Boundary Stratotype

Total Page:16

File Type:pdf, Size:1020Kb

Boundary Stratotype bY, Marlin Brasier, John Cowie and Michael Tavlor D eci si on on the P r ecambr i an- Cambr i an boundar y str atotype The Global Stratotype Se(,tion and Point j br the Pro- dominate elsewhere. It wits for this reas(川that B Dai ly (unpub- terozoiC- Canibrian botindar v has been agreed upon. li shed) emphasised the potential of' [race fossi l strati graphy as a subsidi ary gVuide. The botindarY is defi ned in a coastal section near the T his wa s l 'oll ow cd i n 1974 by a meeting in Pari s. at which the loviln Of' Fortune in soti theaste,二 Netyfl )undland, fol lowi ng Points Were 1.111anini ousl y agreed (Cowie, 1992). Canada. T he pri mary task of the Working Group was the choice of a stra - Lotype boundary poi nt-, a secondary task was the consideration ot associ ated str atigraphic di visions above and below the bound- a ry . I nt r oducti on Any su ccession selected for the boundary point must be as con- fi nUOUS as possible, mari ne. and as monofacial as possible} the main method of guidance i n selecti on should be biostrati g- T he problem of the Precambrian-Cambrian boundary is part of one raphy al though all possible methods of correl ation shoul d be ol' i he Lreatcst eni gmas of the f ossi l record; i.e. the relatively abrupt enl is ted. appear ance of skeletal fossi ls and complex, deep burrows i n sedi- T he ' Edia ca ra ' ty pe fauna should be considered as Precambri an- inerriary Successions around the world. As wi ll be recounted below, T he 'oleii el lid/t'al lotaspid' tr ilobite faunas shoul d be consi dered its defi nition has i nvol ved the roll i ng back of a maj or frontier in as Cambrian- geology over the last three decades. B etween the ' E d i ac ara' and the tril obite faunas, those f os si 川七r- U nti l the late 194 0 s. i t was ass um e d th a t the Precambrian was ous successions that Could not be al located with certai nty to largely wi thout fossil s and that the base of the Cambri an was mar ked ei ther the Precambri an or the Cambr ian, should hav e the W ork - by the l owest appearance of tril obi tes, e.g. the ' Olenell us Z one' of' i ng Group’S Cl ose attention. Walcott (1890) and Wheeler 门947). More traditional ly, it was I ncreased SUppor t for wor k o n th e boundary was made possi - drawn a[ a reuional Unconformi ty below them, c-g. i n Rayner (1967). ble i n 1974, when 'T he Precambrian- Carnbr ian Boundary' was T he fi rst steps towards a more precise defi ni ti on of the base were accepted i ts Project 29 by the IGC13 Board. A meeti ng i n Cam- taken i n 1960. at the Norden IGC i n Copenhagen. when M F Glaess- bridae. UK , in 1978. reviewed discoveri es Of SUb-tr i lobitic smal l net- proposed the establ ishment of a Subcommission on Cambrian s keletal fos s i 卜 and [race fos s i ls f rom around the w or ld, as well as StratioCraphy, and i n 1968 when Chair man C I Stubblefi eld and Sec- the potential :)「unacCynetostrati graphy. T he Cambr idge meeti ng retary J W Cowie chose the problem of' the ' Base of the Cambrian recommended to the Wor ki ng Group that " T he Precambr ian- System' its one of its fi rst tasks. By thi s time, the existence ol' a latest Cambr ian boundar y should be placed as close as is practi cabl e to Precambrian fauna was widel y acknowledged, e.g- i n Glaessner and the base Of the oldest stratigraphic uni t to yield T orninoti an Wade (1966), and work by Russi an gL,eologi sts was begi nni ng to (sensu lato) fossi l assemblages" (Cowie, 1978). Although there demonstrate a pre-tr ilobitic succession of skeletal faunas, which was l ittle suppor t at thi s ti me for it boundary defi ned by trace fos- were referred to the Cambrian System. e.v. i n Rozanov (1967). siJs. their potenti al for the correlati on ot strata bel ow the fi rst Meetings on the boundary were organized for the IGC in Cz echoslo- tr i lobites wits now being explored (see Al per t, 1977; Brasier , vaki a in 1968, and at Montreal i n 1972. Much di scussion ensued at 1979, fi gure I ). the latter ni celi ng and it ' Worki n.