<<

KR0100910

KAERI/AR-589/2001

Brazing Technology of Ti alloy/Stainless Dissimilar Joint at System Integrated Modular Advanced Reactor 2001. 2. o ofc

II £Uflol*J ^ 7)^$] 7^ik QSft 7l#^ BC 4000V!

^

Ill

3.7%

71 £7} *>7flEH -8-71-^71- ^ 511^x1x1 &-S- ^£ 014. IV

350MPa

Ti-Fe

V §1-^1, -8-71-

BAg-19, BVAg-30 ^ Gapasil-9^- ^-§- ^«H, Ni

40% HNOs + 2% HF + 58% H2O *°^

macroetch test SUMMARY

I Title Brazing Technology of Ti alloy/ Dissimilar Metal Joint at System Integrated Modular Advanced Reactor

II The Development of Brazing Technology As a joining technology, brazing has a long history since those ancient times in about 4000 B. C, when both and brazing were carried out at Sumer which is now Iraq. Nowadays, the technology is developed even for the joint of metal/ and applied to many industrial fields. In the initial times, they used blowpipes and charcoal as the heat source. Now, many kinds of heating methods including laser heating ;are being applied to brazing. And also, a great development in technologies has been made in filler , fluxes and so on. Because brazing can be applied to the joint where cannot be welded and mass production of it is possible, it is utilized in special fields of rockets, electronic packages and superconductor. In the nuclear fields, the technique has been applied widely to fuel assemblies, accelerators, laboratory equipments and measuring sensors.

III Brazing Process Brazing processes customarily are designated according to the sources or methods of heating like as torch brazing, furnace brazing, induction brazing, resistance brazing, dip brazing, infrared brazing, etc.. Eacli process is selected according to the condition of the base metal, the , the , the brazing temperature and the heating rate. Whatever the process used, the filler metal has a melting point below that of the base mtital, and should have good wettability and spreadability. Fluxes are used to protect the surface of the base metal and to reduce the oxides on it. Therefore, recommended fluxes should be used in their proper temperature ranges and on the base metals for which they are designed. When gas atmosphere or is used, fluxes are not required. For the metal which forms oxides on the surface at the brazing temperature, gas atmosphere or vacuum should be used. Since surface tension forces can operate only over relatively small distances, capillary penetration will occur only if the joint gap is below a certain maximum value. But, too little clearance may in certain cases to incomplete joint filling due to entrapment of flux or air. When electronic packages are jointed, filler metal should be selected considering its electrical conductivity.

IV Joining of Ti alloy to Stainless Steel It is well known that fusion between Ti alloy and stainless steel is almost impossible because of brittle intermetallic compound in its weld metal. For this reason, various methods have also been tried for joining those dissimilar metals. Until Now, diffusion welding and friction welding have been known as the candidate joining processes with the joint strength of about 350 MPa. Because the joint strength doesn't reach the strength of base metals, the designer should consider this fact and select a method to maintain a proper joint strength. At the System Integrated Modular Advanced Reactor Project, they applied a thread joint to get strength and solved the problem of leakage through brazing the joint area. During brazing process, Ti diffuses into the surface of stainless steel through the melt of filler metal and forms brittle Ti-Fe intermetallic compounds. To reduce the formation of intermetallic compounds, the selection of an optimal brazing condition is required. In addition to it, the brazed joint should be resistant to corrosive environment. Therefore, brazing technology should be developed to get both high joint strength and sound joint.

V Brazing of Ti alloy to Stainless Steel The joint part is assembled with male part of Ti alloy and female part of stainless steel. A funnel is welded to the upper end of female part for containing the filler metal. Filler metal will be selected among BAg-19, BVAg-30 and Gapasil-9, after the comparison test of joint strength. To increase the wettability of stainless steel, Ni or Ni-Pd will be coated by or other coating methods. The filler metal and stainless steel will be

- iv with 40% HNO3 + 2%HF + 58% H2O. Vacuum electric furnace and induction furnace wil be used for heating. Brazing temperature will be about 900 °C. Optimal brazing condition will be set up through comparison of joint strength according to heating rate, temperature and holding time. For the evaluation of process and performance, visual inspection, macroetch test and liquid penetrant inpection will be carried out.

- v - PLEASE BE AWARE THAT ALL OF THE MISSING PAGES IN THIS DOCUMENT WERE ORIGINALLY BLANK CONTENTS

Chapter 1 Introduction 1 Section 1 Definition of Brazing 1 Section 2 Development of Brazing Technology 3 1 The Ancient Orient 3 2 The Greek, Roman and Aegean Civilization 4 3 Europe, Ancient to Early Middle Age (8-11C) 5 4 Europe, Later Middle Age 5 5 The Age of Manufacture (16-17C) 5 6 Dawning of Modern Science (18C) 6 7 The Industrial Revolution (19C) 7 8 20C 8 Section 3 Procedure of Joining 10 1 Selection of Joining Method 10 2 Planning of Brazing 12 3 Preparation of Filler Metal, Flux And Others 13 4 Brazing 15 5 Test and Inspection 16 Section 4 Application of Brazing to Nuclear Industry 18 1 Fuel 19 2 20 3 Others 21 Chapter 2 Brazing Process 21 Section 1 Brazing Methods 21 1 Torch Brazing 21 2 Furnace Brazing 21 3 Induction Brazing 22 4 Resistance Brazing 22 5 Dip Brazing 22 6 Infrared Brazing 23 7 Others 23

- vii - Section 2 Filler Metals 23 1 Characteristics 23 2 Melting and Fluidity 24 3 Liquidation 25 4 Wetting and Bonding 25 5 Filler Metal Selection 26 6 Kinds of Filler metals 27 Section 3 Fluxes and Atmospheres 30 1 Fluxes 31 2 Atmospheres 33 Section 4 Joint Design 36 1 Types of Joints 36 2 Joint Clearance 37 3 Stress Distribution 40 4 Filler Metal Placement 40 5 Electrical Conductivity 41 6 Dissimilar Metal Combination 41 Section 5 Brazing Procedures 42 1 Precleaning and Surface Preparation 42 2 Fluxing and Stop-off 43 3 Assembly 44 4 Postbraze Treatment 45 Section 6 Inspection 45 1 Nondestructive Testing Methods 46 2 Destructive Testing Methods 48 Chapteter 3 Brazing of Ti Alloy and Stainless Steel 50 Section 1 Brazing of Ti Alloys 50 1 Chemical and Metallurgical Characteristics 50 2 Surface Preparation 50 3 Fluxes and Atmospheres 51 4 Brazing Methods 51 5 Brazing Temperature 52

- vm - 6 Filler Metals 52 7 Mechanical Properties of Joints 54 Section 2 Brazing of Stainless 54 1 Base Metals 54 2 Filler Metals 55 3 Interactions during Brazing 56 4 Joint Design 57 5 Processes and Equipment 57 6 Precleaning 57 7 Fluxes and Atmospheres 57 8 Postbraze Operations 58 Section 3 Brazing of Ti Alloy to Stainless Steel 59 1 Examples of Brazing 59 2 Brazing Conditions 61 3 Interface of Joint 64 4 Intermetallic Compounds 65 5 Residual Stresses 67 6 Patent 68 Section 4 Brazing Method of Dissimilar Metal Joints at SMART 69 1 Base Metals 69 2 Filler Metals 70 3 Joint Design 71 4 Brazing Process 71 5 Test and Inspection 76 Chapter 3 Conclusions 77 Chapter 4 References 79

- ix *!•

4 1 Q iie-llo]^^ jg6j i 4 2 ^ JS^IM^ 7l# £^ 3 1 Jicfl .2.5] <&;E 3 2 ^5]i, S4 ^ al|7l| £-*8 4 3 itfl-^4 ^7] (8-11471)^] 4r^ 5 4 ^4^71(12-15471)^1 -fi-^ 5 5 Manufactured tfl (16-17471) 5 6 ^ufl2f*v^ <$x$71(18471) 6 7 ^^(19471) • 7 8 20 4 7] 8 4 3 ^ JEL3H^ ^^-o] ^ejwj-rf 10 1 ^^ ^^1 ^1^ • 10 2 J±i!fl6l3J 3|3 ^H 12 3 -g-7l-j4|/-S-*f|/7lEj-*1|5. ^ ^ul ^-iL 13 4 w.511 <^1 ^ ^ ^ • 15 5 ^ 9J 34 16 4 4 =g €^>^^r^°fl^^ ti.eflo]^l 21^- 18 1 Sj^I 19 2 IHL^l 20 3 7]T% 20 2 =3- iLefloi^i ^-yg 21 4 1^ «.^°1^ Hov^ 21 1 S*l «.iSllol^ 21 2 Furnace JELS| °1 ^O1 21 3 Induction «.«fl °1 ^ 22 4 Resistance «-3l ^1 ^J 22 5 Dip H31 o] $ 22 6 Infrared a-3M^j 23

7 n 21^1 iieflo]^ HOV^ 23 4 2^ -§-7>^ 23 1 ^ 23 2 -g-§-2J- ft&q 24 3 -§--§-^re| 25

x - 4 ^-ET(wetting)^ ^ ^-(bonding) 25 5 -g-7|-7]] *i^ 26 6 -§-7^5] f^ 27 A 3 ^ -g-4^- -§-^7] 30 1 -Ml 31 2 £-$]7) 33 A4& 3^f -£31 36 1 ^ ^ *8 ^ 36 2 ^ t^- -t 37 3 -g-^5. 40 4 -g-7M uH^] 40 5 ^71 T^ILS- 41 6 *lf^-# ^^- 41 *fl 5 ^ iLefl°l^ ~4.^\ 42 1

