawaraense sp. nov. A, Head in ventral view; B, antenna; C, genal concavity; D, humeral part of right elytron in ventral aspect; E, inner surface of elytron and its close up (F). depression in anterior part of epipleuron; hind legs received to Tergites IX–X slightly sclerotized, small. Sternite IX long. depressions in abdominal ventrites I–II. Abdominal ventrites Aedeagus trilobite type, rather flat dorsally and ventrally; (Fig. 5A–D) microcuticulate, closely covered with deep apical parts of parameres having 1–4 short setae (“apical punctures bearing short setae; anterior margin of each segment setae” in Yoshitomi, 2013b). arranged deep notches (Fig. 5B, D). Female genitalia. Sternite VIII well sclerotized, with long Sexual dimorphism in external feature indistinct. and slender speculum ventral. Tergite VIII well sclerotized, Male genitalia. Tergite VIII well sclerotized, semicircular. semicircular. Ovipositor with short or long paraproct. Sternite VIII moderately sclerotized, with V-shaped strut. Larvae. Body (Fig. 9) elongate, flattened in ventral part, May 30, 2015, JJSE 21 (1) 40 Yoshitomi, H., T. Kishimoto and C.-F. Lee Fig. 5. SEM photographs of Nosodendron (Dendrodipnis) ogasawaraense (A, B, E, F) and N. (D.) taiwanense sp. nov. (C, D). A, C, Abdominal ventrites and their close up (B, D); E, fore leg in dorsal aspect:; F, meso- and metaventrites. well sclerotized dorsally and slightly sclerotized ventrally, dorsal portion; spiracles of abdominal segment VIII moved covered with granules forming specific and irregular patterns to apex. Abdominal segment VIII (Fig. 10B, D, F) triangular, (Figs. 9, 10); most of granule bearing short setae (Fig. 11D); tapering posteriorly, with one or two pairs of projections in granules situated near spiracles bearing pectinate short setae
Recommended publications
  • Coleoptera Identifying the Beetles
    6/17/2020 Coleoptera Identifying the Beetles Who we are: Matt Hamblin [email protected] Graduate of Kansas State University in Manhattan, KS. Bachelors of Science in Fisheries, Wildlife and Conservation Biology Minor in Entomology Began M.S. in Entomology Fall 2018 focusing on Entomology Education Who we are: Jacqueline Maille [email protected] Graduate of Kansas State University in Manhattan, KS with M.S. in Entomology. Austin Peay State University in Clarksville, TN with a Bachelors of Science in Biology, Minor Chemistry Began Ph.D. iin Entomology with KSU and USDA-SPIERU in Spring 2020 Focusing on Stored Product Pest Sensory Systems and Management 1 6/17/2020 Who we are: Isaac Fox [email protected] 2016 Kansas 4-H Entomology Award Winner Pest Scout at Arnold’s Greenhouse Distribution, Abundance and Diversity Global distribution Beetles account for ~25% of all life forms ~390,000 species worldwide What distinguishes a beetle? 1. Hard forewings called elytra 2. Mandibles move horizontally 3. Antennae with usually 11 or less segments exceptions (Cerambycidae Rhipiceridae) 4. Holometabolous 2 6/17/2020 Anatomy Taxonomically Important Features Amount of tarsi Tarsal spurs/ spines Antennae placement and features Elytra features Eyes Body Form Antennae Forms Filiform = thread-like Moniliform = beaded Serrate = sawtoothed Setaceous = bristle-like Lamellate = nested plates Pectinate = comb-like Plumose = long hairs Clavate = gradually clubbed Capitate = abruptly clubbed Aristate = pouch-like with one lateral bristle Nicrophilus americanus Silphidae, American Burying Beetle Counties with protected critical habitats: Montgomery, Elk, Chautauqua, and Wilson Red-tipped antennae, red pronotum The ecological services section, Kansas department of Wildlife, Parks, and Tourism 3 6/17/2020 Suborders Adephaga vs Polyphaga Families ~176 described families in the U.S.