- Group on the Precarribrian- Cam- Candidates fo r t he P recani br ian- Cani brian GS S P w ere dis - brian Boundary' (PC-CBWG) was for med, wi th J W Cowie as its cussed in some detai l at a mectingC. in Br istol, England in 1983. and Chairman. Some of the history of the Working Group has been sum- three were selected for (urther consideration, as fol low s . mari zed elsewhere (Cowie, 1992). Ul akfi an-SLII.UgLir on the Aldan River in castern Si b eri a, ot the In ef fect, thi s Worki ngC Group w a s s etting i tself the chal leng- f or mer USSR (now in Russia)-, here the boundary level (at the i na task of defi ni ng the ' bottom li ne' of the biostr ati g r aphic scal e; base of bed 8) lay in carbonate faci es, withi n a succession of i .e. [()di scover, naine and i nterpret f ossi ls where few had been smal l skeletal fossils and al gae that l ay below the earl iest found before. Many of the fossi ls unearthed over the fol lowing archaeocyathans, brachiopods and other markets ot bTommoti an decades were not r eferable to previousl y known groups and their type' : thi s section was well known and well studied. potenti al for strati gr aphic correlation was, therefore, completely T he section at Mei shucun near Kunmi ng, in Yunna n Provi nce untes ted. of souther n Chi na. Here, the boundary level (Marker B) lay T he W or kin gV Gr ou p held i ts fi rst fi eld meeti ngV i n S iberi a in wi thi n a phosphori te facies and was marked by the abrupt 1973, sponsored by the Acaderny of Sciences of the USS R, to con- appearances of phosphati sed inicromol kiscs and pr oblematica. sider possi ble str atotypes For the Precambri an- Cambr ian bound- T his s ection was w ell -studied but l ittle known outsi de of ary al ong the middle reaches of the Al dan and L ena ri vers in China. Y akuLia, eastern Si beria. Here, 29 Forei gMn gCeologi sts were i ntro- S ev eral s ec ti ons on the B uri n Peninsula of southeastern New - duced to the 'T ommoi ian I'auna' and the secti ons of R ozanov and foundland, Canada; here both small skeletal fossils and trace fos- others (1969)一Members di scussed, not for the l ast ti me, the ori gin s i ls w ere know n to occur i n it rnix ed carbonale-s i licicl astic s uc- of' the lowest smal l shel ly fossi l (S SF ) asscrnblagl e i n bed 8 at cessi on. Only outline studies were avai lable from thi s region and Ulakhan Sul ugur, that was refer red to the base Ot the T ommoti an no preci se section was pi npoi nted. Stage (Cowie and Roz anov, 1974). Discussi ons also focused on At this meeti ng, i t was agai n dec i de d tha t the boundary strato- the relationship between li thofaci es and biofacies, notably the type should be pl aced " as close as practi cabl e to the l owest known problem of correlatinCg carbonate shelf facies with archaeocy- appearance of diverse shelly fossils with a good potential for corre- athans (as in Siberia) with clastic shelf to basinal facies that pre- lation" (Cowie, 1985). Such an emphasis upon SS17s provi ded a great , 广 _1 1 1 气, 污 卜 , I , 了 Sti1 111.11L IS [。、their study. but there was growi ng concern about thei r however- that [lie whole section was remagnetised i n Ordovi cian util ity for con-cl ation. A preli minary mandate For ill e MeishUCUII SCC- times. A Wor king Group visi t to the Burin Peninsul a in 1979 was ti on was del'erred at the Moscow IGC in 1984, when i t was recog- l'ollowed up by i mportant ,round work on SSFs. trace lossi ls and nised that greater international aIgreement oil SSF taxonomy was Ii [ hostr at igraphy (Bengi son and Fletcher, 1981.1983). Further necessary- 'I’h i s led to -,in "SSF Workshop" i n Uppsala in 1986, orga- researches Culmi nated in a series ol' papers which detai led the strati - nized bv S Benatson. It call now be seen that thi s mecting resulted i n gIOraPphic dli、S1h1-ibLUlti(o川n (o)f trace l O SS jl S, SS[7s and l ithostrati -raphy several new thrusts.