3 =8- Ti-^-^-^l- At|oie||i7j2l JiefloH 50 41 1 '4. T\-^$\ w-^!^l^ 50 1 SfS}- ^ S2|S]-^ ^-^ 50 2 Jl^e) 50 3 -g-4]£}- -S-^7] 51 4 w.£]l°H lft! 51 5 Ji^°H £5. 52 6 -8-7M 52 7 71^1^ J%^ 54

*fl 2 ^ in;flole|i7ovo| a.e|oi^ 54 1 S-Jfl 54 2 -8-7M 55 3 tlefl °1 ^ M #•%• 56 4 ^1^-^f 57 5 ^^ ^ =S-al 57

- xi 6 4^ 57 7 -§-*!] a)- £3 7] 57 8 «.3l °1 *J ^M A 58 A 3 ^ Ti ^4 ^Ei]o]e|i7oi-6] w.eflo]^l 59 1 W 4^1 59 2 Hall ©13 S^i 61 3 ^^m 64 4 ^r#5l-^-# 65 5 *Hr--g-3 67 6 ^S ^-*1 68 ^1 4 ^ H^l]^ ^/c>S. <^l^^-# «-^l^l^ ^ 69 1 £T| 69 2 -g-71-21) 70 3 ^ ^-^f -a Til 71

4 tielM 31 •§•?§ : 71 5 ^} ^ X\% 76 A 4 # ^ * 77 7-1] 5 ^ # 3. £-?! 79

- xn - TL JS.

5. 1 2.^11 sf -%-7M^fl 87 a 6 ^efl^v brazing-g- Ni ^ Au "t^" -§-7>T|) 88 1 S. 7 Ti^-^-, ^^e|^7ov % Ag^l t^^-^T 89 a 8 PT-3V^£l 5>«|-2i 2:^ 90 S. 9 ASTM Gr. 9 ITt^l s)-«H S^ 90 S. 10 PT-3V^"^ £-S_°\} 4^ 7l7l|^ , -i-21^ -Bpj 9i fi 11 Stainless steel 3213] 3)-^^ ^ • 91 £ 12 -g-7l-2fl£| ^^ • 92 S. 13 ^]S| ^7]-H-£7>-8-£|fe- W^ 96 5 S^S dip brazing 97 6 Infrared brazing 97 7 Ag-Cu 8 ^± & 9 3-^1^ brazing #*>] ^ 1^3. 100 10 ^^171 ^ ^tfl7l ^ 101 11 Scarf ^ 101 12 ^^-^f f-^f ^i^^t^-s] ^i 102 13 ^W ^^1^1 ^^ ^i^-^S^l 'Ssr 103 14 ^^"^f T^H nj-€- ^l^^SS] igs> 103 15 ^e^^fi] ^£i 4^ <*3$% 104

16 *l-g-^ ^ JL-S-^^'H °l-8-Slfe- ^*l7l ^j% 106 17 Ji-I-^ ^ ^§r^i °]-§-=lfe- #ifl7] ^^t 106 18 ^v?Hl °l-S-£lfe ^tfl7l ^"t 107 19 ^^°fl °l-§-£lfe T ^"t 107 20 ^ ^Efl -g-7]-7(|l: *15} ^^Al^lfe Hj-tf 108 21 ^l^-il -S-Bfl -8-7l-7fl# n]s) ^l^Al^lfe «o^ 108 22 -8-71-Tfll- nl5i ^^1^717} $i\% ^j^-Jf^ f- 108 23 Ti-Ag ^-Efl£ 109 24 Ti-Cr ^-Eflt 109 25 Ti-Cu ^-eflS 110 26 Ti-Fe ^-HflS. 110 27 Ti-Ni ^-Hfl£ Ill 28 ^71^^71 brazing joint -f £ 112 29 ^^-^-si S^B ^"t Ao^ 113 30

XIV T %4 *.$*]%(brazing) ^^(), n>

afl^S)

^fl(filler metaDl- ^-§--3H ^^^ £fe- 450°C 450°C ol^ol -g-7^1]!- A>-g-^4. tUflol^ braze . Braze welding°lHfe -§-7]-7l]7}- ^^-^

]^ ^^-^51^ 450"C -§-71-7(1 fe

, -§-7fl(flux),

^"t^fe JlSO^Bflfil -§-7>7 )1 $1>11€4. tL^l°l^ ^^t^-^1 f- 0.025-0.25 mm sfe -§-7>7in- ol £14. $1^ -g-^lS] *Ht» w^l^- - ojtf.

t ^r

3.7] . $14.

JjL.g-ji). ^Yl^9(silver brazing)^.S. o]

$14. Au-Cu, Ag-Cu ^

iq-2. tV4. ^-2}-^(malachite, Cu2CO3(OH)2)^ £7]*1 ^-^^^ 7] 1 0 ^Bl A>-g-si 74 £4. t^j-^^^ 7EV-& -I ^^^ ] 71 ^-EH $lfe

Gilgameshi A^|A]-A]OII oj^oq A|u]-ol aVsLofl^ 7)%# 4350Vi^ ofl

- 3 - A1#O O]

2 ne|i, ^1

4,0667fls]

£.7}

5}- 21

0.3 mm^l ^-^ 137,00071]t- ^efloi^l ^-^-^ A]^ 2]^ 10

^^^TT^I, Au-Ag, Au-Cu,

^ -g-^(906°C)iL4 ^71 n

- 4 - (8-11^7))^

Fe-Cu-Pb^l

Cu-Sn, Cu-Fe, ^7H1&1 71^-61) 21^-^ 327^1 ^^^h 417fl6) ^s. 51 1 496 m^l a^l# 4\X^ ^

5 Manufactured tfl

^1 iJ-^-i- 4-8-*)-^4

7V. °1 Al7Hl Agricola7l- 'De Re

- 5 - , oil lamp^l ^7)% 1-^^ ji^.^-

Thomas Savery7l- ^^1S - , ^1-^^-S ti-ell^Hi^ ^4, 1071HJ" °]Ao^l 2L°itf ^1^-°11 1701\l ^^

D. Diderot^ J. D'Alembert^l ^^-A>^ (Encyclopedia or descriptive o dictionary of the science, arts and craftsH «.ell HHl ^t\o^ Z\3LS_

2) tU 3) ^

4) ^^1 ^-^^ aL. ^^-Ajw-ol 4^^ ti_efl°J^ 7flSL2-l AJ^^ 4^4. > v^^ ^L, lamp

- 6 - 4. 1775^] Joseph Preistley7l-

Antoine Lavoisier7}

7 ^^^ 19*117H . 1751V Ni-§-

Al «.e|o]^o] ^->|)7)7> :, 1890^^1 Zn-Cd-Al^v^-^ Al tL^l

(1879^), 43.-g-^(1885\i), ^12U]E -g-^j(1899V!):§-C)l °H ] fli 4. £, ^r^l -g-g-jq- S^^ll ^r^- 91^71- A]3]-s] ^cf. Clifton Sorby^l etching , Adolf Martens&l ^-#€^1^ ^(1897^), Roberts Austen^l ^ ^(1897), Gustav Tammann^l -%-^$] -g-JL 19M}7}^ ^?M z\z\t}?)} %o] 31^^ A]7] . Sorbite, Martensite, Austenite, Tammann Furnace7|- °]ik$] c}^-6)}*] tcj-

1947] :51 Tfl

^Dfl, ol 7\ 1862^

, Bunsen burner, flashback arrester, *}-f}- S*], -T^-°ll^ 7\±.7\ Acetylene^ 1836V1 E. Davy

- 7 - 7} ^£I§H 1862\i Friedrich Wohler7]- calcium carbideQ ^fe ^^r ^^Sl-Jl, °H Marcellin Berthelot7l- thWfe- ^-fr ^^5 ^A John Mallet(1871\l)7f ^7H>H #^«- ^M^U, °H Carl Linde7l- ±% °A^}f]^n ^^^^-S.^ ^h» ^71-S. ^-^1" ^ 71- acetylene^ ti.eflo]^c>i

8 20

M. Duhem^ 7>'g(19091d), W. H. Bragg^f W. L. Bragg^l fi X-ray si ^^11 ^tb 'S^^ ^ -§-§-(1913/1914^). ^-#^^^1 Hume-RotherySl ^^(1936^), ^"#^1 ^HH ^rtb F. SeitzSl ^^(1939^),

2047}$]

- A>-§-*V Al «.eflol^<>l 7fl^sl5it)-. 1906^ Ar 71-^6)1^6] w.^oi^iol 1925^1 -g-^^ o.^. ^ Ag-Cu^ll Cd^l

8.1

metallizing1^-?L^ Mo-Mn process(Telefunken process)!- 7fl1|];-&r$ii;:f. 1944^ 85% Ag-15% Mnt -%-7}$3, §>^ ^lS^^lsl E^ «1 blade^ vane-i:

- 8 - 8.2 1945~1955Vi 1947 Vi R. Peaslee7]- Ni -g-7>^|)?l Nicrobraz

. 1955 Vi AWS7f Brazing Manual iW ^*S §f$i4.