    [Show full text]
  • Burmese Amber Taxa
    Burmese (Myanmar) amber taxa, on-line supplement v.2021.1 Andrew J. Ross 21/06/2021 Principal Curator of Palaeobiology Department of Natural Sciences National Museums Scotland Chambers St. Edinburgh EH1 1JF E-mail: [email protected] Dr Andrew Ross | National Museums Scotland (nms.ac.uk) This taxonomic list is a supplement to Ross (2021) and follows the same format. It includes taxa described or recorded from the beginning of January 2021 up to the end of May 2021, plus 3 species that were named in 2020 which were missed. Please note that only higher taxa that include new taxa or changed/corrected records are listed below. The list is until the end of May, however some papers published in June are listed in the ‘in press’ section at the end, but taxa from these are not yet included in the checklist. As per the previous on-line checklists, in the bibliography page numbers have been added (in blue) to those papers that were published on-line previously without page numbers. New additions or changes to the previously published list and supplements are marked in blue, corrections are marked in red. In Ross (2021) new species of spider from Wunderlich & Müller (2020) were listed as being authored by both authors because there was no indication next to the new name to indicate otherwise, however in the introduction it was indicated that the author of the new taxa was Wunderlich only. Where there have been subsequent taxonomic changes to any of these species the authorship has been corrected below.
    [Show full text]
  • The Evolution and Genomic Basis of Beetle Diversity
    The evolution and genomic basis of beetle diversity Duane D. McKennaa,b,1,2, Seunggwan Shina,b,2, Dirk Ahrensc, Michael Balked, Cristian Beza-Bezaa,b, Dave J. Clarkea,b, Alexander Donathe, Hermes E. Escalonae,f,g, Frank Friedrichh, Harald Letschi, Shanlin Liuj, David Maddisonk, Christoph Mayere, Bernhard Misofe, Peyton J. Murina, Oliver Niehuisg, Ralph S. Petersc, Lars Podsiadlowskie, l m l,n o f l Hans Pohl , Erin D. Scully , Evgeny V. Yan , Xin Zhou , Adam Slipinski , and Rolf G. Beutel aDepartment of Biological Sciences, University of Memphis, Memphis, TN 38152; bCenter for Biodiversity Research, University of Memphis, Memphis, TN 38152; cCenter for Taxonomy and Evolutionary Research, Arthropoda Department, Zoologisches Forschungsmuseum Alexander Koenig, 53113 Bonn, Germany; dBavarian State Collection of Zoology, Bavarian Natural History Collections, 81247 Munich, Germany; eCenter for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany; fAustralian National Insect Collection, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia; gDepartment of Evolutionary Biology and Ecology, Institute for Biology I (Zoology), University of Freiburg, 79104 Freiburg, Germany; hInstitute of Zoology, University of Hamburg, D-20146 Hamburg, Germany; iDepartment of Botany and Biodiversity Research, University of Wien, Wien 1030, Austria; jChina National GeneBank, BGI-Shenzhen, 518083 Guangdong, People’s Republic of China; kDepartment of Integrative Biology, Oregon State
    [Show full text]
  • Current Classification of the Families of Coleoptera
    The Great Lakes Entomologist Volume 8 Number 3 - Fall 1975 Number 3 - Fall 1975 Article 4 October 1975 Current Classification of the amiliesF of Coleoptera M G. de Viedma University of Madrid M L. Nelson Wayne State University Follow this and additional works at: https://scholar.valpo.edu/tgle Part of the Entomology Commons Recommended Citation de Viedma, M G. and Nelson, M L. 1975. "Current Classification of the amiliesF of Coleoptera," The Great Lakes Entomologist, vol 8 (3) Available at: https://scholar.valpo.edu/tgle/vol8/iss3/4 This Peer-Review Article is brought to you for free and open access by the Department of Biology at ValpoScholar. It has been accepted for inclusion in The Great Lakes Entomologist by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at [email protected]. de Viedma and Nelson: Current Classification of the Families of Coleoptera THE GREAT LAKES ENTOMOLOGIST CURRENT CLASSIFICATION OF THE FAMILIES OF COLEOPTERA M. G. de viedmal and M. L. els son' Several works on the order Coleoptera have appeared in recent years, some of them creating new superfamilies, others modifying the constitution of these or creating new families, finally others are genera1 revisions of the order. The authors believe that the current classification of this order, incorporating these changes would prove useful. The following outline is based mainly on Crowson (1960, 1964, 1966, 1967, 1971, 1972, 1973) and Crowson and Viedma (1964). For characters used on classification see Viedma (1972) and for family synonyms Abdullah (1969). Major features of this conspectus are the rejection of the two sections of Adephaga (Geadephaga and Hydradephaga), based on Bell (1966) and the new sequence of Heteromera, based mainly on Crowson (1966), with adaptations.
