Prussian Carp (Carassius Gibelio) ERSS
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Review and Updated Checklist of Freshwater Fishes of Iran: Taxonomy, Distribution and Conservation Status
Iran. J. Ichthyol. (March 2017), 4(Suppl. 1): 1–114 Received: October 18, 2016 © 2017 Iranian Society of Ichthyology Accepted: February 30, 2017 P-ISSN: 2383-1561; E-ISSN: 2383-0964 doi: 10.7508/iji.2017 http://www.ijichthyol.org Review and updated checklist of freshwater fishes of Iran: Taxonomy, distribution and conservation status Hamid Reza ESMAEILI1*, Hamidreza MEHRABAN1, Keivan ABBASI2, Yazdan KEIVANY3, Brian W. COAD4 1Ichthyology and Molecular Systematics Research Laboratory, Zoology Section, Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran 2Inland Waters Aquaculture Research Center. Iranian Fisheries Sciences Research Institute. Agricultural Research, Education and Extension Organization, Bandar Anzali, Iran 3Department of Natural Resources (Fisheries Division), Isfahan University of Technology, Isfahan 84156-83111, Iran 4Canadian Museum of Nature, Ottawa, Ontario, K1P 6P4 Canada *Email: [email protected] Abstract: This checklist aims to reviews and summarize the results of the systematic and zoogeographical research on the Iranian inland ichthyofauna that has been carried out for more than 200 years. Since the work of J.J. Heckel (1846-1849), the number of valid species has increased significantly and the systematic status of many of the species has changed, and reorganization and updating of the published information has become essential. Here we take the opportunity to provide a new and updated checklist of freshwater fishes of Iran based on literature and taxon occurrence data obtained from natural history and new fish collections. This article lists 288 species in 107 genera, 28 families, 22 orders and 3 classes reported from different Iranian basins. However, presence of 23 reported species in Iranian waters needs confirmation by specimens. -
Hidden Diversity Within the Prussian Carp and Designation of a Neotype for Carassius Gibelio (Teleostei: Cyprinidae)
11 Ichthyol. Explor. Freshwaters, Vol. 23, No. 1, pp. 11-18, 2 figs., 2 tabs., June 2012 © 2012 by Verlag Dr. Friedrich Pfeil, München, Germany – ISSN 0936-9902 Hidden diversity within the Prussian carp and designation of a neotype for Carassius gibelio (Teleostei: Cyprinidae) Lukáš Kalous*, Jörg Bohlen**, Katerina Rylková* and Miloslav Petrtýl* A phylogeny of the genus Carassius using the mitochondrial cytochrome b gene supported the monophyly and distinctness of the species C. carassius, C. auratus, C. langsdorfii and C. cuvieri. In contrast, the samples of C. gibelio did not form a monophyletic lineage, but separated into two clades, suggesting the inclusion of two species under the name C. gibelio. In order to clarify the identity of C. gibelio, a neotype is designated and briefly described. Introduction Due to the high morphological similarity between species of Carassius and the intraspe- The cyprinid genus Carassius is widespread across cific variability of morphological characters Europe and North and East Asia. At least five (Hensel, 1971; Lusk & Baruš, 1978; Vasileva, 1990; species are considered as valid: C. carassius (Lin- Vasileva & Vasilev, 2000) the definition of species naeus, 1758) in most of Europe and western Si- is not always sure, especially in the case of the beria (Kottelat & Freyhof, 2007), C. langsdorfii most widespread species C. gibelio and C. auratus. (Temminck & Schlegel, 1846) and C. cuvieri (Tem- In the case of C. gibelio, the situation is more minck & Schlegel, 1846) in Japan (Hosoya, 2002; complicated by the simultaneous occurrence of Yamamoto et al., 2010), C. auratus (Linnaeus, 1758) diploid (2n = 100) and triploid (2n ≈ 150) indi- in mainland East Asia (Rylková et al., 2010) and viduals in many populations (Halacka et al., 2003; C. -
Labidesthes Sicculus