8.3 1956-1965^1 o ceramic l 4-g-£l7fl Eli, ceramic- Mo-Mn process, Mo-Fe process

Committee on Brazing and Soldering•§•

8.4 1966~1975\!

cadmiumless ^ free «.^l«>|^ol 7fl^-sl^ 4^-OJ|A1 ^ojAf-sj-^- ANSI Z49.1<>11 ic^S 4 ceramic^ ^-o] A]££l514. 1969^ AWS ^l]^El^4. 1969^ 4tl ll^s] ^ofl

step iLellol^o] 7H§>o|4. o] x\7]

8.5 1976-1985^1

°^^^ 1976^ ^ll^€ WES 9002*11 J±elH^A]ol fUme gas^l tfltb ^r^l^^l

. 1985^^1^ JIS^l ^ w.efl«>i^oj|^ Cd free JEL31 oj*oi4

ISOH 1976V! ISO 3677*1) iielH^ ^-7>7flsi g.«f.713:7}-, 1978\1 ^] IS0 3683 , ^^-^-s-l ^^l^fj-^ol ^ll^El^cf. 1978Vi^ IC package-g- lead pin°l ^-«1#^J5laL. pin head°fl ^r «.3lol^ ^ 4 <$<$&7} o]^o]x]7H 514. 1978V! DeCritofaro^l «1^^

- 9 - 8.6 1986-1995^ ^ofMfe 1988VS LWS T8801 IH^I^ M.3H^ sheet JL I995>d WES 5602^] Ji3H^-g- -fMH tfl^

8.7 1996\1 - €^B 1996^ ISO TC44/SC12 Soldering and brazing materials committee7>

A 3 € ii3H^ ^

, soldering,

1S. Zr-2.5% Nb^-^-4 stainless steel end fitting2} rolled joint^-^-S

$1^.4,

4^ ^-71] 0]

- 10 - ol-f-^^1^11?]:, furnace brazing^- induction brazing £°1 tt.eflc]^l ^^ ^fAS Sj-fe- S.x\ M-A0}^0}^, induction brazingty batch process^- ^^°1 ^ ^-fS. Sl*}^ furnace brazing £) ^-f «3 ^5]§ ^ 017] nfl^-o

•?}•

Soldering^ ^}-¥-^l ?^

^Hjfe- ^T1, S^l ^TT furnace*

, lead-free ^^fl^^ fl^ g| l^

-aa-*- ] ft

"fl,

curing^)^6> ^4. 3.7fl

- 11 - *M Q^Kk 7A°}*], 300°C A£r coupling, flange, s^, rolled joint, thread joint

Metals Handbook, Vol. 6 welding and brazing[3]° Sit}-. 37l#3|#3.fe- Welding Journal, -§- ^ brazing^r€ 3£- journal

AWS (American Welding Society £| -ANSI/AWS A5.8, Specification for Filler Metals for Brazing Welding -ANSI/AWS A5.01, Filler Metal Procurement Guideline - ANSI/A WS A5.31, Specification for Fluxes for Brazing and Braze Welding -ANSI/AWS C3.6, Specification for Furnace Brazing -ANSI/AWS A2.4, Symbols for Welding, Brazing and Nondestructive Testing -ANSI/AWS B2.2 Brazing Procedure and Performance Qualification -ANSI/AWS C3.8 Recommended Practices for Ultrasonic Inspection of Brazed Joints

- 12 - -ANSI/AWS Z49.1, Safety in Welding and Cutting Military standard^ -MIL-I-6866, Inspection, Penetrant -MIL-STD-453, Inspection, Radiographic =L$5L ASME^l -ASME Boiler and Pressure Vessel Code, Section IX Weding and Brazing Qualification0! KS fMA^ -KS B 0509, -KS B 0510, -KS B 0873, -KS B 0874, -KS B 0887, -KS D 8048, -KS D 8049, •§• -KS D 8050, 11 -KS D 8051, ^ -KS D 8300, ^ -KS D 8319, -& -KS D 8331,

7] ^^- stop-off, S^# i^«f7) ^^ jig,

LG-Nikko(°l?I , il-i-

- 13 - Wesgo Metals, Lucas-Milhaupt^ Handy & Harmann ^ Wallcolmonoy (Nicrobraz)-l- JS-^f- °l-§-W. -g-*i| ^ stop-off fe Wallcolmonoy* ^f-SH ^

ASM Handbook, fl-^-i" ol-§-*f7i4, &?M ^^H internet homepage* °]-§-«r^ #4.

(spreading)

WARNING CONTAINS CADMIUM. Protect yourself and others. Read and understand this label. FUMES ARE POISONOUS AND CAN KILL • Before use, read, understand, and follow the manufacturer's instructions, Material Safety Data Sheets(MSDSs) and employer's safety practices. • Do not breathe fumes. Even brief exposure to high concentrations should be avoided. • Use only with enough ventilation, exhaust at the work, or both to keep fumes from your breathing zone and the general area. If this cannot be done, use air supplied respirators. • Keep children away when using. • See American Standard Z49.1, Safety in Welding and cutting available from the American Welding Society, 550 N. W. Lejeune Road, P. O. Box 351040 Miami, Florida 33135; OSHA Safety and Health Standards, 29 CFR 1910, available from the U. S. Government Printing Office,

- 14 - Washington, DC 20402. If chest pain, shortness of breadth, cough, or fever develop after use, obtain medical help immediately.

4 S] ^P

si4.

7ll Sffe ^ o]

Pyrometer* A>-§-*><^ -g-^X^JE. *ffeBfl JL71-614.

5171 n^°\) cfl«H 7r3^(qualification)t ^J^r iL^§fJL $14. o}^J^- XJ- Sj-ir 6lnl£. $14.

$14.

514. S

- 15 - ^ ^-#o]4 ceramic^^fe ^}^^) £•%•<*£*] metallizing^ s]# *H «^> «V^

SI ^£ 2:^6)] -fro] -5=V ^g7}. ojll 4_

, 5]

ANSI/A WS B2.2 Standard for Brazing Procedure and Performance Qualification^ &fe Ml-§-•§: 7l^S>^ 4w4 ^4. °1^^ ASME Section IX4

5.1 tL2fl°l^ ^-•a^^s.] ^ ^(Brazing Procedure Qualification) a.e|o]^ 4^^^}* ^^«f7l ^BJ-O^ w.eflo]^j 3>^^x} X\vfr*\ (brazing procedure specification, BPS)* 4^*1"-2, «-^l°l^ 2:^4 ^1^ ^4# 7}^-t\ fe- J^.5llo]^ ^"a-s^r ^^ iialAi (brazing procedure qualification report, BPQR)» *H3W. -g-7] KH^^I n 3j-«a^^H of

Lap joint, single, butt joints, rabbet joint, 3] ^ 76 mm°l^^ sj-o] s_s| §H «fl#IU-^-ir fl"^«fjl $14. ^ -g-g- 1;^, undercut ^3, SI -fj-

- 16 - ^: AWS4 4. Splicing^- -&H &•£ butt joints ^^ 75 mm °]<#£\ s^l^Hfe *]- AlS^JfEi ^ 7flfi) ^-^Al^^: ^^^4. A]^^ if- bend jig* ^>-§- Splicing^ butt joint, lap joint, rabbet joints Xlr'M?!0! a}\l macroetch A]^(section A]^)^ fVcf. ^^-^-^-i- etching^H ^afl-g-

Lap joint, splicing?!: butt joints peel test!- ^\A] $\°] Si4.

ASME°fHfe. ol^-t- 4A1 l^'Jl^(essential variables)s> «y*Knonessential variables)^ ^^-«M <9 "r 51

5.2 «-eflo|^l 4<>j 7l%to] ^ ^(Brazing Performance Qualification)

°ll tfltb ^^ Wt- "a^^r ^^l (Brazing Performance Qualification Record)A S. 7l^-«>S.^- £1^1 Si4. ^-°J^44 ^^"^ «JAoH] 44 macroetch i&^r peel test* «V£-^- =1«H si4. ^^«1-JL Si 4. ^-^ W fl-^4^1 si4.

- 17 - 5.3

°fll- M ANSI/AWS C3.6 Specification for Furnace quality assurance *}3H*1 «1 sf^l ^4# -£-^4. n ifl-§--§: 5

5.3.1 ^^4- 3 - Class A

- Class B ^^- : -g-§

- Class C ^ : &%°] ^7\) ^-7}s}7]^, a>4 -§-^°l Jf7j-£)^1 $>A^, sj-

5.3.2 Calss A ^ B ^^Hl^-i «j-4^i ^43 MIL-STD-453^:

^ ANSI/AWS C3.8 Recommended Practices for Ultrasonic Inspection of Brazed Joints^

* ttfl MIL-STD-6866, Penetrant Inspection^

$17)

- 18 - . 4-6- 4^r ^rS. G. Slaughter ^1 "Welding and Brazing Techniques for Nuclear Components[7]'4

1.1 Canned Fuel Slug ORNL Reactor^] BL7) uranium slug* Al canAS.

^r 590-615°C fe slug^l end closure!- 96Al-5Si -§-

1.2 ^Ej£|i7ov «]o|s. ^-tLS> ferrule ^ spacer Yankee Reactor^ N. S. Savannah Reactor^] stainless7ov *A°A ferrule^l ^"^-°)1^ ferrule0!] salt-hypopsphite -%-^-%r electroless nickel-§- Wl ^-i\}°}^ §f?14. Experimetal Gas-cooled ReactoHHfe ^<&3. ^-^SL\ spacer 1- Cu

