First Evidence for Cambrian Glaciation Provided By
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Geochemistry This
TORONTOTORONTO Vol. 8, No. 4 April 1998 Call for Papers GSA TODAY — page C1 A Publication of the Geological Society of America Electronic Abstracts Submission — page C3 Antarctic Neogene Landscapes—In the 1998 Registration Refrigerator or in the Deep Freeze? Annual Issue Meeting — June GSA Today Introduction The present Molly F. Miller, Department of Geology, Box 117-B, Vanderbilt Antarctic landscape undergoes very University, Nashville, TN 37235, [email protected] slow environmental change because it is almost entirely covered by a thick, slow-moving ice sheet and thus effectively locked in a Mark C. G. Mabin, Department of Tropical Environmental Studies deep freeze. The ice sheet–landscape system is essentially stable, and Geography, James Cook University, Townsville, Queensland 4811, Australia, [email protected] Antarctic—Introduction continued on p. 2 Atmospheric Transport of Diatoms in the Antarctic Sirius Group: Pliocene Deep Freeze Arjen P. Stroeven, Department of Quaternary Research, Stockholm University, S-106 91 Stockholm, Sweden Lloyd H. Burckle, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964 Johan Kleman, Department of Physical Geography, Stockholm University, S-106, 91 Stockholm, Sweden Michael L. Prentice, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH 03824 INTRODUCTION How did young diatoms (including some with ranges from the Pliocene to the Pleistocene) get into the Sirius Group on the slopes of the Transantarctic Mountains? Dynamicists argue for emplacement by a wet-based ice sheet that advanced across East Antarctica and the Transantarctic Mountains after flooding of interior basins by relatively warm marine waters [2 to 5 °C according to Webb and Harwood (1991)]. -
Durham Research Online
Durham Research Online Deposited in DRO: 23 May 2017 Version of attached le: Accepted Version Peer-review status of attached le: Peer-reviewed Citation for published item: Betts, Marissa J. and Paterson, John R. and Jago, James B. and Jacquet, Sarah M. and Skovsted, Christian B. and Topper, Timothy P. and Brock, Glenn A. (2017) 'Global correlation of the early Cambrian of South Australia : shelly fauna of the Dailyatia odyssei Zone.', Gondwana research., 46 . pp. 240-279. Further information on publisher's website: https://doi.org/10.1016/j.gr.2017.02.007 Publisher's copyright statement: c 2017 This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Additional information: Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full DRO policy for further details. Durham University Library, Stockton Road, Durham DH1 3LY, United Kingdom Tel : +44 (0)191 334 3042 | Fax : +44 (0)191 334 2971 https://dro.dur.ac.uk Accepted Manuscript Global correlation of the early Cambrian of South Australia: Shelly fauna of the Dailyatia odyssei Zone Marissa J. -
The Earliest Bioturbators As Ecosystem Engineers
Downloaded from http://sp.lyellcollection.org/ by guest on September 27, 2021 Engineering the Cambrian explosion: the earliest bioturbators as ecosystem engineers LIAM G. HERRINGSHAW1,2*, RICHARD H. T. CALLOW1,3 & DUNCAN MCILROY1 1Department of Earth Sciences, Memorial University of Newfoundland, Prince Philip Drive, St John’s, NL, A1B 3X5, Canada 2Geology, School of Environmental Sciences, University of Hull, Cottingham Road, Hull HU6 7RX, UK 3Statoil ASA, Stavanger 4035, Norway *Correspondence: [email protected] Abstract: By applying modern biological criteria to trace fossil types and assessing burrow mor- phology, complexity, depth, potential burrow function and the likelihood of bioirrigation, we assign ecosystem engineering impact (EEI) values to the key ichnotaxa in the lowermost Cambrian (Fortunian). Surface traces such as Monomorphichnus have minimal impact on sediment properties and have very low EEI values; quasi-infaunal traces of organisms that were surficial modifiers