Download the Scanned

Total Page:16

File Type:pdf, Size:1020Kb

Download the Scanned MINERAI.OGICAL NOTES V) €) fL N .l M NC R.ONS Frc. 2. The iron content of the zoned sphalerite crystal shown in Figure 1, as determined by step scanning at 2 pm intervals with an electron microprobe. THE AMERICAN MINERALOGIST, VOL. 55, MAY_JUNE, 1970 SCANDIUM CONTENT OF ORE AND SKARN MINERAJ.S AT FRANKLIN, NEW JERSBY Cr-rnnonu FnoNrnr., Departntent of Geologicol. Sciences, Haraartl U niaer sity, C ambridge, M ass ochus ettsl Arsrnncr Skarnzones in the Franklin orebodycontain scandiumchiefllr in andradite (5-50 ppm), pyroxene (12-95 ppm) and amphibole (18-,10ppm), with very small amounts presentin hendricksite,rhodonite, hyalophane and idocrase.The partition ratios for various min- eral pairs in different specimensvary widely, indicating non-equilibrium conditions. Volumetrically, the great bulk of the scandiumin the depositis presentin substitution for Fe3in the franklinite of the normal ore and in the andradite of the skarns. I MineralogicalContribution No. 473. IO52 MINERALOGICALNOTES The skarn zoneslocally presentin the orebody at Franklin, New Jer- sey, are believed to represent metamorphosedinterbedded lenses of argillaceousmaterial in a sedimentary Mn-Zn deposit of Grenville age. Callahan (1966)has suggestedthat the original deposit was of the sub- aqueousvolcanic exhalative type. The skarn zonesare intercalated with normal franklinite-willemite-tephroite-calciteore and consist mainly of andradite, rhodonite, hvalophane,pyroxenes, amphiboles, hendricksite and calcite, together with a large number of minor constituents. De- scriptions of the skarn minerals have been given by Palache (1937), Frondel and Ito (1966a,b, c), Klein and Ito (1968) and others. The geologicsetting of the Franklin areahas beendescribed by Hague et al. (1956).The ageof the normal orehas been dated2 as 955 * 30 m.y. by lead isotope methods on uraninite. Comparable but much less precise ages were obtained on thorite and zircon from the metasedimentary Cork Hill gneiss.The age of the skarn has been determined3by K-Ar measurementson hendricksiteas 900f 45 m.y. Earlier K-Ar measure- ments by Long and Kulp (1962) gave 905 m.y. for phlogopite from SterlingHill, 810 m.y. for hendricksitefrom Franklin, and 903* 25 m.y. for the Franklin marble.These ages indicate that the presentmineralogy of both the ore and the skarn was imposed during the same metamorphic event. Lower grade metamorphismmay have taken place during Paleo- zoic orogenies.The carbonateveinlets present along fracturesin the ore- body, and small replacementareas in the skarns,may be related thereto. They contain a low temperaturehydrothermal assemblageof minerals that derived their content of metal locally. The Franklin orebody representsa type of deposit from which Sc analyseshave not hitherto been reported (Table 1). The main host mineralsfor Sc in the skarn are pyroxene,amphibole and garnet. These minerals together with biotite are also the main host minerals for Sc in metamorphic and igneous rocks. The general level of Sc content found here is low in comparison. Very small amounts of Sc are found in the hendricksite,feldspar, rhodonite, idocraseand accessoryminerals of the skarn. The low content of Sc in hendricksite. a Zn-Mn mica. is note- worthy, since the biotite of metamorphic and igneous rocks typically containsSc from roughly 20 to 80 ppm. The equilibrium Sc partition ratio for hornblende/biotitereported by Tilling, Greenland and Gottfried (1969) in various igneousrocks mostly range from 3 to 10 and tend to be higher than in metamorphic rocks. 