Recommended publications
  • Durham Research Online
    Durham Research Online Deposited in DRO: 23 May 2017 Version of attached le: Accepted Version Peer-review status of attached le: Peer-reviewed Citation for published item: Betts, Marissa J. and Paterson, John R. and Jago, James B. and Jacquet, Sarah M. and Skovsted, Christian B. and Topper, Timothy P. and Brock, Glenn A. (2017) 'Global correlation of the early Cambrian of South Australia : shelly fauna of the Dailyatia odyssei Zone.', Gondwana research., 46 . pp. 240-279. Further information on publisher's website: https://doi.org/10.1016/j.gr.2017.02.007 Publisher's copyright statement: c 2017 This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Additional information: Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full DRO policy for further details. Durham University Library, Stockton Road, Durham DH1 3LY, United Kingdom Tel : +44 (0)191 334 3042 | Fax : +44 (0)191 334 2971 https://dro.dur.ac.uk Accepted Manuscript Global correlation of the early Cambrian of South Australia: Shelly fauna of the Dailyatia odyssei Zone Marissa J.
    [Show full text]
  • The Earliest Bioturbators As Ecosystem Engineers
    Downloaded from http://sp.lyellcollection.org/ by guest on September 27, 2021 Engineering the Cambrian explosion: the earliest bioturbators as ecosystem engineers LIAM G. HERRINGSHAW1,2*, RICHARD H. T. CALLOW1,3 & DUNCAN MCILROY1 1Department of Earth Sciences, Memorial University of Newfoundland, Prince Philip Drive, St John’s, NL, A1B 3X5, Canada 2Geology, School of Environmental Sciences, University of Hull, Cottingham Road, Hull HU6 7RX, UK 3Statoil ASA, Stavanger 4035, Norway *Correspondence: [email protected] Abstract: By applying modern biological criteria to trace fossil types and assessing burrow mor- phology, complexity, depth, potential burrow function and the likelihood of bioirrigation, we assign ecosystem engineering impact (EEI) values to the key ichnotaxa in the lowermost Cambrian (Fortunian). Surface traces such as Monomorphichnus have minimal impact on sediment properties and have very low EEI values; quasi-infaunal traces of organisms that were surficial modifiers or biodiffusors, such as Planolites, have moderate EEI values; and deeper infaunal, gallery biodiffu- sive or upward-conveying/downward-conveying traces, such as Teichichnus and Gyrolithes, have the highest EEI values. The key Cambrian ichnotaxon Treptichnus pedum has a moderate to high EEI value, depending on its functional interpretation. Most of the major functional groups of mod- ern bioturbators are found to have evolved during the earliest Cambrian, including burrow types that are highly likely to have been bioirrigated. In fine-grained (or microbially bound) sedimentary environments, trace-makers of bioirrigated burrows would have had a particularly significant impact, generating advective fluid flow within the sediment for the first time, in marked contrast with the otherwise diffusive porewater systems of the Proterozoic.
    [Show full text]
  • Trace Fossils
    C O N F E R E N C E R E P O R T S T race Fossils, Sm all Shelly Fossils an d th e Precam brian-Cam brian Boundary St. John's, New foundland, C anada, 8 一18 A ugust 1987 The Precam brian-Cam brian boundary m arks a fundam ental stratigraphic ranges of ichnotaxa are needed for m ore change in Ea rth history, the first developm ent of abundant sections, particularly in A ustralia and the R ussian Platform , skeletal and bioturbating orga nism s. A lthough there is to fu rthe r te st the co rrelation s. A c rita rch s ha ve no t be e n general agreem ent w ith the principle of placing the bound- as w idely studied, but presentations by G . Vidal (Sw eden), M . ary "as close as practical to the first appearance of abun- M oczydow ski (Poland) and X ing Y usheng em phasized their dant shelly fossils," m arked provincialism o f the earliest potential biostratigraphic utility in the boundary interval. sk eletal fossils an d the ir virtua l restric tio n to ca rbo na te facies have ham pered g lobal correlation in the boundary In the past, paleontologic studies in the Precam brian- C am brian boundary interval have focused upon the evolution interval (Cowie, 1985, Episo旦es v. 8, p. 93-98). of the biota. A m ajor them e of the conference was the need In A ugust of 1987, fifty geologists from ten countries m et to to reconsider the effects of environm ental and p reserva- consider a possible stratotype site in eastern N ew foundland.