or biodiffusors, such as Planolites, have moderate EEI values; and deeper infaunal, gallery biodiffu- sive or upward-conveying/downward-conveying traces, such as Teichichnus and Gyrolithes, have the highest EEI values. The key Cambrian ichnotaxon Treptichnus pedum has a moderate to high EEI value, depending on its functional interpretation. Most of the major functional groups of mod- ern bioturbators are found to have evolved during the earliest Cambrian, including burrow types that are highly likely to have been bioirrigated. In fine-grained (or microbially bound) sedimentary environments, trace-makers of bioirrigated burrows would have had a particularly significant impact, generating advective fluid flow within the sediment for the first time, in marked contrast with the otherwise diffusive porewater systems of the Proterozoic. -
New Geochronological Constraints on the Timing of Magmatism for the Bull Arm Formation, Musgravetown Group, Avalon Terrane, Northeastern Newfoundland
Current Research (2017) Newfoundland and Labrador Department of Natural Resources Geological Survey, Report 17-1, pages 1-17 NEW GEOCHRONOLOGICAL CONSTRAINTS ON THE TIMING OF MAGMATISM FOR THE BULL ARM FORMATION, MUSGRAVETOWN GROUP, AVALON TERRANE, NORTHEASTERN NEWFOUNDLAND A.J. Mills, G.R. Dunning1, M. Murphy1 and A. Langille1 Regional Geology Section 1Department of Earth Sciences, Memorial University of Newfoundland, St. John’s, NL, A1B 3X5 ABSTRACT The Bull Arm Formation is one of the most areally extensive volcanic units in the Avalon Terrane of Newfoundland. His- torically, the age has been interpreted from the single previous U–Pb zircon age (570 +5/-3 Ma) obtained from a rhyolite flow on Wolf Island, where no contact relations are exposed. This rhyolite was later re-interpreted as the lower part of the overly- ing Rocky Harbour Formation but the initial interpretation as Bull Arm Formation had by then become entrenched in the lit- erature. New U–Pb zircon (CA-TIMS) geochronology results have been obtained for two rock samples from the volcanic-dom- inated Bull Arm Formation, Musgravetown Group, on the Bonavista Peninsula (Plate Cove volcanic belt) of northeastern Newfoundland, and one sample from the Isthmus that connects the Avalon Peninsula to the rest of the Island. A 40-cm-thick crystal-ash tuff near the base of the Plate Cove volcanic belt, at the roadcut east of Summerville, yielded an age of 592 ± 2.2 Ma. A lapilli tuff, located approximately 1800 m to the east, at the eastern margin of the volcanic belt, yielded an age of 591.3 ± 1.6 Ma. -
Back Matter (PDF)
Index Acraman impact ejecta layer 53–4, 117, 123, 126–9, Aspidella 130–2, 425–7 controversy 300, 301–3, 305 acritarchs ecology 303 Amadeus and Officer Basins 119 synonyms 302 biostratigraphy 115–25, 130–2 Australia Australian correlations 130–2 Acraman impact ejecta layer 53–4, 117, 123, 126–9, composite zonation scheme 119, 131, 132 130–2, 425–7 India 318–20 carbon isotope chemostratigraphy 126–9 Ireland 289 correlations of Ediacaran System and Period 18, Spain 232 115–35 sphaeromorphid 324 Marinoan glaciation 53–4, 126 Adelaide, Hallett Cove 68 Australia, Ediacaran System and Period Adelaide Rift Complex 115–22, 425 Bunyeroo–Wonoka Formation transition correlations with Officer Basin 127 137–9, 426 dating (Sr–Rb) 140 Centralian Superbasin 118, 125 generalized time–space diagram, correlations composite zonation scheme 131 between tectonic units 120 correlation methods and results 125–32 location maps 116, 118 time–space diagram 120 SE sector cumulative strata thickness 139 Vendian climatic indicators 17 stratigraphic correlation with Officer Basin 127 See also Adelaide Rift Complex; Flinders Ranges Stuart Shelf drill holes, correlations 117 Avalonian assemblages, Newfoundland 237–57, Sturtian (Umberatana) Group 116, 138 303–7, 427 Umberatana Group 116, 138 Africa backarc spreading, Altenfeld Formation 44–5, 47–8 Vendian climatic indicators 17 Baliana–Krol Group, NW Himalaya 319 see also Namibia Barut Formation, Iran 434 Aldanellidae 418 Bayesian analysis algal metaphyta, White Sea Region 271–4 eumetazoans 357–9 algal microfossils, White -