    [Show full text]
  • Applying Landscape Ecology to Improve Strawberry Sap Beetle
    Applying Landscape The lack of effective con- trol measures for straw- Ecology to Improve berry sap beetle is a problem at many farms. Strawberry Sap Beetle The beetles appear in strawberry fi elds as the Management berries ripen. The adult beetle feeds on the un- Rebecca Loughner and Gregory Loeb derside of berries creat- Department of Entomology ing holes, and the larvae Cornell University, NYSAES, Geneva, NY contaminate harvestable he strawberry sap beetle (SSB), fi eld sanitation, and renovating promptly fruit leading to consumer Stelidota geminata, is a significant after harvest. Keeping fi elds suffi ciently complaints and the need T insect pest in strawberry in much of clean of ripe and overripe fruit is nearly the Northeast. The small, brown adults impossible, especially for U-pick op- to prematurely close (Figure 1) are approximately 1/16 inch in erations, and the effectiveness of the two length and appear in strawberry fi elds as labeled pyrethroids in the fi eld is highly fi elds at great cost to the the berries ripen. The adult beetle feeds variable. Both Brigade [bifenthrin] and grower. Our research has on the underside of berries creating holes. Danitol [fenpropathrin] have not provided Beetles prefer to feed on over-ripe fruit but suffi cient control in New York and since shown that the beetles do will also damage marketable berries. Of they are broad spectrum insecticides they not overwinter in straw- more signifi cant concern, larvae contami- can potentially disrupt predatory mite nate harvestable fruit leading to consumer populations that provide spider mite con- berry fi elds.
    [Show full text]
  • Coleoptera: Nitidulidae, Kateretidae)
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Center for Systematic Entomology, Gainesville, Insecta Mundi Florida March 2006 An annotated checklist of Wisconsin sap and short-winged flower beetles (Coleoptera: Nitidulidae, Kateretidae) Michele B. Price University of Wisconsin-Madison Daniel K. Young University of Wisconsin-Madison Follow this and additional works at: https://digitalcommons.unl.edu/insectamundi Part of the Entomology Commons Price, Michele B. and Young, Daniel K., "An annotated checklist of Wisconsin sap and short-winged flower beetles (Coleoptera: Nitidulidae, Kateretidae)" (2006). Insecta Mundi. 109. https://digitalcommons.unl.edu/insectamundi/109 This Article is brought to you for free and open access by the Center for Systematic Entomology, Gainesville, Florida at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Insecta Mundi by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. INSECTA MUNDI, Vol. 20, No. 1-2, March-June, 2006 69 An annotated checklist of Wisconsin sap and short-winged flower beetles (Coleoptera: Nitidulidae, Kateretidae) Michele B. Price and Daniel K. Young Department of Entomology 445 Russell Labs University of Wisconsin-Madison Madison, WI 53706 Abstract: A survey of Wisconsin Nitidulidae and Kateretidae yielded 78 species through analysis of literature records, museum and private collections, and three years of field research (2000-2002). Twenty-seven species (35% of the Wisconsin fauna) represent new state records, having never been previously recorded from the state. Wisconsin distribution, along with relevant collecting techniques and natural history information, are summarized. The Wisconsin nitidulid and kateretid faunae are compared to reconstructed and updated faunal lists for Illinois, Indiana, Michigan, Minnesota, Ohio, and south-central Canada.