Version 2, 2015 United States Fish and Wildlife Service Lower Great Lakes Fish and Wildlife Conservation Office 1 Atherinidae Atherinidae Sand Smelt Distinguishing Features: — (Atherina boyeri) — Sand Smelt (Non-native) Old World Silversides Old World Silversides Old World (Atherina boyeri) Two widely separated dorsal fins Eye wider than Silver color snout length 39-49 lateral line scales 2 anal spines, 13-15.5 rays Rainbow Smelt (Non -Native) (Osmerus mordax) No dorsal spines Pale green dorsally Single dorsal with adipose fin Coloring: Silver Elongated, pointed snout No anal spines Size: Length: up to 145mm SL Pink/purple/blue iridescence on sides Distinguishing Features: Dorsal spines (total): 7-10 Brook Silverside (Native) 1 spine, 10-11 rays Dorsal soft rays (total): 8-16 (Labidesthes sicculus) 4 spines Anal spines: 2 Anal soft rays: 13-15.5 Eye diameter wider than snout length Habitat: Pelagic in lakes, slow or still waters Similar Species: Rainbow Smelt (Osmerus mordax), 75-80 lateral line scales Brook Silverside (Labidesthes sicculus) Elongated anal fin Images are not to scale 2 3 Centrarchidae Centrarchidae Redear Sunfish Distinguishing Features: (Lepomis microlophus) Redear Sunfish (Non-native) — — Sunfishes (Lepomis microlophus) Sunfishes Red on opercular flap No iridescent lines on cheek Long, pointed pectoral fins Bluegill (Native) Dark blotch at base (Lepomis macrochirus) of dorsal fin No red on opercular flap Coloring: Brownish-green to gray Blue-purple iridescence on cheek Bright red outer margin on opercular flap -
A Fish Habitat Partnership
A Fish Habitat Partnership Strategic Plan for Fish Habitat Conservation in Midwest Glacial Lakes Engbretson Underwater Photography September 30, 2009 This page intentionally left blank. 2 TABLE OF CONTENTS EXECUTIVE SUMMARY 4 I. BACKGROUND 7 II. VALUES OF GLACIAL LAKES 8 III. OVERVIEW OF IMPACTS TO GLACIAL LAKES 9 IV. AN ECOREGIONAL APPROACH 14 V. MULTIPLE INTERESTS WITH COMMON GOALS 23 VI. INVASIVES SPECIES, CLIMATE CHANGE 23 VII. CHALLENGES 25 VIII. INTERIM OBJECTIVES AND TARGETS 26 IX. INTERIM PRIORITY WATERSHEDS 29 LITERATURE CITED 30 APPENDICES I Steering Committee, Contributing Partners and Working Groups 33 II Fish Habitat Conservation Strategies Grouped By Themes 34 III Species of Greatest Conservation Need By Level III Ecoregions 36 Contact Information: Pat Rivers, Midwest Glacial Lakes Project Manager 1601 Minnesota Drive Brainerd, MN 56401 Telephone 218-327-4306 [email protected] www.midwestglaciallakes.org 3 Executive Summary OUR MISSION The mission of the Midwest Glacial Lakes Partnership is to work together to protect, rehabilitate, and enhance sustainable fish habitats in glacial lakes of the Midwest for the use and enjoyment of current and future generations. Glacial lakes (lakes formed by glacial activity) are a common feature on the midwestern landscape. From small, productive potholes to the large windswept walleye “factories”, glacial lakes are an integral part of the communities within which they are found and taken collectively are a resource of national importance. Despite this value, lakes are commonly treated more as a commodity rather than a natural resource susceptible to degradation. Often viewed apart from the landscape within which they occupy, human activities on land—and in water—have compromised many of these systems. -
The Round Goby (Neogobius Melanostomus):A Review of European and North American Literature
ILLINOI S UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN PRODUCTION NOTE University of Illinois at Urbana-Champaign Library Large-scale Digitization Project, 2007. CI u/l Natural History Survey cF Library (/4(I) ILLINOIS NATURAL HISTORY OT TSrX O IJX6V E• The Round Goby (Neogobius melanostomus):A Review of European and North American Literature with notes from the Round Goby Conference, Chicago, 1996 Center for Aquatic Ecology J. Ei!en Marsden, Patrice Charlebois', Kirby Wolfe Illinois Natural History Survey and 'Illinois-Indiana Sea Grant Lake Michigan Biological Station 400 17th St., Zion IL 60099 David Jude University of Michigan, Great Lakes Research Division 3107 Institute of Science & Technology Ann Arbor MI 48109 and Svetlana Rudnicka Institute of Fisheries Varna, Bulgaria Illinois Natural History Survey Lake Michigan Biological Station 400 17th Sti Zion, Illinois 6 Aquatic Ecology Technical Report 96/10 The Round Goby (Neogobius melanostomus): A Review of European and North American Literature with Notes from the Round Goby Conference, Chicago, 1996 J. Ellen Marsden, Patrice Charlebois1, Kirby Wolfe Illinois Natural History Survey and 'Illinois-Indiana Sea Grant Lake Michigan Biological Station 400 17th St., Zion IL 60099 David Jude University of Michigan, Great Lakes Research Division 3107 Institute of Science & Technology Ann Arbor MI 48109 and Svetlana Rudnicka Institute of Fisheries Varna, Bulgaria The Round Goby Conference, held on Feb. 21-22, 1996, was sponsored by the Illinois-Indiana Sea Grant Program, and organized by the -