Of Time and Taphonomy: Preservation in the Ediacaran
See discussions, stats, and author profiles for this publication at: http://www.researchgate.net/publication/273127997 Of time and taphonomy: preservation in the Ediacaran CHAPTER · JANUARY 2014 READS 36 2 AUTHORS, INCLUDING: Charlotte Kenchington University of Cambridge 5 PUBLICATIONS 2 CITATIONS SEE PROFILE Available from: Charlotte Kenchington Retrieved on: 02 October 2015 ! OF TIME AND TAPHONOMY: PRESERVATION IN THE EDIACARAN CHARLOTTE G. KENCHINGTON! 1,2 AND PHILIP R. WILBY2 1Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, UK <[email protected]! > 2British Geological Survey, Keyworth, Nottingham, NG12 5GG, UK ABSTRACT.—The late Neoproterozoic witnessed a revolution in the history of life: the transition from a microbial world to the one known today. The enigmatic organisms of the Ediacaran hold the key to understanding the early evolution of metazoans and their ecology, and thus the basis of Phanerozoic life. Crucial to interpreting the information they divulge is a thorough understanding of their taphonomy: what is preserved, how it is preserved, and also what is not preserved. Fortunately, this Period is also recognized for its abundance of soft-tissue preservation, which is viewed through a wide variety of taphonomic windows. Some of these, such as pyritization and carbonaceous compression, are also present throughout the Phanerozoic, but the abundance and variety of moldic preservation of body fossils in siliciclastic settings is unique to the Ediacaran. In rare cases, one organism is preserved in several preservational styles which, in conjunction with an increased understanding of the taphonomic processes involved in each style, allow confident interpretations of aspects of the biology and ecology of the organisms preserved. -
Bedrock Geology of the Cape St. Mary's Peninsula
BEDROCK GEOLOGY OF THE CAPE ST. MARY’S PENINSULA, SOUTHWEST AVALON PENINSULA, NEWFOUNDLAND (INCLUDES PARTS OF NTS MAP SHEETS 1M/1, 1N/4, 1L/16 and 1K/13) Terence Patrick Fletcher Report 06-02 St. John’s, Newfoundland 2006 Department of Natural Resources Geological Survey COVER The Placentia Bay cliff section on the northern side of Hurricane Brook, south of St. Bride’s, shows the prominent pale limestones of the Smith Point Formation intervening between the mudstones of the Cuslett Member of the lower Bonavista Formation and those of the overlying Redland Cove Member of the Brigus Formation. The top layers of this marker limestone on the southwestern limb of the St. Bride’s Syncline contain the earliest trilobites found in this map area. Department of Natural Resources Geological Survey BEDROCK GEOLOGY OF THE CAPE ST. MARY’S PENINSULA, SOUTHWEST AVALON PENINSULA, NEWFOUNDLAND (INCLUDES PARTS OF NTS MAP SHEETS 1M/1, 1N/4, 1L/16 and 1K/13) Terence P. Fletcher Report 06-02 St. John’s, Newfoundland 2006 EDITING, LAYOUT AND CARTOGRAPHY Senior Geologist S.J. O’BRIEN Editor C.P.G. PEREIRA Graphic design, D. DOWNEY layout and J. ROONEY typesetting B. STRICKLAND Cartography D. LEONARD T. PALTANAVAGE T. SEARS Publications of the Geological Survey are available through the Geoscience Publications and Information Section, Geological Survey, Department of Natural Resources, P.O. Box 8700, St. John’s, NL, Canada, A1B 4J6. This publication is also available through the departmental website. Telephone: (709) 729-3159 Fax: (709) 729-4491 Geoscience Publications and Information Section (709) 729-3493 Geological Survey - Administration (709) 729-4270 Geological Survey E-mail: [email protected] Website: http://www.gov.nl.ca/mines&en/geosurv/ Author’s Address: Dr. -
Sedimentology and Palaeontology of the Withycombe Farm Borehole, Oxfordshire, UK