    [Show full text]
  • Cambrian Transition in the Southern Great Basin
    The Sedimentary Record 2000; Shen and Schidlowski, 2000). Due to The Precambrian- endemic biotas and facies control, it is diffi- cult to correlate directly between siliciclas- Cambrian Transition in the tic- and carbonate-dominated successions. This is particularly true for the PC-C boundary interval because lowermost Southern Great Basin, USA Cambrian biotas are highly endemic and Frank A. Corsetti James W.Hagadorn individual, globally distributed guide fossils Department of Earth Science Department of Geology are lacking (Landing, 1988; Geyer and University of Southern California Amherst College Shergold, 2000). Los Angeles, CA 90089-0740 Amherst, MA 01002 Determination of a stratigraphic bound- [email protected] [email protected] ary generates a large amount of interest because it provides scientists with an oppor- ABSTRACT:The Precambrian-Cambrian boundary presents an interesting tunity to address a variety of related issues, stratigraphic conundrum: the trace fossil used to mark and correlate the base of the including whether the proposed boundary Cambrian, Treptichnus pedum, is restricted to siliciclastic facies, whereas position marks a major event in Earth histo- biomineralized fossils and chemostratigraphic signals are most commonly obtained ry. Sometimes the larger-scale meaning of from carbonate-dominated sections.Thus, it is difficult to correlate directly between the particular boundary can be lost during many of the Precambrian-Cambrian boundary sections, and to assess details of the the process of characterization. This is timing of evolutionary events that transpired during this interval of time.Thick demonstrated in a plot of PC-C boundary sections in the White-Inyo region of eastern California and western Nevada, USA, papers through time (Fig.
    [Show full text]
  • Bedrock Geology of the Cape St. Mary's Peninsula
    BEDROCK GEOLOGY OF THE CAPE ST. MARY’S PENINSULA, SOUTHWEST AVALON PENINSULA, NEWFOUNDLAND (INCLUDES PARTS OF NTS MAP SHEETS 1M/1, 1N/4, 1L/16 and 1K/13) Terence Patrick Fletcher Report 06-02 St. John’s, Newfoundland 2006 Department of Natural Resources Geological Survey COVER The Placentia Bay cliff section on the northern side of Hurricane Brook, south of St. Bride’s, shows the prominent pale limestones of the Smith Point Formation intervening between the mudstones of the Cuslett Member of the lower Bonavista Formation and those of the overlying Redland Cove Member of the Brigus Formation. The top layers of this marker limestone on the southwestern limb of the St. Bride’s Syncline contain the earliest trilobites found in this map area. Department of Natural Resources Geological Survey BEDROCK GEOLOGY OF THE CAPE ST. MARY’S PENINSULA, SOUTHWEST AVALON PENINSULA, NEWFOUNDLAND (INCLUDES PARTS OF NTS MAP SHEETS 1M/1, 1N/4, 1L/16 and 1K/13) Terence P. Fletcher Report 06-02 St. John’s, Newfoundland 2006 EDITING, LAYOUT AND CARTOGRAPHY Senior Geologist S.J. O’BRIEN Editor C.P.G. PEREIRA Graphic design, D. DOWNEY layout and J. ROONEY typesetting B. STRICKLAND Cartography D. LEONARD T. PALTANAVAGE T. SEARS Publications of the Geological Survey are available through the Geoscience Publications and Information Section, Geological Survey, Department of Natural Resources, P.O. Box 8700, St. John’s, NL, Canada, A1B 4J6. This publication is also available through the departmental website. Telephone: (709) 729-3159 Fax: (709) 729-4491 Geoscience Publications and Information Section (709) 729-3493 Geological Survey - Administration (709) 729-4270 Geological Survey E-mail: [email protected] Website: http://www.gov.nl.ca/mines&en/geosurv/ Author’s Address: Dr.