1.3 Graphite sleeve£} end cap^l ^U High^Temperature Gas-cooled Reactor°)l^1 graphite sleeve&} end ^ 4.

1 1.4 Al sheet clad^}- spacer^] ^% - [S.fi1 cladding ^fL

1.5 ^^ stainless steel clad^ #^r^l ^"t SM-1 Plants l^ i^S^l cladding^S.S. A>-§-^ 304L stainless steels- ^^S-l- ^-Q-s Ni-27Fe-llSi-8Mo-4Pl-

- 19 - 1871}s] ^a. -§-71-71]

-c- Enrico Fermi Fast Breeder Reactor°fl >H fe Core B-§- cladding ^flS?l 347 stainless steel^r spacer, bushing, wear ball ^ seal striper ^^1^171 -^H Ni-19Cr-10Si-4Fe-lMn^r -§-7>?flS

1.6 ^^S. «j^S- cladding #iLS zircaloy cladding #«.sf pad2-] ^^--i- Be-§-

Molten Salt Reactor Programs^ ¥.^7)2) ^^^4 tube sheett-

l^l-Jl tj-^l back tLeflo]^^- oi-g-§]-a) iL7oVs]-$I4. Inconel^f stainless AMS 4778 -g-7f^# 4-§-«><^ ^^4. ^S^7l ^-a.1- finned tube

§}JI $14. ofl# *^, RFQ -ii^ 7}^7]<^^ vane^f section ^ section^]- sectional ^^-g: ^ri^^7H^ Cu?IIt -§-7r^* *r-§-«H «.^1°1^ ^e]«H [9, 10], ^i^}7l-^7HlA-l^ OFHC2} 304 stainless steel^>^l ^^ ^ e] ^^-s.] -§-71-7111- A}-g-§l-^ ^^-sj-ji $I4[11]. ^-7>7flo)l 4^x-li- stainless steel°ll ^e) Ni S^-^- ^i^&lS ^tl 4# ^sl°l^ ^sl# *4. JET machined Cu conductor magnetic coils] ^^ «.sfl0)^0.5. §1-^4[12]. LOCA^l-31 *]<^ emergency coolant^l- steamdml 7]^-%: simulate*}7! $\% film probe sensor-S]

Van de Graaff 7>#7l°l 7>#^ modulei^i alumina/Al/Ti^l

- 20 - ^#-i- ^7], «a-^^-7l S 4. ^ torch brazing* ^^ H 44^4. -g-7>7fl xr4. °1 ^-f 3^ ft ^^4 -§-^Si Af-g-^- ^-xjol

^ S^lfe §}4£] tips]- s>u(. O]AOI-O] flameo.^ °]^°]

tip

2 Furnace JEL^O|^I 2^1 4^Vi- «1-2|- ^o] -§-7^1)1- ^-

furnaCe H.

. Furnace %^flfe ^#^^1- t>^^°l ^4. °l^*t furnace ( S)*fl 7h lElJ7) ^^§-0.5. A] #4

21 - 3 Induction «-3H^ induction «.3M3Me}- ^4. Induction iL^o];*],§-

R ^l^^l^i^ induction «-

4.

. Induction ^.^^I^Hl f ^4 1—S.-C- motor-generator, resonant spark gap, ZLejoi ^1^- tube oscillator

4 Resistance

el ^^--¥-^1 ¥7-14 ^

^ Afojofl =.57 ^^^ OVB35I]. ^a.^. ^

514. ^alxr z} arm4 #^1] $-Q& tongc>14 clampS o]^-^^ 514. ^]#» 4-g-"t T£ $1-^-4, ^^1^°14 $44- Resistance welding 7l 7)1 $14. ^i^^Sfe 4^, graphite, vflSj-^r, JEfe-

5 Dip JieiM^ Dip brazing^ 5>t}-3:4 -§-B-^-^S°1]4 ?t4. Sf^S dip tLeflo]^^A^ -g-

o]^^ rL^ 56(|

S dip iLe^l^i^fe ^ ^^^1» 4%*}z- -§-^1* 4-§-*>4. ^isi-^ll- ^^(1 -$--§-

- 22 - 6 Infrared J±e|o]

5,000 watt

7]-^«i- bell jar Sfe retorts] infrared J±

7 a Blanket a.^^1^ «ov^ . Exothermic Jlefl^]^! aJ-^^ -§-7>7flfi1 -§--§-

a^r 7-1 s

117\

51 '

4.

- 23 - •& ^"5 ^ k fcfc R-frfc fr-H-fe la to ^r

to"lo{Y

•fer&:-§"§

lofrlo -hi* o T= -§" ia?T |KJ^lo to to- to-S-^rb '-btS sv -^"0 ktbto- fr-frfe '-bio

7T ^^-f- m-h ktbloiv H^ fvlT klb £0

to •§•-§- to ^^ to ^ FJ-R-TE

SV-no is-g-g- -br-§--§-

fi tblo{y -§-& -§--§•€ 8-3-I-

4-§-°fl ^^-^^ -8-71-^1- ^*}-3 ^-elM- -§-^^sl» airtsl-^ ^ $14. 4 -§-§-^-e)# %>^§l *fl7i§ ^fe §i4. 44^1 V^ -8-8-^rS. ^^1# 7fx^ -B-

-§-71-7(1 fe

10-90T ^^

4 ^^-(wetting)2f ^ ^-(bonding) K £.71] SI- 5Ht>7-|4, £.7fl# ^j ^ A] ^

-Oj OJ: 4 AI^> -§-7l-7i|fil ^fe £.^11S.

3. -§-7>7fl7l- ^ £.7flA>o]oj

- 25 - S Zn°14 Cdl- Cd cflA] sn^- ^7f*>4. Sf} AH4 Ni ^7] ^«fl Si# ^7>§f7l5L *>4. Li, P B ^ ^±1 ^-fi-* -g-7>7|fe S^fl^] a^^Vs}-!- ^°}5L brazing

w.eflol^oi ^71 ^-o]} tc]-e} ^?}4.

^1 *}-§-

"£•& brazing -g-7f 711^1;^

Hi

-§-71-71)3.1 HV-g-^r #^1^17^1 ^j-t^^l ^-§"8- ^£» ^

^tr ^ol7l- 28°C 61 SMI ^V^ -§--8- 5L ^-\+«V4. n-213. ^155*^ 3.51. A ) ^^-^-^1 ^I^AI^J ^ ojd-

•§-71-711 fil ^^t> -"d^-i- ^«fl, 'ANSI/AWS A5.8, Specification for Brazing

- 26 - Filler MetalEM -g-7r*fl# 87fl 5AS 4^, A ?^r 44 4 4 ff

6 6.1 Al-Si iH^l^r =1 ~t^4 ^fHI ^S. 4^-*V4. J^floR1^ ^ ^ 150"C

al furnace4 dip

H^ ^4. ^^Ife ^^r0! 6.4 mm ^§1-^ ^^ 0.15-0.25 raraS «>J1, ^^ITT ^f^^l 4 ^ ^-foflfe 0.64 rnm4 Dlw -8-71-^^ 4 7f^fe

V -&}7-14, Xj-g-^fil -g-7]-*1)t- 51^5] §ffe «O ^°) XI4

6.2 Mg ^£ BMg-1 -8-7>^fe AZ10A, K1A, ZZE|J -8-431, -§-§-£-51 ^^17> #^ BMg-2afe- AZ31B, fe- £4, dip, furnace J!3H*cH ^^"44. °1 -8-71-

-£ 0.1-0.25mm7V ^^-§1-4. Brazing^-

6.3 Cu4 Cu-Zn

- 27 - "51*11 Cu, Si, , Cu-Ni f}~g-, ^ Cu^ €^, Ni ^, Cu-Ni furnace Jl ^ Cr, Mn, Si, Ti, V, Al « ±W ^-^ 0.05

Cu-Zn

^ 0.05-0.13 mm°]4. °1 4-g- 7^§]-t^. Cu-Zn 7 V $= O , CU, Cut^-, Ni, Ni*j"S-, i^?le|i7oT-^-o1]A^ Jf^^sj- $14. a?V S^l, furnace, n^ji induction S. -boric acidl- 4-g

6.4 Cu-P -S. Ag, W,

1, Cu

^oi ojo.14 ^^tb #51^ 7l-t«>^ DJ^^5d ^It^fl- ^^ ^ $14. f-^ 0.03-0.13 mm°14.

6.5 Ag A14 Mg-1: -i: °l-§-^ ^ $14. $14. ^^7l ^r 0.05-0.13 mmolji, ^^7l» Af-g-s>ir ^-f^lfe 0.05

- 28 - )°IH A}-g- 7>^§l-4. Cufe AgiL4 Fe, Co, Ni ft Cufe 3 ^"#1:4 ^ wetting^: ^714, Ag^

Ag >n wetting^] flol^s].^ Ag-Cu ^"^^ cfl«- wetting§1-Ji ^>-fi-S.*l -n-^*>4. ^Whd §^ -n-^-&£# ^^*1 ^"4;^1?14. Cd wetting^]- -fi-§-£# ^7>A]-7J4. zie-]u|- Cd^ ^ ^ l4 + Cd

Ag-Cu ^ii^ Co 7]x] ^-^-s] ^tM wetting^- 3.7)] %HVA1^14. Zn £t-^-j9L.g. 5Efe Cd4 Sn 4^1 2:^-^6)15. Ag-Cu4 "^-^-i- °lf-°i 1^1 -^4*1 wetting^- ^; : 3.7fl »

Zn4 Cdtfl^ ^7}^. Ag-Cu

f -!zLir. jrVg ^ t-i| u | 'o1 tJ m —I TT O TIT-»— "^ pt; —p *_ H|

IS. wetting§f^c|l <>|3l-g-o] §14. 4^1 Mn, Ni, «flS-e- Coi |7]--?}-4. ^%tsl Ni^- %v-n-1t Ag

. -g-7-111-

-^ wetting^ -f^Sfl ^14- Li °]^1] ^AJ^1 Li $14. Ag

- 29 - 6.6 Au

Fe, Ni, Co7l^S] ^ ^^-ofl oj-g-^t)-. S-^\s]-S] al-g- .^ ^Hl °l-8-W ^^•Bflsl induction, furnace, resistance

0.03-0.10 mm°14.