Sedimentology and Palaeontology of the Withycombe Farm Borehole, Oxfordshire, England By © Kendra Morgan Power, B.Sc. (Hons.) A thesis submitted to the School of Graduate Studies in partial fulfillment of the requirements for the degree of Master of Science Department of Earth Sciences Memorial University of Newfoundland May 2020 St. John’s Newfoundland Abstract The pre-trilobitic lower Cambrian of the Withycombe Formation is a 194 m thick siliciclastic succession dominated by interbedded offshore red to purple and green pyritic mudstone with minor sandstone. The mudstone contains a hyolith-dominated small shelly fauna including: orthothecid hyoliths, hyolithid hyoliths, the rostroconch Watsonella crosbyi, early brachiopods, the foraminiferan Platysolenites antiquissimus, the coiled gastropod-like Aldanella attleborensis, halkieriids, gastropods and a low diversity ichnofauna including evidence of predation by a vagile infaunal predator. The assemblage contains a number of important index fossils (Watsonella, Platysolenites, Aldanella and the trace fossil Teichichnus) that enable correlation of strata around the base of Cambrian Stage 2 from Avalonia to Baltica, as well as the assessment of the stratigraphy within the context of the lower Cambrian stratigraphic standards of southeastern Newfoundland. The pyritized nature of the assemblage has enabled the study of some of the biota using micro-CT, augmented with petrographic studies, revealing pyritized microbial filaments of probable giant sulfur bacteria. We aim to produce the first complete description of the core and the abundant small pyritized fossils preserved in it, and develop a taphonomic model for the pyritization of the “small” shelly fossils. i Acknowledgements It is important to acknowledge and thank the many people who supported me and contributed to the successful completion of this thesis. -
Ediacara Biota’
Accepted Manuscript There is no such thing as the ‘Ediacara Biota’ Breandán Anraoi MacGabhann PII: S1674-9871(13)00109-6 DOI: 10.1016/j.gsf.2013.08.001 Reference: GSF 237 To appear in: Geoscience Frontiers Received Date: 26 June 2013 Revised Date: 8 August 2013 Accepted Date: 14 August 2013 Please cite this article as: MacGabhann, B.A., There is no such thing as the ‘Ediacara Biota’, Geoscience Frontiers (2013), doi: 10.1016/j.gsf.2013.08.001. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT MANUSCRIPT Sandstone mould + casts ACCEPTED Burgess Shale-style ACCEPTED MANUSCRIPT Research Highlights • The term ‘Ediacara Biota’ is commonly used to refer to early megascopic fossils • This term is inconsistent, arbitrarily excludes certain fossils, and cannot be defined • Studies of early metazoan evolution must consider all fossils of Ediacaran age MANUSCRIPT ACCEPTED ACCEPTED MANUSCRIPT 1 There is no such thing as the ‘Ediacara Biota’ 2 Breandán Anraoi MacGabhann 3 School of GeoSciences, University of Edinburgh, King's Buildings, West Mains Road, 4 Edinburgh EH9 3JW, UK. Tel: +44 131 6 508543 5 Email address: [email protected] 6 7 Abstract: The term ‘Ediacara Biota’ (or many variants thereof) is commonly used to refer to 8 certain megascopic fossils of Precambrian and early Palaeozoic age – but what does the term 9 actually mean? What differentiates a non-Ediacaran ‘Ediacaran’ and an Ediacaran 10 ‘Ediacaran’ from an Ediacaran non-‘Ediacaran’? Historically, the term has been used in 11 either a geographic, stratigraphic, taphonomic, or biologic sense. -
Ediacaria and Hiemalora - Disc-Like Attachments