    [Show full text]
  • Sedimentology and Palaeontology of the Withycombe Farm Borehole, Oxfordshire, UK
    Sedimentology and Palaeontology of the Withycombe Farm Borehole, Oxfordshire, England By © Kendra Morgan Power, B.Sc. (Hons.) A thesis submitted to the School of Graduate Studies in partial fulfillment of the requirements for the degree of Master of Science Department of Earth Sciences Memorial University of Newfoundland May 2020 St. John’s Newfoundland Abstract The pre-trilobitic lower Cambrian of the Withycombe Formation is a 194 m thick siliciclastic succession dominated by interbedded offshore red to purple and green pyritic mudstone with minor sandstone. The mudstone contains a hyolith-dominated small shelly fauna including: orthothecid hyoliths, hyolithid hyoliths, the rostroconch Watsonella crosbyi, early brachiopods, the foraminiferan Platysolenites antiquissimus, the coiled gastropod-like Aldanella attleborensis, halkieriids, gastropods and a low diversity ichnofauna including evidence of predation by a vagile infaunal predator. The assemblage contains a number of important index fossils (Watsonella, Platysolenites, Aldanella and the trace fossil Teichichnus) that enable correlation of strata around the base of Cambrian Stage 2 from Avalonia to Baltica, as well as the assessment of the stratigraphy within the context of the lower Cambrian stratigraphic standards of southeastern Newfoundland. The pyritized nature of the assemblage has enabled the study of some of the biota using micro-CT, augmented with petrographic studies, revealing pyritized microbial filaments of probable giant sulfur bacteria. We aim to produce the first complete description of the core and the abundant small pyritized fossils preserved in it, and develop a taphonomic model for the pyritization of the “small” shelly fossils. i Acknowledgements It is important to acknowledge and thank the many people who supported me and contributed to the successful completion of this thesis.
    [Show full text]
  • Precambrian-Cambrian Transition: Death Valley, United States
    Precambrian-Cambrian transition: Death Valley, United States Frank A. Corsetti* Department of Geological Sciences, University of California, Santa Barbara, California 93106, USA James W. Hagadorn* Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, USA ABSTRACT The Death Valley region contains one of the best exposed and often visited Precambrian- Cambrian successions in the world, but the chronostratigraphic framework necessary for understanding the critical biologic and geologic events recorded in these sections has been in- adequate. The recent discovery of Treptichnus (Phycodes) pedum within the uppermost para- sequence of the lower member of the Wood Canyon Formation allows correlation of the Pre- cambrian-Cambrian boundary to this region and provides a necessary global tie point for the Death Valley section. New carbon isotope chemostratigraphic profiles bracket this biostrati- graphic datum and record the classic negative carbon isotope excursion at the boundary. For the first time, biostratigraphic, chemostratigraphic, and lithostratigraphic information from pretrilobite strata in this region can be directly compared with similar data from other key sec- tions that record the precursors of the Cambrian explosion. Few Precambrian-Cambrian boundary sections contain both the facies-restricted boundary fossil T. pedum and carbon iso- tope data, as found in Death Valley. Thus, the Death Valley succession provides a critical link toward our understanding of the correlation between
    [Show full text]
  • Laing Etal 2018 P3.Pdf
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/322371860 Gyrolithes from the Ediacaran-Cambrian boundary section in Fortune Head, Newfoundland, Canada: Exploring the onset of complex burrowing Article in Palaeogeography Palaeoclimatology Palaeoecology · January 2018 DOI: 10.1016/j.palaeo.2018.01.010 CITATIONS READS 2 378 5 authors, including: Brittany Laing Luis A. Buatois University of Saskatchewan University of Saskatchewan 7 PUBLICATIONS 5 CITATIONS 296 PUBLICATIONS 6,588 CITATIONS SEE PROFILE SEE PROFILE M. Gabriela Mangano Romain Gougeon University of Saskatchewan University of Saskatchewan 225 PUBLICATIONS 5,498 CITATIONS 12 PUBLICATIONS 7 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Sedimentology, Ichnology, & Sequence Stratigraphy of a Mega-Delta Approaching Shelf-Edge View project Early Triassic biotic recovery and controlling factors insights from ichnologic aspects View project All content following this page was uploaded by Brittany Laing on 01 February 2018. The user has requested enhancement of the downloaded file. Palaeogeography, Palaeoclimatology, Palaeoecology xxx (xxxx) xxx–xxx Contents lists available at ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo Gyrolithes from the Ediacaran-Cambrian boundary section in Fortune Head, Newfoundland, Canada: Exploring the onset of complex burrowing ⁎ Brittany A. Lainga, , Luis A. Buatoisa, M. Gabriela Mánganoa, Guy M. Narbonnea,b, Romain C. Gougeona a Department of Geology, University of Saskatchewan, Saskatoon, SK, Canada b Department of Geological Sciences and Engineering, Queen's University, Kingston, ON, Canada ARTICLE INFO ABSTRACT Keywords: The beginning of the Cambrian explosion is characterized by the onset of infaunalization and the appearance of sys- Trace fossils tematic patterns of burrowing.