6.7 Ni

300^1- , Ni^j- Co ^^- t^ 1 , Cu ^-Sl «.^ol

10"3 torrS-1 -^ Ni

^ p

7] oil 4 «-2fl°l^^fe- ^^-°H 7H1" -f^r^r ^^VJfl- ^^- 41 514. 5x10" torr §r^l ^1^. ol#^°l -51OC?1 ?i2: ^i ^-^71, E£fe oj^^o]

.fl 4.

- 30 - "t *fl°fl ^ 7fiofl

ttfl

fe P, Li f-

wetting 7] 4

1.1 -§- ^1] °1] fe chloride, fluoride, fluoborate, borax, borate, boric acid, wetting agent, water§-°l $14. °1

1.2

$14.

71-3 ^^: Jl^^M^ ?b4.

Dip w.^^^^^fe #^ Resistance iLiSM^H-Mfe- -%-^iA S.^0]0]^ §rS.S. f-^- wetting^!

- 31 - 1.3

paste ^Efl# ?>o)

7

paste AoVEfll- pasted, torch

torch

Dip «.

1.4

-f

-g-^71- sf^sH -8711 ^17-113: ^ $14.

, brushing, chipping^4 7Ev^ Jii7ovf wire brushing^l-fe % Ag4 Cu#

- 32 - 2 £37) £^7lfe- ^3. furnace^ retort J^H^l SH 'M-S-W. Induction0! resistance tUiH^cMl AH-^MS. ^4. -§K1 TH4 Zr ^ l-fls^- induction JIBIM'SH -M-^^^ -f}--g-§l-4.

2.1 7fi-

4™75% -t

tg -g-7}

- 33 - ni7j.tr 33"

°l-eflM-

Al, Ti, Be, Mg3

1-2%

Cu, Ni, Fe,

«+ 3 wetting

a))

Cu, Ti, Zr, Nb, Ta 4. ^7l^^j

- 34 - 2.2

4. °1 -7-1171- ^711 ^7-lSlxl #5L, ^^^f^l ^2)"^ 7>i# ^7-1 §1-71 })] n V Ti, Zr, Nb, Mo, Ta ^

:-11, o|tr)l 7fi^ 5 ^- 10

4.

0.5-500 miliitorr^ ig^ofl 4el- il^

^l +)#l ^fli4 flj|V ^-sv#> A1

7\

si 4^ ^ SI4. -!r^7f 6\%°- AVS^O) 01 - ^o.ofl^ :a^-^ 7114 -§-7f7fl7f J1*1^O1H ^^^O] O1^ ^-f^fe Jf^ *l^-i- nV^-37, 7l5]-7l- A] , If",

- 35 - o]n]

''

oL-S-fi] SI4. fe 4^-4

SI-

$14.

$14.

- 36 - 44 WW. -g-7>^7> 5L7fl^n} 7j-£7> tfl7l

^ ۥ

71 ^^1 ^*J^-S scarf ^^o] oicf (ziej 11).

4.

- #SJllZ XII71 7}^^ - 71-5- ^^ 7V^^ - -§-7>7fl^l -£?_•!- ^^Sffe

A\O}$] 71 el011)-. .^. o.^l §1-71 ^l«fl 3-7171- «- 4 #°1 71

12*11

- 37 - 13, 1441 1441^ f-°l f-o] nfl-f

7J-JE6JI nl f-o]

2.1

-g-

furnace S. «fl, f-&l 3.7)7} 0.08mm

s-o] 0.05 mm

2.2

- 38 - 0.7-2 urn RMS7>

2.3 2-^14 -g-7]-7l]o]

-8-71-71) A>O]*I

o]

, A

2.4

fl Al^l §ife Ni-Cr furnace M.2fl^>g6fl^^. 4. ne-lM- s^Hl i% AM: 4. All- ^^ «y= £W-n. 5A1 "fl^, aflfe £^1 1^^-OLS. ?lt!: f-5] 3.7]

2.5

.°l -fi-^^l-fe- -8-7>7flfe- tic]- #-& i-i;

-§-71-711 fil

2.6 -g-71-^ A}ol oil

- 39 - 4.

2.7

I5i ^3 zflfifi) l^l^-i- 44^1534.

014

16-19^1 $1

oi 444. ^^6i u]^ 3^ ^#^^14 71 ^-o]

^4. T^-^S «.sl|<>WH=. ^-f Furnace «.eflol^4 4^ ^A+ofl^fe. sH 514. 20-22ofl

- 40 - nfl

2(H n|5] ^ A>-g-«]-7iu|-, 50-70%^

. -g-7f7fl ^ A] Z]

&l ^ojofl ulsfl nfl-f ^ re} -§-7]-^si x-i^oi x7fliL4 e ^-f^s. ^"t^^l^^l ^i^^ 3ail ^7l^f-

Ulsfl Dfl.f XJ-4. -g-7^1171- 4^- Ai^Jl ul ^3, ^-^Jf°fl 71

y^

514.

- 41 - #30} Jfa^Tfl ^ ^ $14. ^1* 1-^ Mo •£ Cu^l 7]fl ^fe , CU» Mo^l V]$\ ^ fefe ^-^-ff,

^is 4

4. ^-^.fe

sandwich «. ojc|-. s-AT- ^^1 ^^-^^l- ^141: ^

x] softening -g:£Si

crevice corrosion^: -n-^'^lT'lfe couple

fl, nl5] Cui Ag# ££«>JL, Al

5 € «-^l]6l^ H*}

^ 7]

- 42 - l- 7K1" ^ ^rfe^l ^1^ nfl 7)^21 J2aVo|u(-

petroleum-S-^fl 4 chlorinate hydrocarbon ^^sj-^ trichloroethylene^M perchloroethylene : silicate, phosphate, carbonate, deterg

pickling : % ^+ pickling :

Ag* ^-fi-^: ST-fll-

. 71 Til ^ $] 5m& ft&z)- wetting^ 4- °1 ^^tHlfe- grinding, , grit blasting, n^^L wire brushing^0! XI4.

2. -IM14 stop-off - 13:

- 43 -Mil- 4-8-^ ^ S1-5-T4. -S-^12-1

. 5. 3o]] 51^. type 5 gas-air burner^ ol-g-«|-^ i7^ °J?afl

117\

fe 5}^- 3-71 3*11 stop-off!- ^*1W. °1 stop-offTr graphite^- Al, Cr, Ti,

S*l flamed ^If-fS o]^%v 41 §1 . Furnace iliJJM^alM Induction JELelM*J°fl>Hfe

- 44 ^Mi^ brazing* 3-fife S^BfW #0} ^ O)AV^ 4, M4 stop-off 4-§-* 3-fife °l^-i- ^WRr ^°1 ^JL-S>4. 1*1 el 7]- ^A^ brazing f-^

4.1

$14. ^^ ^-f^fe- lO%%Hhg-°J?4 ^^ ^^ 4-8-

82°C

4.2 Stop-off

.^. Ss 7i]a_o|i Sodium hydroxide4 ammonium bifluoride-g-OJ1 ^ 4-§-H" -f $14. ^-f stop-offfe- 5-10% 711 ^ 7151 £.5., <>1 Stop-Off7l- ifl^-«^ 5i-§- nfl ^ $14.

code^l l . ^^°flfe- 4*H^4 «144^1^ol $i4. A IJ-*}^ ^ $14.

45 1 H] 3^-21 © codeS-1

, (2)

1.1

\ misalignment,

^ -8-7>7flsl -B-S34 ^^ SI4.

1.2

A]

1.3 5U 4. °1^^

-§-71

\+4.

- 46 - . SBfl^r 12 l- flamed $14.

514.

Si4.

1.4 , 71^-, 0]s]] JX

4. rel

1.5 -. ojnfl

1.6

, transducer^ 3.71

- 47 - Honeycomb °14, covering skin pane^f

gr 1 sinks} P,

2.1

2.2 Peel *}% ^5)7} *m$] ^aj--^- SJ7HI

, S7l, ^-S.f-^; AlW^uf codei

2.3

w.Bflol 2.4

- 49 - J=LB||O|:g

A>-g-El -g-7>?flSl- -g-^oj . o)

Si Til -g-7^]]7f

4 $10 4, Ti^]^ife

Ti $14.

o| Ti cracking^ $14.