2 Private communication, Dr. G. J. Wasserburg, California Institute of Technology, 1969. s Private communication, Dr. Oliver Schaefier, University of New York at Stony Rrook. 1969. tr,TI N ERA I.AGI CA L N OTES 1053 d ft o o o oHqq z sooo z -: a +t +l +l "?n o NV q @ ftTro D s.€ .$o N ttTr o drN qtr <il dv - t+r+t +r *€\o <r !N \O 0 .N :ol 1 +l +l +l ol\ : NN O .,t5 -:98 Ttfto aY< i i;a NNo X.4 2, @- o TIOTI coeN O\€ o trN N ::9 ? +t +r +t +l €oo o .N :\o@ tlTr o o oo Hs :@ O O Ht4 'Ee'+..8u^,7 F .9- ,E sEfi €EE€tr o'd = i=sHifi !s I == 9 a-i) fiE€iifrEEEsfi> 1054 MINERALOGICAL NOTDS Hendricksite generally is absent in Franklin assemblagesthat contain abundant amphiboleor pyroxene.The only partition ratio that could be obtained on the pair amphibole [cummingtonite]/hendricksitehad the high value of 18.6.The Sc partition ratios for garnet/biotite reportedby Engel and Engel (1960)for various paragneissesare in the range 8 to 10. The two determinations here obtained on andradite/hendricksite both gave valuesof 30. There is a wide variation in the Sc content of an in- dividual mineral in different skarn specimens,and in the partition ratio of andradite/rhodonite(from 1.9 to 80). This variation is indicative of non- equilibrium conditions. In the normal ore,franklinite is the main host mineral (Table 1). This correlates with the mutual substitution of Sc3+and Fe3+observed experi- mentally in the spinel structure-type (Maxwell and Pickart, 1954).The average content of Sc in the normal ore, calculated from the relative abundanceof the mineralsas given by Frondel and Ito (1966a),is 1.3 ppm. The averageSc content of the skarn, calculatedfrom the average contentsof the mineralslisted in Table 1 and their relative abundance,is about 10 ppm. Volumetrically, the great bulk of the Sc in the deposit is present in solid solution, in substitution for Fe3+,in the franklinite and andradite. RrrnnrNcrs Crrr-aneN, W. H. (1966) Genesis of the Franklin-Sterling, New Jersey, orebodies. Econ. GeoI.61, 1l4O-1 141. ENcnr, A. E. J., ,r.lln C. G. ENcrr, (1960) Progressive metamorphism and granitization of the major parageneiss, northwest Adirondack Mountains, New York. Part II, Miner- alogy. Geol.Soc. Arner. Bull.7l, l-58. FnoNont, C., exn J. ho (1966a) Hendricksite, a new species of mica Amer. Mi.neral,.5l, tt07-t123. -r (1966b) Zincian aegirine-augite and jeffersonite from Franklin, N.J. Awer. Minual,. 51, 140G1413. -t aro J. G. Ifrxonrcrs (1966c) Barium feldspars from Franklin, N.J. Amer. MineraL 5l, 1388 1393. Hecun, J. M., J. L. Beuu, L. A Hrnnu,q,NN, AND R. J. Prcxenrxc (1956) Geology and structure of the Franklin-Sterling area, New Jersey. Geol Soc. A mer. BulL 67 r 435-474. Kr,nrN, C., aNo J. Iro (1968) Zincian and manganoan amphiboles from Franklin, N.J. Amer. Mineral. 53, 126+-1275. LoNo, L. E., eno J. L. Kur.r, (1962) Isotopic age study of the metamorphic history of the Manhattan and Reading Prongs. Geol.Soc. Amer.8u11.73,969-995. Peracrm, C. (1937) The minerals of Franklin and Sterling Hill, N.J. U.S. GwL Surzt. Prof . Pap. l8O. Trllrnc, R. I., L. P. GnnaNr,eNo aNo D. Gorrrnren (1969) Distribution of scandium be- tween coexisting biotite and hcrnblende in igneous rocks. Geol. Soc. Amer. Bull.8O, 651-668..