    [Show full text]
  • Genome Sequencing of Rhinorhipus Lawrence Exposes an Early Branch
    Kusy et al. Frontiers in Zoology (2018) 15:21 https://doi.org/10.1186/s12983-018-0262-0 RESEARCH Open Access Genome sequencing of Rhinorhipus Lawrence exposes an early branch of the Coleoptera Dominik Kusy1, Michal Motyka1, Carmelo Andujar2, Matej Bocek1, Michal Masek1, Katerina Sklenarova1, Filip Kokas3, Milada Bocakova1, Alfried P. Vogler4,5 and Ladislav Bocak1* Abstract Background: Rhinorhipidae Lawrence, 1988 is an enigmatic beetle family represented by a single species, Rhinorhipus tamborinensis Lawrence, 1988, from Australia, with poorly established affinities near the superfamily Elateroidea (click beetles, soldier beetles and fireflies) or the more inclusive series (infraorder) Elateriformia. Its evolutionary position may inform the basal relationships of the suborder Polyphaga, the largest clade of Coleoptera. Results: We analyzed four densely sampled DNA datasets of major coleopteran lineages for mitogenomes, rRNA genes and single copy nuclear genes. Additionally, genome sequencing was used for incorporation of R. tamborinensis into a set of 4220 orthologs for 24 terminals representing 12 polyphagan superfamilies. Topologies differed to various degrees, but all consistently refute the proposed placement of Rhinorhipidae in Elateroidea and instead indicate either sister relationships with other Elateriformia, frequently together with Nosodendridae, another divergent small family hitherto placed in Derodontoidea, or in an isolated position among the deepest lineages of Polyphaga. The phylogenomic analyses recovered Rhinorhipus in a sister position to all other Elateriformia composed of five superfamilies. Therefore, we erect the new superfamily Rhinorhipoidea Lawrence, 1988, stat. Nov.,with the type-family Rhinorhipidae. The origins of the Rhinorhipidae were dated to the Upper Triassic/Lower Jurassic at the very early phase of polyphagan diversification.
    [Show full text]
  • Profile Infestation with the Small Hive Beetle (Aethina Tumida)
    Infestation with the Small Hive Beetle (Aethina tumida) Susceptible species The small hive beetle (Aethina tumida) is a pest of honey bees (Apis mellifera). In its larval stage the small hive beetle feeds on brood, pollen and honey and can thus damage the bee colony. Bumblebees and stingless bees can serve as alternative hosts; for solitary bees this is still unclear. The beetle does not represent a human health risk. Distribution area Originally, the small hive beetle occurs in Africa, south of the Sahara. By worldwide trade with honey bees, the beetle was introduced to America and Australia around the turn of the millenium, where it spread rapidly over large areas. Meanwhile, it has been reported at least once on all continents except the Antarctic. In spite of EU-wide import restrictions, Aethina tumida was detected in Calabria, Southern Italy, in September 2014; all attempts to eradicate have been unsuccessful. Causative agent The dark-brown to black small hive beetle belongs to the family of sap beetles (Nitidulidae). The adult beetle has about a third of the size of a honey bee (approx. 5mm long, 3mm wide). Fertilized females lay eggs in crevices inside the hive; they may also bite holes into cell cappings and walls to lay their eggs directly into the brood cells. The white to beige larvae emerge after one to three days. After another ten to fourteen days they reach the so-called wandering stage (approx. 10 mm long), leave the hive, and pupate in the soil. At warm summer temperatures the new generation emerges approx.