    [Show full text]
  • ~Nalla~R~C (CANADA a GEOLOGY FIELD "GUIDE to SELECTED SITES in NEWFOUNDLAND, NOVA SCOTIA
    D~s)COVER~NGROCK~~ ~j!NERAl~ ~NfO)FOs)S~l5) ~NAllA~r~C (CANADA A GEOLOGY FIELD "GUIDE TO SELECTED SITES IN NEWFOUNDLAND, NOVA SCOTIA, PRINCE EDV\JARDISLAND7 AND NEW BRUNSWICK 7_".-- ~ _. ...._ .•-- ~.- Peter Wallace. Editor Atlantic Geoscience Society Department of Earth Sciences La Societe G60scientifique Dalhousie University de L'Atlantique Halifax, Nova Scotia AGS Special Publication 14 • DISCOVERING ROCKS, MINERALS AND FOSSILS IN ATLANTIC CANADA A Geology Field Guide to Selected Sites in Newfoundland, Nova Scotia, Prince Edward Island and New Brunswick • Peter Wallace, editor Department of Earth Sciences Dalhousie University, Halifax, Nova Scotia Atlantic Geoscience Society La Societe Geoscientifique de L'Atlantique • AGS Special Publication • @ 1998 Atlantic Geoscience Society Department of Earth Sciences Dalhousie University 1236 Henry Street, Halifax Nova Scotia, Canada B3H3J5 This book was produced with help from The Canadian Geological Foundation, The Department of Earth Sciences, Dalhousie University, and The Atlantic Geoscience Society. ISBN 0-9696009-9-2 AGS Special Publication Number . 14.. I invite you to join the Atlantic Geoscience Society, write clo The Department of Earth Sciences, Dalhousie University (see above) Cover Photo Cape Split looking west into the Minas Channel, Nova Scotia. The split is caused by erosion along North-South faults cutting the Triassic-Jurassic-aged North Mountain Basalt and is the terminal point of a favoured hike of geologists and non-geologists alike. Photo courtesy of Rob • Fensome, Biostratigrapher,
    [Show full text]
  • Constraining the Ediacaran-Cambrian Boundary in South China Using Acanthomorphic Acritarchs and Plaeopascichnus Fossils Kenneth Hugh O’Donnell
    Constraining the Ediacaran-Cambrian boundary in South China using acanthomorphic acritarchs and Plaeopascichnus fossils Kenneth Hugh O’Donnell Thesis submitted to the faculty of Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Master of Science In Geosciences S. Xiao, Committee Chair Kenneth A. Eriksson Patricia E. Dove May 7, 2013 Blacksburg, VA Keywords: Biostratigraphy; Heliosphaeridium; Palaeopascichnus; acritarchs; acanthomorphic; Yanjiahe; Liuchapo; Niutitang; Ediacaran; Cambrian; South China Copyright 2013 Constraining the Ediacaran-Cambrian boundary in South China using acanthomorphic acritarchs and Palaeopascichnus fossils Kenneth O’Donnell ABSTRACT The Ediacaran-Cambrian boundary is arguably the most critical transition in Earth history. This boundary is currently defined by the GSSP (Global Stratotype Section and Point) at Fortune Head (Newfoundland, Canada) at a point that was once regarded as the first appearance of the branching trace fossil Treptichnus pedum. However, T. pedum has been subsequently found below the GSSP, and its distribution is largely restricted to sandstone facies where chemostratigraphic correlation tools are difficult to apply. Thus, the stratigraphic value of the Fortune Head GSSP has come under scrutiny, and there is a need to search for an alternative definition of this boundary using other biostratigraphic criteria. Investigations of acanthomorphic acritarchs in basal Cambrian strata of South China suggest that these microfossils may
    [Show full text]
  • Ediacaran and Cambrian Rocks on Scatarie Island, Avalonian Mira Terrane, Cape Breton Island, Nova Scotia, Canada Sandra M