Recommended publications
  • Charlesite, a New Mineral of the Ettringite Group, from Franklin, New Jersey
    American Mineralogist, Volume 68, pages 1033-1037,1983 Charlesite, a new mineral of the ettringite group, from Franklin, New Jersey PBre J. DuxN Department of Mineral Sciences SmithsonianInstitution, Washington,D. C. 20560 DoNero R. Peecon Department of GeologicalSciences University of Michigan, Ann Arbor, Michigan 48109 PBrnn B. LBavBNs Departmentof Geology Universityof Delaware, Newark, Delaware l97ll eNo JonN L. Beuu Franklin Mineral Museum Franklin. New Jersey 07416 Abstract Charlesite,ideally C4(AI,Si)z(SO4)2(B(OH)4)(OH,O)r2.26H2Ois a member of the ettrin- gite group from Franklin, New Jersey, and is the Al analogueof sturmanite. Chemical analysisyielded CaO27.3, Al2O3 5.1, SiO2 3.1, SO3 12.8,B2o33.2, H2O 48.6, sum : 100.1 percent.-Charlesiteis hexagonal,probable spacegroup P3lc, with a = ll.16(l), c = 21.21(2)4. The strongest lines in the X-ray powder difraction pattern (d, IlIo, hkl) are: 9.70,100, 100;5.58, 80, 110;3.855,80, ll4;2.749,70,304;2.538,70,126;2.193,70,2261 404. Charlesite occurs as simple hexagonal crystals tabular on {0001} and has a perfect {10T0}cleavage. The densityis 1.77glcm3 (obs.) and 1.79glcms (calc.). Optically, charlesite is uniaxial( -) with a : | .492(3)and e : 1.475(3).It occurswith clinohedrite,ganophyllite, xonotlite, prehnite, roeblingite and other minerals in severalparageneses at Franklin, New Jersey. Charlesite is named in honor of the late Professor Charles Palache. Introduction were approved, prior to publication, by the Commission Minerals and Mineral Names. I. M. A. The An ettringite-like mineral was first described from on New specimenwas divided into three portions.
    [Show full text]
  • The Picking Table Volume 50, No. 2 – Fall 2009
    2009FallPT:Layout 1 8/27/2009 10:21 AM Page 1 JOURNAL OF THE FRANKLIN-OGDENSBURG MINERALOGICAL SOCIETY Volume 50, No. 2 – Fall 2009 $20.00 U.S. SPECIAL EDITION TH 50 ANNIVERSARY The contents of The Picking Table are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. 2009FallPT:Layout 1 8/27/2009 10:21 AM Page 2 The Franklin-Ogdensburg Mineralogical Society, Inc. OFFICERS and STAFF 2009 PRESIDENT SLIDE COLLECTION CUSTODIAN Bill Truran Edward H. Wilk 2 Little Tarn Court, Hamburg, NJ 07419 202 Boiling Springs Avenue (973) 827-7804 E. Rutherford, NJ 07073 [email protected] (201) 438-8471 VICE-PRESIDENT TRUSTEES Richard Keller C. Richard Bieling (2009-2010) 13 Green Street, Franklin, NJ 07416 Richard C. Bostwick (2009-2010) (973) 209-4178 George Elling (2008-2009) [email protected] Steven M. Kuitems (2009-2010) Chester S. Lemanski, Jr. (2008-2009) SECOND VICE-PRESIDENT Lee Lowell (2008-2009) Joe Kaiser Earl Verbeek (2008-2009) 40 Castlewood Trail, Sparta, NJ 07871 Edward H. Wilk (2008-2009) (973) 729-0215 Fred Young (2008-2009) [email protected] LIAISON WITH THE EASTERN FEDERATION SECRETARY OF MINERALOGICAL AND LAPIDARY Tema J. Hecht SOCIETIES (EFMLS) 600 West 111TH Street, Apt. 11B Delegate Joe Kaiser New York, NY 10025 Alternate Richard C. Bostwick (212) 749-5817 (Home) (917) 903-4687 (Cell) COMMITTEE CHAIRPERSONS [email protected] Auditing William J. Trost Field Trip Warren Cummings TREASURER Historical John L. Baum Denise Kroth Mineral Exchange Richard C. Bostwick 240 Union Avenue Nominating William Kroth Wood-Ridge, NJ 07075 Program Fred Young (201) 933-3029 Swap & Sell Chester S.