Ediacaria and Hiemalora - Disc-like Attachments of Benthic Organisms from the White Sea and Arctic Siberia (Russia) E. A. Serezhnikova Paleontological Institute, Russian Academy of Sciences, 123 Profsoyuznaya, Moscow, 117868, Russia Localities of Vendian soft-bodied metazoans from Arctic Siberia and Zimnii Bereg along the White Sea coast are well known, just as they are in the classic Australian sequences. Fossils occur on the Olenek Uplift in dark gray, thin-bedded limestones of the Khatyspyt Formation in the Khorbusuonka Group, which crops out in the Olenek River Basin, along the Horbusuonka and Anabyl rivers. The Khorbusuonka Group can be correlated with Yudomian sediments using stromatolites, microphytolites and is dated radiometrically (Sokolov and Fedonkin, 1985). Fossils in the White Sea section are found primarily in fine-grained sandstones, siltstones and greenish clays that interfinger with cross-bedded siltstones and lenticular, cross-bedded sandstones. These strata have been dated as 553.3 +/- 0.3 Ma (Martin, et al., 2000), and they represent the Redkino Stage of the Vendian. Material from recently discovered new localities and well-preserved new specimens are significantly increasing the understanding of some Ediacaran taxa and changing views on their reconstructions. The best revisions of older reconstructions are made when the sample size for any one taxon is large and especially when that taxon is from one fossiliferous bed. T. M. Harris (1932) pioneered the use of this method of analysis based on his paleobotanic studies. This paper discusses new data on a number of taxa. Genus Hiemalora Fedonkin, 1982. Material of this genus consists of low-relief imprints of an organism with a rounded central disc and straight or smoothly curved, rod-like radial elements. -
GSA TODAY December Vol
Vol. 10, No. 12 December 2000 INSIDE • Northeastern Section Meeting, p. 11 GSA TODAY • Southeastern Section Meeting, p. 15 A Publication of the Geological Society of America • GeoCorps America™, p. 36 Beneath Yellowstone: Evaluating Plume and Nonplume Models Using Teleseismic Images of the Upper Mantle Eugene D. Humphreys, Department of Geological Sciences, University of Oregon, Eugene, OR 97403-1272, USA Kenneth G. Dueker, Department of Geology, University of Wyoming, Laramie, WY 82071-3006, USA Derek L. Schutt, Department of Geological Sciences, University of Oregon, Eugene, OR 97403-1272, USA Robert B. Smith, Department of Geology and Geophysics, University of Utah, Salt Lake City, UT 84112-1183, USA ABSTRACT swell provide insight on the origin of ing teleseismic data in the greater Yellow- hotspots. The upper mantle beneath this stone area should answer most questions The Yellowstone hotspot commonly swell now is one of the most seismically currently deemed important about this is thought to result from a stationary resolved regions on Earth, and the physi- hotspot. mantle plume rooted in the lower man- cal state of the upper mantle is accord- Hotspots are defined by their anoma- tle over which North America moves. Yet ingly well understood. However, interpre- lous surface manifestations, in particular, Yellowstone’s initiation and its associa- tation of our findings in terms of hotspot the time-transgressive propagation of vol- tion with the “backward” propagating processes remains ambiguous. Where once canism over hundreds of kilometers, often Newberry hotspot across eastern Oregon a plume origin seemed natural, we now pose difficult questions to those explain- consider a nonplume explanation to be at ing Yellowstone as a simple consequence least as attractive. -
Ediacara Biota'
Edinburgh Research Explorer There is no such thing as the 'Ediacara Biota' Citation for published version: MacGabhann, BA 2014, 'There is no such thing as the 'Ediacara Biota'', Geoscience Frontiers, vol. 5, no. 1, pp. 53-62. https://doi.org/10.1016/j.gsf.2013.08.001 Digital Object Identifier (DOI): 10.1016/j.gsf.2013.08.001 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Geoscience Frontiers Publisher Rights Statement: Open Access General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 08. Oct. 2021 Geoscience Frontiers 5 (2014) 53e62 Contents lists available at ScienceDirect China University of Geosciences (Beijing) Geoscience Frontiers journal homepage: www.elsevier.com/locate/gsf Focus paper There is no such thing as the ‘Ediacara Biota’ Breandán Anraoi MacGabhann* School of GeoSciences, University of Edinburgh, King’s Buildings,