© 30

- 50 - 30%HNO3 + 3%HF

oxyacetyiene S.^1 «.5flol^ofl

Ti

104-105 mmHgfil ^1^H7> ^.S-^4. He*]*-} ^l^Ji^Tr Ar Ti il^ofl ^^-i: nl^l^. 760-930^0^1^ Ti ol -21°C °1«H6>

4 M. eflol^ -S-fe induction a.eflol^!, furnace

4.1 Induction

chamber^]

ۥ

- 51 - 4.2 Furnace Ji^oR1 TH ^i^f JH3M3I yc^o14. induction w. EL7)o\) rflft ^o)

induction^

4.3 Oxyacetylene

4.4 ^^ Ji^l^l^ Gas tungsten-o}3. -§-^71

5 il

55-83°C

o o 514.

6 -§-7>7il

-§-71-711 fe Ti4 Wettability7>

- 52 - 4. ° -i- -8-7]-

Ni£ Ti4 -^-(52%Ni furnace wLefl^l^!^-^ ^-^V ^t^* ^i: *r Si4. Ti

fe Ti-Ag

-. Furnace «.^o , . Furnace «L«JM^-8- ^"^^ ¥ ?M$= Li (0.2

Al (5 ^fe 12.5%)4 Mg (0.15-0.20%)#

g-^r 25% Zn4 5% Au-Sn-Ti ^

525-620°C

- f-°l 0.076 mm °]*H ^71] #^ ^ $14. t^! fillets iLf- 0.076 mm # M.4 c| 3ES 7}]-g-§- ^£S} ^^7f ^7^1 ^^4^1 ?^^4. Fillet Jf£

$14. «1H3 fe£ £51 (Tisi ^-f 425-480°C)oll^ -g-g-^^l ^£ -g-

- 53 - ^-fofl fumace ^H^t}-^ 100-165 MPa^i ^^7j-£# 7>X|aL, induction JL^M^I^ 140-240 MPa^ induction w.^o

wettability

1 1.1 *}-.H

1.2 s

O]

1.3 5-^Bim-ol^.^l

^AJ- Exlu} fumace ^.eflo]^^- A}-g-t>4. ^>^«M ^ 3024 304^

- 54 - 425-870°C*H -fr*l$ *1*H 44 . 321, 347, 3484 ££

1.4

-§-71-7

lS.fe- Cu, Ag, Ni, Co, Pt, Pd, Mn, -§- 71 ^-^.S. §H ^^^^# ^7>tb 7A°\ Si4. ^^| A>-§.^£ofl 44 o]

370°C 6 4. CUTH -g-7V7fl(BCu- 425-540°C'?l ^-f^^- Cu-Mn-Ni (53Cu-37Mn-10Ni)^r A>-§-*>JL, 540°C ^Mfe- Ni^^-^14 Au^l Cu, Ni, 427°C ol^-^1 ^-f^fe 5]7}$] furnace W-ell^

BCu-X* 4-S-4S, RBCuZn-X4

# 5 ^ 2:^^71 <^3l^ ^-f^ BAg-21- Af-g-tt-4. ol ^flafe o_ej A^V 7} 7)11- -g-g-Al^lHS ^Slsfl^ W. BAg-34 BAg-4fe Ni^r . BAg-54

Cd4 Zn^l ^<>1<=»> 4fe ^-foflfe Ag-Cu

- 55 - BAg-8-f- #-§-$4. 6] -%-7}^6\} o.25% Li wettability7> #^J*j, PH^ o_3. furnace ^SIM

11 ^lfe- Ni4 Au -§-71,

i-1, -2, -3, -4fe

1 #•& BNi-5, -6, -

%n Au-Ni, Au-Ni-Cr, Cu-Pt, Ag-Pd~Mn, -Ni-Cr^s] -g-71-7fll- A>-g-t ^ 014

3 iLeflo|^Al H>-§-

430 iBfloiefli^Vofl Ag t^-^- -g-7>XflS. A>-§-*>^ ^^-^^l Tfl^ Jf^^l 71-

SI4. 44^ 430^1 iBllo]e^70Hlfe Zn^l &5L, ^^ Ni- . Ni4 Zn S^# £Wfe

^fil -§-71-71

. 310

$1714, «l-^6.S. 9in -g-^^:

] •§-

^Tfl ^^^r ^^4. -§-71-711 oil $lfe B, Si, 4 -§-7>7fl«ifl s]*n £7fl7l- -g-sflsH °J ^l^f-71- 44\i4.

- 56 - . Honeycomb ^^4 £©1 ^0]?$

Al^; H5]J7 -g-7>7-1] <£•§• Pd ^-^-^ ^lei*

0.0254-0.127 mm ^£°14. ^"t^ f-°l V3^ ^-f^Hxr *\ %*§<>] #^1 #-,

014.

5 torr

.. Wire brushing^ 4^1 ?#fe4. 4^T- ^^1, 7l# 4. =iz\3- 4^^- 4S tLel|o]^§^ polyethylene bag<^l iL^HH ^7)4 5.^1

7 -§- l- ^r^l7lofl^ furnace

- 57 - Ti4 Al- brazing^ €-£-7]- A] €4.

i- ^1-7114

-Sfl t ^ $14. iL-f- w-e Ti

1-2% 4 ^^ ^^]^ ^ 4^4 $14. Ni lfe- 0.005-0.05 mmi «

44

AWS type 3A, 3B, 4

Stop-off* $14. furnace . Sop-off*

stop-offl-i stop-offfe

3 ^ Ti

Ti 74 t ss)7l 74 honeycomb paneH 17-7 PH stainless

Ti 7]-

l.l S} 1.1.1 Ohashi^-[18] Gr. 24 304L ^ 835°C, 10 88 -11001 0

59 ^l ^^f, 376 MPaS] °JM£f £534. Ti^-g- Gr. 2^1 512 MPa^l ?J-i- 3l^*f^

8 10 Ti^^^r 550-650°C, 10' -10 Torr^l^ 10^-, i^e|^7ov^- 700-800°C, 108-1010 Torr^l^ lO^^l^j AA ii

835°C, 08-10 10 Torr,

fe 74

1.1.2 Setof-[19] 3304L ^gefl^-g- 750°c, 2 x 106 Torr^l 372

Ti ^-g- : 0.06/an

Ion bombarding^ A $-,

75 MPa^^-S-^^^'M, ^^-^£^^1 30^ iJSL,

1.2

Pure Ti^f 304L ^^^i^j-^-, ^#^-^-1: 98 t upsetting pressure, ^^ <£*} ^d^r #T3. t}<^ v}% ^^^^1 7J4 ^ tfl 383 MPa^l ^-t7ov5E.» £^ ^ $! -£}^ : 26/s -Upsetting pressure : 196 MPa

- 60 - 1.3 •%•%

-[20]^ f^> ^^11 ^ > V$] ^ W^fe 3J5 410 MPa, V4 i^eii^^ 5JS 480 MPa

pure Ti(VTl-0)# -g-^j £-£.£. *}•%• _g.^ : Ni

550-570 °C

1.4

Gemini4 Apollo^l nfl^ 7)1 fi^ ^.§- 4^[22, 23]7l- 3X-& I&014. o_|^c) 3.7] 180 MPa!- ^*1 *^4. ^le Camargo^-[24]<>11 3]^-^ a|tfl ^TEb^S! 230 -§-7^1)S. Ag-28%Cu» Ti L, 2 x 10 3 Torr, 860°C<>)l^i 15 . ASM Metals Handbook[3Hfe ^-^1^°! Jiefl^^o1 ^^Hll- # $14. Pure Ti(AMS 4921)4 347 i^eji?^ #«.# BAg-19

0.13-0.18 mm7> E|S.^- ffJ±« 7>^-«1-^o.^, ^r^7lfe Ar-i- -§-4^1- ^l^^M retorts "431 Arl- 30^: ^5. purge^-l^JL 4^1 31 30^ ^£ 4r4 ^, 899tS ^-^^1^4. ^^-^ retort

2 2.1

- 61 - ?1 ^, 40% HNO3 + 2% HF + 58% H2O -§-71-71) ^ acetone^S. ^§ffe 3} AS. %• $)*}ol Ni^r 0.001-0.002mm coating fe 0.0127mm# ^

2.2

-Ag-9Pd-9Ga Langeley Research Center(NASA) °ll ir^Q ^<:>} Si-2.4, TRW^l R. I. Batista7l- 7fl^-[26]. <#3.*$-& Gapasil-9^ -Au-18Ni Gemini program^l^ Ti-6A1-4V4 304L ig^l^fi] JELeflo]^1 ^- $}^\

: Palcusil-5)[25], Ag~28Cu(BAg-8)[24], Pd-9.0Ag-4.2Si[21], 48Ti-48Zr-4Be[21].

$14.

2.3

#4[21,24].