    [Show full text]
  • B Clifford Frondel
    CATALOGUE OF. MINERAL PSEUDOMORPHS IN THE AMERICAN MUSEUM -B CLIFFORD FRONDEL BU.LLETIN OF THEAMRICANMUSEUM' OF NA.TURAL HISTORY. VOLUME LXVII, 1935- -ARTIC-LE IX- NEW YORK Tebruary 26, 1935 4 2 <~~~~~~~~~~~~~7 - A~~~~~~~~~~~~~~~, 4~~~~~~~~~~~~~~~~~~~~~~~~~~~~~4 4 4 A .~~~~~~~~~~~~~~~~~~~~~~~~~~4- -> " -~~~~~~~~~4~~. v-~~~~~~~~~~~~~~~~~~t V-~ ~~~~~~~~~~~~~~~~ 'W. - /7~~~~~~~~~~~~~~~~~~~~~~~~~~7 7-r ~~~~~~~~~-A~~~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -'c~ ~ ~ ' -7L~ ~ ~ ~ ~ 7 54.9:07 (74.71) Article IX.-CATALOGUE OF MINERAL PSEUDOMORPHS IN THE AMERICAN MUSEUM OF NATURAL HISTORY' BY CLIFFORD FRONDEL CONTENTS PAGE INTRODUCTION .................. 389 Definition.389 Literature.390 New Pseudomorphse .393 METHOD OF DESCRIPTION.393 ORIGIN OF SUBSTITUTION AND INCRUSTATION PSEUDOMORPHS.396 Colloidal Origin: Adsorption and Peptization.396 Conditions Controlling Peptization.401 Volume Relations.403 DESCRIPTION OF SPECIMENS.403 INTRODUCTION DEFINITION.-A pseudomorph is defined as a mineral which has the outward form proper to another species of mineral whose place it has taken through the action of some agency.2 This precise use of the term excludes the regular cavities left by the removal of a crystal from its matrix (molds), since these are voids and not solids,3 and would also exclude those cases in which organic material has been replaced by quartz or some other mineral because the original substance is here not a mineral. The general usage of the term is to include as pseudomorphs both petrifactions and molds, and also: (1) Any mineral change in which the outlines of the original mineral are preserved, whether this surface be a euhedral crystal form or the irregular bounding surface of an embedded grain or of an aggregate. (2) Any mineral change which has been accomplished without change of volume, as evidenced by the undistorted preservation of an original texture or structure, whether this be the equal volume replacement of a single crystal or of a rock mass on a geologic scale.
    [Show full text]
  • Use of Local Minerals in the Treatment of Radioactive Waste
    O = 0(0H) •=Si(AI) O = 0(0H) # = AI, Mg, Fe, etc. TECHNICAL REPORTS SERIES No. 136 Use of Local Minerals in the Treatment of Radioactive Waste INTERNATIONAL ATOMIC ENERGY AGENCY, VIENNA, 1972 USE OF LOCAL MINERALS IN THE TREATMENT OF RADIOACTIVE WASTE The following States are Members of the International Atomic Energy Agency: AFGHANISTAN GUATEMALA PAKISTAN ALBANIA HAITI PANAMA ALGERIA HOLY SEE PARAGUAY ARGENTINA HUNGARY PERU AUSTRALIA ICELAND PHILIPPINES AUSTRIA INDIA POLAND BELGIUM INDONESIA PORTUGAL BOLIVIA IRAN ROMANIA BRAZIL IRAQ SAUDI ARABIA BULGARIA IRELAND SENEGAL BURMA ISRAEL SIERRA LEONE BYELORUSSIAN SOVIET ITALY SINGAPORE SOCIALIST REPUBLIC IVORY COAST SOUTH AFRICA CAMEROON JAMAICA SPAIN CANADA JAPAN SUDAN CEYLON JORDAN SWEDEN CHILE KENYA SWITZERLAND CHINA KHMER REPUBLIC SYRIAN ARAB REPUBLIC COLOMBIA KOREA, REPUBLIC OF THAILAND COSTA RICA KUWAIT TUNISIA CUBA LEBANON TURKEY CYPRUS LIBERIA UGANDA CZECHOSLOVAK SOCIALIST LIBYAN ARAB REPUBLIC UKRAINIAN SOVIET SOCIALIST REPUBLIC LIECHTENSTEIN REPUBLIC DENMARK LUXEMBOURG UNION OF SOVIET SOCIALIST DOMINICAN REPUBLIC MADAGASCAR REPUBLICS ECUADOR MALAYSIA UNITED KINGDOM OF GREAT EGYPT, ARAB REPUBLIC OF MALI BRITAIN AND NORTHERN EL SALVADOR MEXICO IRELAND ETHIOPIA MONACO UNITED STATES OF AMERICA FINLAND MOROCCO URUGUAY FRANCE NETHERLANDS VENEZUELA GABON NEW ZEALAND VIET-NAM GERMANY, FEDERAL REPUBLIC OF NIGER YUGOSLAVIA GHANA NIGERIA ZAIRE, REPUBLIC OF GREECE NORWAY ZAMBIA The Agency's Statute was approved on 23 October 1956 by the Conference on the Statute of the IAEA held at United Nations Headquarters, New York; it entered into force on 29 July 1957, The Headquarters of the Agency are situated in Vienna. Its principal objective is "to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world".