    [Show full text]
  • From Tethyan-Influenced Cretaceous Ambers
    Geoscience Frontiers 7 (2016) 695e706 HOSTED BY Contents lists available at ScienceDirect China University of Geosciences (Beijing) Geoscience Frontiers journal homepage: www.elsevier.com/locate/gsf Research paper Evolutionary and paleobiological implications of Coleoptera (Insecta) from Tethyan-influenced Cretaceous ambers David Peris a,*, Enrico Ruzzier b, Vincent Perrichot c, Xavier Delclòs a a Departament de Dinàmica de la Terra i de l’Oceà and Institut de Recerca de la Biodiversitat (IRBio), Facultat de Geologia, Universitat de Barcelona, Martí i Franques s/n, 08071 Barcelona, Spain b Department of Life Science, Natural History Museum, Cromwell Rd, SW7 5BD London, UK c UMR CNRS 6118 Géosciences & OSUR, Université de Rennes 1, 35042 Rennes cedex, France article info abstract Article history: The intense study of coleopteran inclusions from Spanish (Albian in age) and French (AlbianeSantonian Received 23 September 2015 in age) Cretaceous ambers, both of Laurasian origin, has revealed that the majority of samples belong to Received in revised form the Polyphaga suborder and, in contrast to the case of the compression fossils, only one family of 25 December 2015 Archostemata, one of Adephaga, and no Myxophaga suborders are represented. A total of 30 families Accepted 30 December 2015 from Spain and 16 families from France have been identified (with almost twice bioinclusions identified Available online 16 January 2016 in Spain than in France); 13 of these families have their most ancient representatives within these ambers. A similar study had previously only been performed on Lebanese ambers (Barremian in age and Keywords: Beetle Gondwanan in origin), recording 36 coleopteran families. Few lists of taxa were available for Myanmar Fossil (Burmese) amber (early Cenomanian in age and Laurasian in origin).
    [Show full text]
  • Biology of Dried Fruit Beetle, Carpophilus Hemipterus (L) and Its Damage Assessment on Different Dried Fruits in Storage
    BIOLOGY OF DRIED FRUIT BEETLE, CARPOPHILUS HEMIPTERUS (L) AND ITS DAMAGE ASSESSMENT ON DIFFERENT DRIED FRUITS IN STORAGE MST. REZENNAHAR KUMKUM DEPARTMENT OF ENTOMOLOGY SHER-E-BANGLA AGRICULTURAL UNIVERSITY DHAKA-1207 JUNE, 2017 1 BIOLOGY OF DRIED FRUIT BEETLE, CARPOPHILUS HEMIPTERUS (L) AND ITS DAMAGE ASSESSMENT ON DIFFERENT DRIED FRUITS IN STORAGE BY MST. REZENNAHAR KUMKUM REG. NO.: 11-04566 A Thesis Submitted to the Faculty of Agriculture Sher-e-Bangla Agricultural University, Dhaka in partial fulfilment of the requirements for the degree of MASTER OF SCIENCE (MS) IN ENTOMOLOGY SEMESTER: JANUARY - JUNE, 2017 APPROVED BY: ………………………………………………….. …………………………………………… (Prof. Dr. Mohammed Ali) (Prof. Dr. Tahmina Akter) Supervisor Co-Supervisor Department of Entomology Department of Entomology SAU, Dhaka -1207 SAU, Dhaka-1207 ………………………………………………….. Dr. Mst. Nur Mahal Akter Banu Chairman Department of Entomology & Examination Committee 2 DEPARTMENT OF ENTOMOLOGY Sher-e-Bangla Agricultural University Sher-e-Bangla Nagar, Dhaka-1207 CERTIFICATE This is to certify that the thesis entitled ‘Biology of dried fruit beetle, Carpophilus hemipterus (L) and its damage assessment on different dried fruits in storage’ submitted to the Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, in partial fulfillment of the requirements for the degree of Master of Science in Entomology embodies the result of a piece of bona fide research work carried out by Mst. Rezennahar Kumkum, Registration number: 11-04566 under my supervision and guidance. No part of the thesis has been submitted for any other degree or diploma. I further certify that any help or source of information, received during the course of this investigation has duly been acknowledged.