- 62 - lamp o] 7^§f4. n 4 S.7fls] ^14 I^SS^l ^AS. ^r£-S-S7f jL3.7fls|7l 4^4. ^^--Jf . 7]- -§-71-71) ofl 45} ^^£1^1^, ^-^ &7}*M5L *}Kl^5L ^tTflfi.^ 4

void

l-^ 4

~Camargo-§-[24] Ag-28Cul- -g-7>7l)S. 4-S-^H 860°C, 2 x 10 3 , 15^ 4*1 ^MEfe ^4444, °l-f ^^4 -f^^^AtyV^i^A, Vol. 62, No. 9, 1962

. *si #

0.04 mm Cul- Ag-30Cu«- 1000°C, Ni# 1050t:«fl>H 41

fe 1050° 0.08 mm 4?h§: 4-8-tb ^-r 7^ 41 -&£°fl^ 0.04 mm4 4°14 $1^-4, 4

- 63 - Ag-30Cu£] 3-f 2.5^-44 ^A *, AA #±. Cusl 3-f 2.5^ A A

Camargo^[24]^6] Ag~28Cul- EPMA» A>-§-«><^ ^^.^-^-^ ^4, % 67fl£l ^^(TiAS JfE^l 1, 2, 3 . A %

Ti7> >*2. sv^oll ^1§H ^7^. ^l^^l A A

: 9%). #£4H ^-Ti^ ff-Ti

-°J^ 2 /3 -Ti

4. 71- 7^1 JtflS ^^fl. Al^Vo] ^2l-§]-^ Cu^r oo^ a^flS ^^^. Ti4 Cu7} SSI-si /3-AgS.

d -i O-

Ti4 Fe7f TiFe^ TiFe2 ^r Fe7>

- 64 - TiCr27l-

7\} ^«H^lfe 5!^ °1-M4. i» #^ Ti2Cu7]-

4.1 Ti-Ag(3.^. 23 -TiAg : CuAu*js] tetragonal superlattice. a=2.887A, c=8.16A[28]. -§--§- 1 1020°C. SL^-21 a-ell^l^ ^£°1]^ ^^°1 £]*} $^TT4. C -Ti2Ag : MoSi2^ tetragonal. a=2.954A, c=11.18A[28]. 94O°C >11^ /?+Ti

Ti2Ag. !L

4.2 Ti-Cr(^. 24 %S)

-aTiCra : MgCu2^ FCC Laves phase, a=6.994A, 1220°C^1^1 /3 + j3TiCrz

->

-/?TiCr2 : MgZn2^ HCP Laves phase, 122O°C°1H 7 TiCra ^/?TiCr2. a=4.932A, c=8.005A[29] tl^ol^ -^

-/TiCr2 : MgNi2^ HCP Laves phase, 1370°C°lH 0-$°.£.^ ^^. a=4.932A, c=16.0lA[29] JELe^l^ ^°1 ^

- 65 - 4.3 Ti-CuCi^. 25 -TiCu : tetrafonal. 986°C°1H L -^TiCu, a=3.144A, c=5.97A[28] W-

-l 7l-i=.*l 01.0. O xr0 0AJ-D-

-TiCu2 : VAu2^ orthorhombic. 890 "C^H Ti3Cu4 + L -• TiCu2. a=4.38A, b=7.97A, c=4.49A[29]. J^SIM^ %•<& ^€ 7>^ Si-g-.

-Ti2Cu : MoSi2^ tetragonal. 790 T^H /?Ti -> cTi + Ti2Cu. a=2.944A, c=10.786A[30] ^]}°}^ %•<& 1^13 7}^ $X^r.

-Ti.Cu4 : tetragonal. 925°C°1H TiCu + L -> Ti3Cu4, a=3.137A, c=19.95A [28]. tLe^l^o1 ^^ ^^€ 7f^^ o!^_

-Ti2Cu3 : Al3Os2^ tetragonal. 875°C°11^ Ti3Cu4 + TiCu2 -> Ti2Cu3. a=3.140A, c=14.014A[29]. J±e1^^ ^^ ^^€ 7^^ $J-§-.

-TiCu4 : ZrAu4^ orthorhombic. 885°C°fl^| L + Cu -> TiCu4. a=4.525A, b=4.34lA, c=12.953A[29]. «-^]°l^

4.4 Ti-Fe(nU. 26 -TiFe : CsCl^i cubic. 695°C°fl^ ^Ti -> aT\ + TiFe. a=2.9789A[29].

-TiFe2 : MgZn2*J HCP Laves phase. 1289 °C «^|-M L -» TiFe2 + a= 4.785A, c=7.799A[29]. tL&ll0]^1

4.5 Ti-Ni(n^ 27 ^S) -TiNi : CsCl^ cubic. 1310°Ci^ L ->• TiNi. a=3.010A[29]. «_

0 1 -Ti2Ni : FCC. 942*C°fl^ L -* ySTi + Ti2Ni. a=11.324[29]. tL^l ]^

-TiNi3 : HCP. 630*0^'H TiNi -> Ti2Ni + TiNi3. a=5.109A, c=8.299A[29].

4.6 Cr-Fe-Ti

-CrFeTi : MgZn2*3 HCP Laves phase. a=4.8949A, c-7.941A[29]

-Cr3FeTi2 : MgZn2«J HCP Laves phase. a=4.867A, c=7.953A[29]

- 66 - 4.7 Cu-Fe-Ti

-CuFeTi2 : ClCs^ cubic. a=3.035A[29]

4.8 Cu-Ni-Ti

-CuNiTi : MoSi2^ tetragonal. a=3.12A, c=7.965A[29]

-CuNi2Ti : AlsTi^ tetragonal. a=3.6HA, c=7.459A[29]

4.9 Fe-Ni-Ti

-FeNiTi2 : FCC. a=11.338A

, Ti

6]:

4. 42-}^ o]ofl ^ ^o] ^jg^-^^fe. s. 74

cj^j.

G= E • Aa • AT a: stress E: Young's modulus

- 67 - /la:

x 103(MPa) • 8xlO6(/°C) • 280(°C) = 264(MPa) 6 6 : 118GPa, aTi : 9x10 /°C, ass=17xlO /°C, Tj=(870+273)/2 °C, T,,=20°C

a =200 x 103(MPa) • 8xlO6(/°C) • 280CC) = 448(MPa) E:200GPa,

350-400MPaS

-§-71-^ ^ 7]-^^^^ 2]-^ 4fg^ 7.]

n]^- JL^ uS-6168069i Sl si sleeved Ti%^^ sleevel- Coriolis massflow sensor* A

^^ JP-61216851fe

Ni- 0.3^ra oR1" ^4. ^^ll^cNxr Au striked ^, Pd°1 30% Ni-PcPl-t- 03/m °1#

$\ 7} Ti

gl71 nj|£-o1|, ^j

1.

. 284

-^: a. 84 7^ ASTM Gr. 94 S^l «l**> 4. ^Hi ASTM Gr. 9AS4 E cfl^V Sj-ojol ^iL-5ft>. ^-£ofl tc}^ 7)-A]A ^-^^ fi. 104 7^4. ASTM Gr. 9 4 3-f Aov^°114 ^-^-7J-£7> 725MPa, ^1^^5171- 860MPa,

7} 9X7}

- 69 , ASTM4

1^ 321#4 5^3 s^^ S. 114 £4. Ti^4 7^°1 seam less°l ^fe 316L# ^ . 3214 s-A^o_ Jl $14. 71^1^ 71- 515MPa, ^^5.7} 205MPa, ^^-i-ol ^^l^H1 35%, 3J^1HM 25%°} 4.

7fls.fe- BAg-19, BVAg-30(Palcusil-5)4 Gapasil-9°14. BAg-194 BVAg-30^r Lucas-Milhaupt47l- BVAg-304 Gapasil-9-S- $14. °1*^

$14. ^^114 4^°fl 44 AA 4°14 $14^ BAg-194 BVAg-30 4 %-°- kg^ 1,000$, Gapasil-9^ 4,500$^4 Gapasil-9^ ^^^l 3171-014. o] 1 S #^1 tfl^: ^^o -^, 444^, 4^^ ^-i: J4§M ^^«>JL^ *>4. 444*11 4 Tr BAg-191- Af-g-4o|o.ss O.AJ BAg-191- 71^6.5 4. 7 V z> -g-7f7H4 ^-^^ a. 124 E 4. BVAg-30^ 7-14 ^

5T-o]§i-7l7l- 4=1^ 4^4471- ^444. 444 BAg-19iL4 stainless steel 1 $14. Gapasil-9£

^^-¥-71- 44

^-4 i^efli^ s.ol olAj-^lo] 37]^ ^V^i m. + oj7] ufl^-ofl, 4 ?«V4. «.efloi^ ^£71- ^-o.^, -g-7l-7fl7> #^4 *4 1-4^: ^r

^°1 €• -8-71-7fl A #4.

- 70 - -Ti-

3u B f- P 3H uoipnpuj jo SOISBQ ^Aanqpnx 'V '0 4a ^4$^^ ?^k

12

IKls-tzgi lat^efe f-^T^ iroi toa^4^-§- 44

[blvir-§- Mngr V-h 44<>4* fe-gi-Sr klbkfe- to bio IT £[o tb-S-lbi k4 ib^Hn ki? ^ -S- MbSMV to d= 5000\ d: reference depth, p: resistivity (42 -cm), y.'- relative magnetic susceptibility, f: frequrncy(Hz) Q -cm, ^=1<^14. ^ ^]S.^1 3. -i- Ji3^§f^ 20 kHz

92mm^ "11, Ti4 iEjefl^vo] Jfujs- lOScm'S 7]-

: ^3] x ^£ = 105cm" x 4.5g/cm' =472.5g

%t : jfTz) x igc = 105cm> x 7_9g/cni' =829.5g 2) 7|-^^r£7>^l^l s3.&^ energy : Heat content x Ir^ : 1.59 x 10 4 kWh/g x 472.5 g = 7.51 x 10 2 kWh 4 2 : 1.54 x io kWh/g x 829.5 g = 12.77 x 10 kWh 900°Cv\A 7}<£*}~ ^-f, : 7.51 x 10 2 x 60 = 4.5(kW) 2 : 12.77 x 10 x 60 = 7.7(kW) %• net power : 12.2 kW 3) Radiation heat loss : Radiation loss x surface area Radiation loss : 0.011 kW/crf x 1,100 erf = 12.1 kW, (radiation lossfe- %V3:^*1 [31]2) 104^ #20 4) %• ^-S.?!: power : net power + radiation heat loss = 24.3 kW 5) Coil efficiency : space factor=0.85S- t}<^ graphical method(%2:•§-*! [31] s-l 64^ #205. 314h 80% 6) %&-& -§-^= : 24.3/0.8 =30.4 kW