    [Show full text]
  • The Picking Table Volume 9, No. 1
    JOURNAL OF THE FRANKLIN-OGDENSBURG MINERALOGIGAL SOCIETY VOLUME 9 FEBRUARY 1968 NUMBER 1 The contents of The Picking Table are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. CLUB PROGRAM - SPRING 1968 All meetings will be held at the Hardyston School, intersection of Routes #23 and #517, Franklin, 5f. J. Pre meeting activities start at 1:00 P. A. Speaker will be announced at 2:30 P. M. Saturday Field Trip, 10 A.M. to 1:00 P.M. to March 16th Geology Department, Lafayette College, Easton, Pa. Details later. Saturday , Proposed Field Trip to Fossil Location. April 6th Saturday, Field Trip, 9:00 A.,,, to iioon, April 20th Buckwheat Dump, Franklin, N.J. Meeting 2:30 P.M. Speaker, Alexander Klinshaw on "The Minerals of New Jersey" Sunday, Proposed Field Trip, 5th. Limecrest wuarry, uparta, K. J. Saturday , Proposed Field Trip, 9:00 n..^. to Noon. May 18th Open Cut, Sterling Hill r'iine, Ogdensburg, N.J. Meeting, 2:30 P.M. Speaker, Dr. Clifford Frondel, Saturday, Identification Workshop. June 8th ^aturday, Field Trip, 9:00 A.M. to i<oon June 22nd Farber Quarry, Franklin, &.J. Swap Session (interclub) Saturday, Field Trip, 12 noon to 3'-30 P.k. July 13th Bethlehem Steel Co., Cornwall, Pa. Recommended ^a turday/Sunday Fourth annual Mineral Show sponsored by May llth/12th the Matawan Mineralogical Society, Inc. Matawan Kerional High School, Atlantic ..venue, Matawan, N.J. June 27th/29th eastern Federation Mineral Show Curtis Hickson Convention Center, Tampa, Florida. * * * * THE PICKING TABLr. is issued twice a year; a February issue to reach members about March 1st with news and the Club Spring program; an August issue to reach members about September 1st with news and the Fall program.