    Document generated on 09/24/2021 5:05 a.m. Atlantic Geology Journal of the Atlantic Geoscience Society Revue de la Société Géoscientifique de l'Atlantique Ediacaran and Cambrian rocks on Scatarie Island, Avalonian Mira terrane, Cape Breton Island, Nova Scotia, Canada Sandra M. Barr, Chris E. White, Sören Jensen, Teodoro Palacios and Deanne van Rooyen Volume 56, 2020 Article abstract Scatarie Island and adjacent Hay Island, located 2 km east of the eastern tip of URI: https://id.erudit.org/iderudit/1072994ar the Avalonian Mira terrane of southern Cape Breton Island, Nova Scotia, DOI: https://doi.org/10.4138/atlgeol.2020.011 contain a succession of epiclastic and other sedimentary rocks of inferred Ediacaran to Cambrian age. The age assignment was based previously on See table of contents lithological comparison with the Main-à-Dieu Group and overlying Bengal Road and MacCodrum formations of the Mira River Group. Detrital zircon grains from two sandstone samples from the Bengal Road Formation yielded Publisher(s) typical Avalonian detrital zircon spectra with middle to late Neoproterozoic, Meso- to Paleoproterozoic (1300–2200 Ma) and Neoarchean ages. They indicate Atlantic Geoscience Society maximum depositional ages of 532.4 ± 4.2 Ma and 525.4 ± 2.4 Ma from essentially the same stratigraphic level, consistent with the interpretation that ISSN the rocks are Cambrian. The Bengal Road Formation also yielded scarce organic-walled microfossils including an acanthomorphic acritarch identified 0843-5561 (print) as Polygonium sp., also consistent with Cambrian age. The fine-grained 1718-7885 (digital) siliciclastic succession on Hay Island, tentatively attributed to the MacCodrum Formation, yielded trace fossils, including Teichichnus isp.
    [Show full text]
  • Landing Et Al., 2007.Pdf
    287 by Ed Landing1, Shanchi Peng2, Loren E. Babcock3, Gerd Geyer4, and Malgorzata Moczydlowska-Vidal5 Global standard names for the Lowermost Cambrian Series and Stage 1 New York State Museum, Madison Avenue, Albany, New York 12230, USA. Email: [email protected] 2 State Key Laboratory of Stratigraphy and Palaeobiology, Nanjing Institute of Geology and Palaeontology, 39 East Beijing Road, Nanjing 210008, China. Email: [email protected] 3 School of Earth Sciences, The Ohio State University, Columbus, Ohio 43210, USA. Email: [email protected] 4 Institut für Paläontologie, Bayerische Julius-Maximillians-Universität, Pleicherwall 1, D97070 Würzburg, Germany. Email: [email protected] 5 Department of Earth Sciences, Uppsala University, Norbyvägen 22, Sweden. Email: [email protected] The GSSP marking the base of the Cambrian System was ratified by the IUGS in 1992. Ratification of the GSSP Terreneuvian Series point at the base of the Trichophycus pedum Ichnozone Name of the series in the Fortune Head section, eastern Newfoundland, Canada, automatically defined the conterminant base of The name “Terreneuvian Series” replaces the provisional name “Cambrian Series 1.” The base has been defined at a point 2.3 m the lowermost series and stage of the Cambrian although above the base of what was referred to as “member 2” of the Chapel names for those subdivisions were not proposed at the Island Formation (Figures 1, 2) in the measured section of Narbonne time of the decision. In 2007, the IUGS ratified the names et al. (1987) of the Fortune Head section, Burin Peninsula, New- foundland, Canada. The units earlier termed members 1 and 2 of the Terreneuvian Series and Fortunian Stage for these previ- Chapel Island Formation now comprise the lower part of the Mys- ously unnamed chronostratigraphic subdivisions.
    [Show full text]