    [Show full text]
  • Download Full Article 514.1KB .Pdf File
    Memoirs of the Museum of Victoria 56(2):659-666 (1997) 28 February 1997 https://doi.org/10.24199/j.mmv.1997.56.67 BIODIVERSITY OF NEW ZEALAND BEETLES (INSECTA, COLEOPTERA) J. KLIMASZEWSK.I Manaaki Whenua — Landcare Research, Private Bag 92170, Auckland, New Zealand Present address: BC Research. 3650 Weshrook Mall, Vancouver V6S SLS, Canada Abstract Klimaszewski, J., 1 997. Biodiversity of New Zealand beetles (Insecta: Coleoptera). Memoirs of the Museum of Victoria 56(2): 659-666. Approximately 5235 species are described for New Zealand, including 354 introduced. They belong to 82 families in two suborders, Adephaga and Polyphaga. The New Zealand beetle fauna is distinguished by the absence of many major lineages, a high level of endem- ism. which in many groups is over 90% at the specific level and over 43% at the generic level (e.g.. Staphylinidae), and the radiation of many groups of genera and species. The origins of New Zealand's beetle fauna are still poorly understood. They are likely to be varied, includ- ing Gondwanan elements and elements which arrived here by short and long-distance dispersal recently and in the remote past. The size of the New Zealand beetle fauna is con- sistent with species number/land area relationships in other areas around the world. Introduction Zealand beetles is that of Kuschel (1990), in the suburb of Lynfield, Auckland, in which 982 The beetles are the largest order of organisms, beetle species were recorded in a diverse veg- with over 350 000 described species world- etation including remnant forest, pastureland, wide. and suburban garden.
    [Show full text]
  • Distributional Notes on Some Nosodendridae (Coleoptera) - XXII
    Natura Somogyiensis 35: 11-14. Ka pos vár, 2020 DOI:10.24394/NatSom.2020.35.11 Submitted: 13.06, 2020; Accepted: 30,06, 2020; Published: 10.07, 2020 www.smmi.hu/termtud/ns/ns.htm Distributional notes on some Nosodendridae (Coleoptera) - XXII. A new species of Nosodendron (Nosodendron) from India Jiří Háva Forestry and Game Management Research Institute, Strnady 136, CZ-252 02 Praha 5 - Zbraslav, Czech Republic e-mail: [email protected] Háva, J: Distributional notes on some Nosodendridae (Coleoptera) - XXII. A new species of Nosodendron (Nosodendron) from India. Abstract: A new species, Nosodendron (Nosodendron) nathani sp. nov., from India, the Kerala State, is described, illustrated and compared with a similar species, Nosodendron (N.) disjectum Champion, 1923. Keywords: taxonomy, description, new species, Coleoptera, Nosodendridae, Nosodendron, India. Introduction The small family Nosodendridae (Coleoptera) recently contains 2 genera and 104 spe- cies (Háva 2019, 2020). The family Nosodendridae was placed to Derodontoidea by Bouchard et al. (2011), McKenna et al. (2019) placed the family Nosodendridae to Nosodendroidea. A new species of the genus Nosodendron from the Kerala State belong- ing to the nominotypical subgenus is described here. Material and methods Locality labels of the material mentioned are cited in the original version. Specimens of the presently described species are provided with red, printed labels with the text as follows: „HOLOTYPE [or PARATYPE] Nosodendron (N.) nathani sp. nov. Jiří Háva det. 2020”. Type material is deposited in the following collection: JHAC Jiří Háva, Private Entomological Laboratory and Collection, Prague-west, Czech Republic. ISSN 1587-1908 (Print); ISSN 2062-9990 (Online) 12 Natura Somogyiensis Results Nosodendron (Nosodendron) nathani sp.
    [Show full text]