    [Show full text]
  • Crystal-Structure Refinement of a Zn-Rich Kupletskite from Mont Saint-Hilaire, Quebec, with Contributions to the Geochemistry of Zinc in Peralkaline Environments
    Mineralogical Magazine, October 2006, Vol. 70(5), pp. 565–578 Crystal-structure refinement of a Zn-rich kupletskite from Mont Saint-Hilaire, Quebec, with contributions to the geochemistry of zinc in peralkaline environments 1 2 3 3 4 P. C. PIILONEN ,I.V.PEKOV ,M.BACK ,T.STEEDE AND R. A. GAULT 1 Earth Sciences Division, Canadian Museum of Nature, Ottawa, Ontario K1P 6P4, Canada 2 Faculty of Geology, Moscow State University, Borobievy Gory, 119992 Moscow, Russia 3 Natural History Department, Mineralogy, Royal Ontario Museum, Toronto, Ontario M5S 2C6, Canada 4 Earth Sciences Division, Canadian Museum of Nature, Ottawa, Ontario K1P 6P4, Canada ABSTRACT The chemistry and crystal structure of a unique Zn-rich kupletskite: 2+ (K1.55Na0.21Rb0.09Sr0.01)S1.86(Na0.82Ca0.18)S1.00(Mn4.72Zn1.66Na0.41Mg0.12Fe0.09)S7.00 (Ti1.85Nb0.11Hf0.03)S1.99(Si7.99Al0.12)S8.11O26 (OH)4(F0.77OH0.23)S1.00, from analkalinepegmatite at Mont Saint-Hilaire, Quebec, Canada has been determined. Zn-rich kupletskite is triclinic, P1¯, a = 5.3765(4), b = 11.8893(11), c = 11.6997(10), a = 113.070(3), b = 94.775(2), g = 103.089(3), R1= 0.0570 for 3757 observed reflections with Fo >4s(Fo). From the single-crystal X-ray diffraction refinement, it is clear that Zn2+ shows a preference for the smaller, trans M(4) site (69%), yet is distributed amongst all three octahedral sites coordinated by 4 O2À and 2 OHÀ [M(2) 58% and M(3) 60%]. Of note is the lack of Zn in M(1), the larger and least-distorted of the four crystallographic sites, with an asymmetric anionic arrangement of 5 O2À and 1 OHÀ.
    [Show full text]
  • Clay Minerals
    American Minetralogist, Volume 65, pages 1-7, 1980 Summary of recommendations of AIPEA nomenclature committee on clay minerals S. W. BAILEY, CHAIRMAN1 Department of Geology and Geophysics University of Wisconsin-Madison Madi~on, Wisconsin 53706 Introduction This summary of the recommendations made to Because of their small particle sizes and v~riable date by the international nomenclature committees degrees of crystal perfection, it is not surprisi4g that has been prepared in order to achieve wider dissemi- clay minerals proved extremely difficult to character- nation of the decisions reached and to aid clay scien- ize adequately prior to the development of ~odem tists in the correct usage of clay nomenclature. Some analytical techniques. Problems in charactetization of the material in the present summary has been led quite naturally to problems in nomenclatute, un- taken from an earlier summary by Bailey et al. doubtedly more so than for the macroscopic~ more (1971a). crystalline minerals. The popular adoption ~ the early 1950s of the X-ray powder diffractometer for Classification . clay studies helped to solve some of the probl ms of Agreement was reached early in the international identification. Improvements in electron micro copy, discussions that a sound nomenclatur~ is necessarily electron diffraction and oblique texture electr ;n dif- based on a satisfactory classification scheme. For this fraction, infrared and DT A equipment, the de elop- reason, the earliest and most extensive efforts of the ment of nuclear and isotope technology, of high- several national nomenclature committees have been speed electronic computers, of Mossbauer spec rome- expended on classification schemes. Existing schemes ters, and most recently of the electron micr probe were collated and discussed (see Brown, 1955, Mac- and scanning electron microscope all have ai ed in kenzie, 1959, and Pedro, 1967, for examples), sym- the accumulation of factual information on clays.