Summary Report of Freshwater Nonindigenous Aquatic Species in U.S
Summary Report of Freshwater Nonindigenous Aquatic Species in U.S. Fish and Wildlife Service Region 4—An Update April 2013 Prepared by: Pam L. Fuller, Amy J. Benson, and Matthew J. Cannister U.S. Geological Survey Southeast Ecological Science Center Gainesville, Florida Prepared for: U.S. Fish and Wildlife Service Southeast Region Atlanta, Georgia Cover Photos: Silver Carp, Hypophthalmichthys molitrix – Auburn University Giant Applesnail, Pomacea maculata – David Knott Straightedge Crayfish, Procambarus hayi – U.S. Forest Service i Table of Contents Table of Contents ...................................................................................................................................... ii List of Figures ............................................................................................................................................ v List of Tables ............................................................................................................................................ vi INTRODUCTION ............................................................................................................................................. 1 Overview of Region 4 Introductions Since 2000 ....................................................................................... 1 Format of Species Accounts ...................................................................................................................... 2 Explanation of Maps ................................................................................................................................ -
Species Composition and Invasion Risks of Alien Ornamental Freshwater
www.nature.com/scientificreports OPEN Species composition and invasion risks of alien ornamental freshwater fshes from pet stores in Klang Valley, Malaysia Abdulwakil Olawale Saba1,2, Ahmad Ismail1, Syaizwan Zahmir Zulkifi1, Muhammad Rasul Abdullah Halim3, Noor Azrizal Abdul Wahid4 & Mohammad Noor Azmai Amal1* The ornamental fsh trade has been considered as one of the most important routes of invasive alien fsh introduction into native freshwater ecosystems. Therefore, the species composition and invasion risks of fsh species from 60 freshwater fsh pet stores in Klang Valley, Malaysia were studied. A checklist of taxa belonging to 18 orders, 53 families, and 251 species of alien fshes was documented. Fish Invasiveness Screening Test (FIST) showed that seven (30.43%), eight (34.78%) and eight (34.78%) species were considered to be high, medium and low invasion risks, respectively. After the calibration of the Fish Invasiveness Screening Kit (FISK) v2 using the Receiver Operating Characteristics, a threshold value of 17 for distinguishing between invasive and non-invasive fshes was identifed. As a result, nine species (39.13%) were of high invasion risk. In this study, we found that non-native fshes dominated (85.66%) the freshwater ornamental trade in Klang Valley, while FISK is a more robust tool in assessing the risk of invasion, and for the most part, its outcome was commensurate with FIST. This study, for the frst time, revealed the number of high-risk ornamental fsh species that give an awareness of possible future invasion if unmonitored in Klang Valley, Malaysia. As a global hobby, fshkeeping is cherished by both young and old people. -
ANS Pocket Guide
Aquatic Nuisance Species SECOND Pocket Guide EDITION Table of Contents Introduction . 1 Prevention . 2 Laws and Regulations . 5 Take Action! . 11 Animals Mollusks . 12 Crustaceans . 16 Amphibians . 22 Fish . 28 Plants Algae . 70 Submerged . 74 Emergent . 94 Floating . 102 Riparian . 116 Pathogens . 124 Index . 130 Resources . 