    [Show full text]
  • Partitioning of Base Metals Between Silicates, Oxides, and a Chloride-Rich Hydrothermal Fluid
    Fluid-Mineral Interactions: A Tribute to H. P. Eugster © The Geochemical Society, Special Publication No.2, 1990 Editors: R. J. Spencer and l-Ming Chou Partitioning of base metals between silicates, oxides, and a chloride-rich hydrothermal fluid. Part I. Evaluation of data derived from experimental and natural assemblages EUGENE S. ILTON Department of Mineral Sciences, American Museum of Natural History, Central Park West at 79th St., New York, New York 10024, U.S.A. and HANS P. EUGSTER Department of Earth and Planetary Sciences, The Johns Hopkins University, Baltimore, Maryland 21218 U.S.A. Abstract-Exchange reactions for base metals between common Fe-Mg silicates,oxides and a chloride- rich hydrothermal/metamorphic fluid were calibrated by combining experimentally determined ap- parent equilibrium constants (Kd(magnetite/fluid) and Kd(biotite/fluid)) with apparent mineral/mag- netite-biotite equilibrium constants derived from natural assemblages and experiments. The resulting distribution coefficients suggest that the rock-forming silicates and oxides will pref- erentially partition (Cu > Cd) ~ Zn ~ Mn ~ Fe ~ Mg into the fluid phase. The results for copper and cadmium are bracketed to indicate that they are statistically inconclusive, but suggestive of potentially strong fractionation. INTRODUCfION There are a variety of geochemical approaches to the study of base metal enrichment: partitioning A MAJOR PROBLEM concerning the formation of experiments (mineral/fluid=-Iurox and EUGSTER, hydrothermal ore deposits involves the manner and 1989; melt/fluid-HoLLAND, 1972; CANDELAand timing of metal enrichment. Enrichment can occur HOLLAND, 1984), solubility experiments (see re- at any stage, from the formation of the source rock views by BARNES, 1979; EUGSTER, 1986), whole- or magma to the depositional event.
    [Show full text]
  • ZINCIAN AEGIRINE-AUGITE and JEFFERSONITE from FRANKLIN, NEW JERSEY Cr.Rrnonofnonnbr Enn Jux Ho, Departmentof Geolog,Icalsciences, H Arsaril [] Niaer Sity Cambrid
    THE AMERICAN MINERALOGIST, VOL 51, SEPTEMBER_OCTOBER, 1966 ZINCIAN AEGIRINE-AUGITE AND JEFFERSONITE FROM FRANKLIN, NEW JERSEY Cr.rrnonoFnoNnBr eNn Jux ho, Departmentof Geolog,icalSciences, H arsaril [] niaer sity Cambrid. ge, M as s a chu s e tt s.r Agsrnect A coarsely crystallized dark colored monoclinic pyroxene found abundantly in skarn zones at Franklin and Sterling Hill, New Jersey, has long been known under the name jefiersonite. It has been classed as a diopsidic pyroxene, but four new chemical analyses (with accompanying r-ray and optical data) establish that it comprises highly zincian and manganoan members of a series from aegirine-augite to sodian and ferrian augite. Both Mn2+ and Zn are much in excess of Fe2f, with almost 40 atomic per cent Mn in the B position in one analysis. As Fea+and Na decrease the color changes from reddish brown and mahogany brown to dark olive green and greenish black. The original jefiersonite of Vanuxem and Keating (1822) probably referred to the latter material; the name lacks species or varietal significance and may be set aside. INtnooucuoN Three different types of pyroxene have been found in the so-called skarn zones in the orebodiesat Franklin and Sterling Hill, New Jersey. The most common type is a manganoan and sometimes also zincian variety of diopside. It generally contains NInO in the range from 4 to 10 weight per cent (Table 1, anal. 1 to 5). If little or Lo Zn is present,this material has been called schefierite,following the varietal name originally proposedby Michaelson(1863) for manganoandiopside of similar com- position from Langban, Sweden.