140 COVER PHOTOs (Clockwise from top): AMERIcaN BULLFROG BY CARL D. HOWE; EURASIAN WaTERMILFOIL BY JOSEPH DITOMASO, UNIVERSITY OF CALIFORNIA DAVIS; PIRANHA BY WIKIMEDIA; QUAGGA MUSSELS BY MICHAEL PORTER, U.S. ARMY CORPS OF ENGINEERS WRITTEN BY WENDY HaNOPHY Printed on recycled paper Introduction What are Aquatic Nuisance Species? Aquatic nuisance species (ANS) are invasive animals, plants, and disease-causing pathogens that are “out of place” in Colorado’s rivers, lakes, streams, and wetlands . They are introduced accidentally or intentionally outside of their native range . Because they are not native to Colorado habitats, they have no natural competitors and predators . Without these checks and balances, the invaders are able to reproduce rapidly and out-compete native species . ANS have harmful effects on natural resources and our use of them . Aquatic Nuisance Species are Everyone’s Problem ANS damage Colorado’s lands and waters, hurt the economy, ruin recreation opportunities, and threaten public health . Many ANS consume enormous amounts of water and reduce the water supply for livestock, wildlife, and humans . They impede water distribution systems for municipal, industrial, and agricultural supplies . They can damage boats and fishing equipment and impair all forms of water based recreation . These species change the physical characteristics of bodies of water and alter food chains . As habitat is destroyed by invasive species, the wildlife that depends on it disappears as well . -
Su Ürünleri 0.Indd
İSTANBUL ÜNİVERSİTESİ SU ÜRÜNLERİ FAKÜLTESİ SU ÜRÜNLERİ DERGİSİ JOURNAL OF FISHERIES & AQUATIC SCIENCES Su Ürünleri Fakültesi Adına Sahibi Meriç ALBAY DEKAN Yayın Kurulu / Editorial Board Devrim MEMİŞ Editör / Editor-in-chief Gülşen ALTUĞ Süheyla KARATAŞ STEINUM Firdevs Saadet KARAKULAK Reyhan AKÇAALAN ALBAY Gülgün Fatma ŞENGÖR Yazı İnceleme Kurulu / Advisory Board Ahmet ÖZER, Sinop Üniversitesi Fatma A. ÇOLAKOĞLU, Çanakkale Onsekiz Mart Üniv. Ayşegül KUBİLAY, Süleyman Demirel Üniv. Duygu KIŞLA, Ege Üniversitesi Naim SAĞLAM, Fırat Üniversitesi Hülya TURAN, Sinop Üniversitesi Tülay AKAYLI, İstanbul Üniversitesi Didem ÜÇOK ALAKAVUK, İstanbul Üniversitesi Aynur LÖK, Ege Üniversitesi Ali İŞMEN, Çanakkale Onsekiz Mart Üniv. İsmihan KARAYÜCEL, Sinop Üniversitesi Cengiz METİN, Ege Üniversitesi Tufan EROLDOĞAN, Çukurova Üniversitesi Hüseyin ÖZBİLGİN, Mersin Üniversitesi Mustafa YILDIZ, İstanbul Üniversitesi Nuri BAŞUSTA, Fırat Üniversitesi Aygül EKİCİ, İstanbul Üniversitesi Vahdet ÜNAL, Ege Üniversitesi Dursun AVŞAR, Çukurova Üniversitesi Tomris DENİZ, İstanbul Üniversitesi Cemal TURAN, Mustafa Kemal Üniversitesi Uğur SUNLU, Ege Üniversitesi Özdemir EGEMEN, Ege Üniversitesi Güler EKMEKÇİ, Hacettepe Üniversitesi Melek İŞİNİBİLİR OKYAR, İstanbul Üniv. Bülent ŞEN, Fırat Üniversitesi Murat Ö. BALABAN, University of Auckland, Yeni Zelanda Yelda AKTAN TURAN, İstanbul Üniversitesi Abdurrahman POLAT, Çukurova Üniversitesi Hacer OKGERMAN, İstanbul Üniversitesi ISSN 1018 – 1911 Volume Number Cilt 28 Sayı 1 2013 İstanbul Üniversitesi su ürünleri dergisi = Istanbul University journal of fisheries & aquatic sciences.-- İstanbul : İstanbul Üniversitesi Su Ürünleri Fakültesi, 1987- c.: şkl., tbl.; 24 cm. Yılda 2 sayı ISSN 1018-1911 e-ISSN 1307-1416 Elektronik ortamda da yayınlanmaktadır: http://dergipark.ulakbim.gov.tr/iusud 1. SU ÜRÜNLERİ. 2. BALIKÇILIK. 3. SU ÜRÜNLERİ YETİŞTİRİCİLİĞİ. Teknik asistan / Technical Asistant : Dr. Cenk Gürevin İstanbul Üniversitesi Su Ürünleri Fakültesi, Laleli Ordu Cad. -
Direct Cytotoxic Activity of CD8+ T Cells Against Ichthyophthirius Multifiliis
426 Abstracts / Fish & Shellfish Immunology 91 (2019) 421e472 importance for stress effects on the immune response in teleosts. Indi- # Corresponding author. vidual aspects of the interference of stress hormones (mainly cortisol) with E-mail address: [email protected] (J. Zou). immune processes have already been reported in some bony fish. Although less studied, the catecholamines adrenaline and noradrenaline have also shown to modulate the immune response of teleost leukocytes via a and b adrenergic receptors. This study aims to expand the actual knowledge on stress-induced immune modulation, in order to evaluate O-014. the effects of stress on the immune system of maraena whitefish (Cor- Direct cytotoxic activity of CD8þ T cells against Ichthyophthirius egonus maraena). This salmonid fish is highly sensitive to stress compared multifiliis in ginbuna crucian carp, Carassius auratus langsdorfii to other salmonid species long adapted to aquaculture. To this end, a large set of specific primers was designed for reverse-transcription quantitative Masaki Sukeda, Koumei Shiota, Takahiro Nagasawa, Miki Nakao, real-time PCR (RT-qPCR) analyses. The primer panel included cell-specific Tomonori