    [Show full text]
  • Analyses of Rocks and Minerals
    UNITED STATES DEPARTMENT OF THE INTERIOR Harold L. Ickes, Secretary GEOLOGICAL SURVEY W. C. Mendenhall, Director / rf Bulletin 878 ANALYSES OF ROCKS AND MINERALS FROM THE LABORATORY OF THE UNITED STATES GEOLOGICAL SURVEY 1914-36 TABULATED BY ROGER C. WELLS Chief Chemist UNITED STATES GOVERNMENT PRINTING OFFICE WASHINGTON : 1937 For sale by the Superintendent of Documents, Washington, D. C. ------ Price 15 cents V CONTENTS Page Introduction._____________________________________________________ 1 The elements and their relative abundance.__________________________ 3 Abbreviations used._______________________________________________ 5 Classification.___________________________________________________ 5 Analyses of igneous and crystalline rocks____-_________.._____________ 6 Alaska._____-_____-__________---_-_--___-____-_____-_________ 6 \ Central Alaska________________________________________ 6 Southeastern Alaska___________-_--________________________ 7 Arizona._________--____-_---_-------___-_--------_----_______ 8 Ajo district.-_--_.____---------______--_-_--__---_______ 8 Oatman district____________-___-_-________________________ 9 Miscellaneous rocks....-._...._-............_......_._.... 10 Arkansas.____________________________________________________ 11 Austria._____________________________________________________ 11 California.__,_______________--_-_----______-_-_-_-___________ 11 T ' Ivanpah quadrangle.____-_----__--_____----_--_--__.______ 11 Lassen Peak__________________ ___________________________ 12 Mount Whitney quadrangle________________________________
    [Show full text]
  • Bulletin 65, the Minerals of Franklin and Sterling Hill, New Jersey, 1962
    THEMINERALSOF FRANKLINAND STERLINGHILL NEWJERSEY BULLETIN 65 NEW JERSEYGEOLOGICALSURVEY DEPARTMENTOF CONSERVATIONAND ECONOMICDEVELOPMENT NEW JERSEY GEOLOGICAL SURVEY BULLETIN 65 THE MINERALS OF FRANKLIN AND STERLING HILL, NEW JERSEY bY ALBERT S. WILKERSON Professor of Geology Rutgers, The State University of New Jersey STATE OF NEw JERSEY Department of Conservation and Economic Development H. MAT ADAMS, Commissioner Division of Resource Development KE_rr_ H. CR_V_LINCDirector, Bureau of Geology and Topography KEMBLEWIDX_, State Geologist TRENTON, NEW JERSEY --1962-- NEW JERSEY GEOLOGICAL SURVEY NEW JERSEY GEOLOGICAL SURVEY CONTENTS PAGE Introduction ......................................... 5 History of Area ................................... 7 General Geology ................................... 9 Origin of the Ore Deposits .......................... 10 The Rowe Collection ................................ 11 List of 42 Mineral Species and Varieties First Found at Franklin or Sterling Hill .......................... 13 Other Mineral Species and Varieties at Franklin or Sterling Hill ............................................ 14 Tabular Summary of Mineral Discoveries ................. 17 The Luminescent Minerals ............................ 22 Corrections to Franklln-Sterling Hill Mineral List of Dis- credited Species, Incorrect Names, Usages, Spelling and Identification .................................... 23 Description of Minerals: Bementite ......................................... 25 Cahnite ..........................................
    [Show full text]
  • General Index
    GENERAL INDEX General Index The following abbreviations appear after page numbers. m A map of the locality or a map on which the locality In the case of special issues, the letter precedes the page ( ) Reported from this locality; no further information appears number. b Book review n Brief descriptive note, as in “What’s New in T Tsumeb (vol. 8, no. 3) c Crystal morphology information Minerals?” M Michigan Copper Country (vol. 23, no. 2) d Crystal drawing p Photograph or other illustration Y Yukon Phosphates (vol. 23, no. 4) ff Continues on following non-consecutive pages, or q Quantitative data (x-ray data, chemical analysis, G Greenland (vol. 24, no. 2) referenced frequently throughout lengthy article physical properties, etc.) H History of Mineral Collecting (vol. 25, no. 6) g Geologic information s Specimen locality attribution only; no information h Historical information about the locality itself ABELSONITE Santo Domingo mine, Batopilas district, af- Austria United States ter argentite cubes 17:75p, 17:78 Knappenwand, Salzburg 17:177p; “byssolite,” Utah Guanajuato in apatite 17:108p Uintah County (crystalline) 8:379p Reyes mine: 25:58n; after argentite 7:187, Brazil 7: 18: ABERNATHYITE 188p; after cubic argentite 433n; ar- Bahia borescent, on polybasite 18:366–367n; Brumado district (crystals to 25 cm; some Vs. chernikovite (formerly hydrogen autunite) crystals to 2.5 cm 14:386; 7 cm crystal curved) 9:204–205p 19:251q 17:341n Canada France Namibia British Columbia Lodéve, Herault 18:365n Tsumeb (disseminated) 8:T18n Ice River complex (tremolite-actinolite, green ACANTHITE Norway fibrous) 12:224 Australia Kongsberg (after argentite; some after silver Québec Queensland wires, crystals) 17:33c B.C.
    [Show full text]