Somamoto#. marker genes characterizing the distinct cell populations in the head kidney of C. maraena, which had been sorted using flow cytometry. In Laboratory of Marine Biochemistry, Department of Bioscience and addition, we analysed the expression of catecholamine and cortisol re- Biotechnology, Graduate School of Bioresource and Bioenvironmental ceptors in each population, in order to define the repertoire of stress- Sciences, Kyushu University, Fukuoka, Japan related modulators present in the cells. In the next step, we performed a series of in vitro stimulations of head kidney leukocytes to study the Abstract expression of genes involved in immune activation and acute phase A line of studies has shown that several humoral immune factors including together with catecholamine and cortisol receptors. -
Family - Cyprinidae
Family - Cyprinidae One of the largest families of fish. Found in a huge range in temperate and tropical waters of Europe, Africa, Asia, and North America. This family is characterised by no jaw teeth, mouth barbels, no adipose fin. Most closely related to the native families Ariidae and Plotosidae. Various sorts of carp are the best known, but the family also includes minnows, daces, and bitterlings. Four species have established self-maintaing populations in Australia since their introduction in1862. Being small and brightly coloured many species of cyprinids are popular with aquarists, and some valuable economically. Goldfish Carassius auratus Linnaeus (R.M McDowall) Other names: Carp, Crucian carp, Prussian carp. Description: A small, plump, deep-bodied fish, with a large blunt head. Small, toothless protusible mouth and moderately large eyes. Dorsal fin (III-IV, 14- 20); Anal fin small (II-III, 5-7). Tail moderately forked. Pelvic fins 7rays; pectorals with 16-18 rays; many long gill rakers (40-46); vertebrae 27-28. Commonly grows to 100-200 mm, can reach up to 400 mm and 1 kg. Distribution: Possiblly one of the most widespread of the exotic species introduced to Australia. Appears in most freshwater systems in the southern half of Australia, extending from the Fitzroy River in Queensland, throughout New South Wales, Victoria, and South Australia in the inland Murry-Darling system and Cooper Creek, to the south-west of Western Australia. Natural History: Is originally a native to eastern Asia, but now has almost worldwide range. Was imported to Australia in 1876 as an ornamental fish. Alien Fishes | Family Cyprinidae | Page 1 European Carp Cyprinus carpio Linnaeus. -
The Adaptive Significance of Dorsal Spine Variation in the Fourspine Stickleback, Apeltes Quadracus
Heredity (1984),53(2), 383—396 1984. The Genetical Society of Great Britain THEADAPTIVE SIGNIFICANCE OF DORSAL SPINE VARIATION IN THE FOURSPINE STICKLEBACK, APELTES QUADRACUS. IV. PHENOTYPIC COVARIATION WITH CLOSELY RELATED SPECIES 0. M. BLOUW* AND 0. W. HAGEN Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada E3B6EI Received2.xii.83 SUMMARY The fourspine stickleback (Apeltes quadracus) and ninespine stickleback (Pungitiuspungitius)have similar ecologies, they often coexist, and they share parallel polymorphisms for the number of dorsal spines. Spine number is posi- tively correlated between them for 86 sites in eastern Canada. Dorsal spine length is positively correlated with spine number within each species, and spine length is positively correlated between them. Spine length for both species is also positively correlated with the presence of predatory fishes and negatively corre- lated with vegetation cover. Finally, spine number for both Apeltes and Pungirius is lower where they coexist with a new species of stickleback (Gasterosteus sp.) which is found only in environments where predation risk is low. These patterns of covariation within and between species are evidence for natural selection, and they suggest that predators are a selective agent favouring the higher-spined morphs. We discuss these results with respect to the idea that geographic variation in Pun gidus reflects historical processes of isolation and differentiation during the Pleistocene era. 1. INTRODUCTION A powerful method for detecting the action of natural selection is to search for covariation among homologous polymorphic traits in closely related and ecologically similar species where they coexist (Clarke, 1975; Koehn and Mitton, 1972; Turner 1977).