4.2 5L

- 72 - 1 5U4. 42M ^T ^£3 S<^ ^$1*1 ^4 S°^ turn^l- ^Tfl «H o) S<|J ^ll^ ^ impedance matching^: 3.°d ^H

ceramic

(R-type)-i- *}-g-fb4. =^1^^ ^^1* ^«H ^^ feed-through^-

.S, «s>2.$ 7l-i# ^«a*H 102-103 Torr^ diffusion pump* 4-§ M 3s turbo pump*

S-1 3.71 fe- 45.^1 2]tfl 3.717f ^!^ 92mra, ^«>1 170mm^ ^^^1 7 400min, a|^ 400mm3§£7> ElS.^. ^.cj-. View portl-

4.3

:71

4.4 £U1H^ Z--Q 51^5)- 1500^17

^14 AMS-2424- 2.5mm ^1^ ti ^^^ t

PVD°1] fil^: l blister7>

ife- low cycle thermal fatigue^i^-ir !s-^.?14. 44*1 Q^-- K Thermal fatigueAl ~% fatigue-^

thermal fatigued tflf!; <$*&•£ %7}*t

v ^r 9X-& galvanic corrosion

- 74 - ^ water chemistry fe autoclave^

water chemistryl- t?lt kinetic*! A b -^ mechamnism°l ^ tfl

4.4 -8-7^11

4.5 71-1 271) view portl- H -g-71-7flsl ff "t ^ Sl 10 5 Torr l ^^^-Hlll: BAg-191- 10 2-10 3 TorrS

View port* -§-7>7|l7l-

A|

- 75 - 5 £ A}

"«^TJ>^7^^ •^-^^^l-^l- macroetch test-1- 1 •^-'?t;^Af^ -8-7>7ll7l- Irlir^l -^--H"5! $i -C-^1 , undercutting °1 . undercutting-c- £^1 ^r^l^] 5% 4 0.254mm ^°fl^i ^-& & Macroetch testfe- S.7fl# -aj^W*£

3.7]

- 76 - *fl5.JL . «gH«:7l

-8-71-

A -8-71-7(1 Sfe BAg-19, BVAg-30 4 40% HNOs + 2%

HF •+ 58% H2O -8-^^- 4. #, ^^efl^Tj-^ ?1171- ii^ 7] -g- 7>

ASMES-1- AWS^l 3^ ^1^-^ «]sf

-T-^^^K macroetch

ol

- 77 - fe 350MPal-

4.

- 78 - 1. ^MHl 31, -I-W^M, *I166U *H43L, 1997, 6 2. Bm-7f n>Amo_, ^-^svsi^l, ^|66€, *H43L, 1997, 49 3. Metals Handbook, Vol. 6 welding and brazing, American Society for Metals, 1971 4. ANSI/AWS B2.2 Standard for Brazing Procedure and Performance Qualification, American Welding Society, 1991 5. ASME Boiler and Pressure Vessel Code Section IX Welding and Brazing Qualification, the American Society of Mechanical Engineers, 1995 6. ANSI/A WS A5.8, Specification for Brazing Filler Metal, American Welding Society, 1992 7. Gerald M. Slaughter, 'Welding and Brazing Techniques for Nuclear Reactor Components', American Society for Metals, 1964 8. R. J. Beaver, C. F. Lettinen, Jr, J. L. English, ORNL-2834, 1962 9. D. Schrage et al., LA-UR-98-3457, 1998 10. «^^r $ 5

- 79 - 22. ^A *1 #, fjti^Aiy/i'^^A, 10(9), p234, 1962 23. T. Wada, K. Sasabe and M. Tanabe, -g-^^^l*!, 36(8), p40, 1967 24. P. R. C. Camargo, R. E. Trevisan and S. Liu, Weld. J., 72(12), p537-s, 1993 25. R. L. Peaslee, Weld. J., 71(5), pll2, 1992 26. ^A nl^-, Industrial Heating, 48(3), p31, 1981 27. T. B. Massaaski (Ed.), "Binary Alloy Phase Diagrams', ASM International. Materials Park, OH, 1990 28. V. N. Eremko, Yu. I. Buyanov and N. M. Panchenko, Sov. Powder. Met. Metall. Ceram. 4(88), p301, 1970 29. Pearson's Handbook of Crystallographic Data for Intermetallic Phases, 2nd. ed., 1991 30. M. H. Mueller and H. W. Knott, Trans. AIME, 212, p674, 1963 31. Chester A. Tudbury, 'Basics of ', Vol. 1, John F. Rider, Inc., 1960 S. 1

Be.Zr, W, Mo.Ta, & & alloys Cb & alloys Al& Al Mg& Mg Cu&Cu low alloy Cast Stainless Ni&Ni Ti & Ti (reactive ( Too) alloys alloys alloys steels iron steels alloys alloys metals) metals) steels A1& Al BAISi alloys Mg&Mg X BMg alloys Cu&Cu X X BAg, BAu, alloys BCuP, RBCuZn I Carbon & BAISi X BAg, BAu, BAg, BAu, low alloy RBCuZn BCu, steels RBCuZn, BNi X X BAg, BAu, BAg, BAg, RBCuZn RBCuZn RBCuZn, BNi Stainless BAISi X BAg, BAu BAg, BAu, BAg, BAu, BAg, BAu, steel BCu, BNi BCu, BNi BCu, BNi Ni&Ni X X BAg, BAu, BAg, BAu, BAg, BCu, BAg, BAu, BAg, BAu, alloys RBCuZn BCu, RBCuZn BCu, BNi BCu, BNi RBCuZn, BNi 3. 1

Bc.Zr, W, Mo, Til. Carbon & & alloys Cb & alloys AI& Al Mg & Mg Cu & Cu low alloy Cast Stainless Ni& Ni Ti & Ti (reactive (refractory Tool alloys alloys alloys steels iron steels alloys alloys metals) metals) steels

Ti&Ti BAISi X BAg BAg BAg BAg BAg alloys Be.Zr, X X BAg BAg.BNi' BAg.BNi' BAg, BNi' BAg, BNi' & alloys BAlSi(Be) (reactive metals) W, Mo.Ta, X BAg BAg.BCu, BAg.BCu, BAg, BCu, BAg, BCu, Cb & alloys BNi* BNi' BNi' BNi' (refractory metals) 00 ro Tool X BAg.BAu, BAg, BAu, BAg, BAu, BAg, BAu, BAg, BAu, BAg, BAu, steels RBCuZn, BCu, RBCuZn, BCu, BNi BCu BCu, BNi RBCuZn, BNi BNi RBCuZn, BNi RBCuZn, BNi Note: Refer to AWS Specification 5.8 for information on the specific compositions within each classification. X—Not recommended; however, special techniques may be practicable for certain dissimilar metal combinations. Y—Generalizations on these combinations cannot be made. Refer to chapters 20 and 21 for usable filler metals. '—Special brazing filler metals are available and are used successfully for specific metal combinations. Filler metals: BAISi—Aluminum BCuP— BAg—Silver base RBCuZn-Copperzinc BAu—Gold base BMg— base BCu-Copper BNi-Nickel base S. 2 Brazing

AWS Recommended brazing flux Recommended Recommended useful temp, Forms type no. base metals filler metals0 range Ingredients supplied 1 All brazeable BAISi 700-1190F Chlorides Powder aluminum alloys 371- 643C Fluorides 2 All brazeable BMg 9OO-120OF Chlorides Powder magnesium alloys 482- 649C Fluorides 3A All except those BCuP.BAg 1050-16OOF Boric acid Powder listed under 1,2, 566- 871C Borates Paste a and4 Fluorides Liquid Fluoborates Wetting agent 3B All except those BCu, BCuP, 1350-2100F Boric acid Powder listed under 1, 2, BAg, BAu, 732-1149C Borates Paste and 4 RBCuZn.BNi Fluorides Liquid Fluoborates Wetting agent 4 Aluminum bronze, BAg (all) 1050-1600F Chlorides Powder aluminum , and BCuP (Copper 566- 871C Fluorides Paste iron or nickel base base alloys Borates alloys containing only) Wetting agent minor amounts of AJorTi.orboth" 5 All except those Same as 3B (ex- 1400-2200F Borax Powder listed under 1, 2, cluding BAg-I 760-1204C Boric acid Paste and 4 through -7) Borates Liquid Wetting agent Note: This table provides a guide for classification of most of the proprietary fluxes available commercially. When used alone, the information given here is generally not adequate for a specific application. a. Some Type 3A fluxes are specifically recommended for base metals listed under Type 4. b. In some cases. Type 1 flux may be used on base metals listed under Type 4. c. See Table 11.3 for filler metals designated by symbols listed.

- 83 - S. 3

AWS brazing Approximate atmo- Maximum composition, % Application sphere type dew point number Source incoming gas CO CO, Filler metals" Base metals Remarks

1 Combusted fuel Room 5-1 87 5-1 11-12 BAg,*BCuP, Copper, brass" gas (low hy- temp. RDCuZn" drogen) Combusted fuel Room 14-15 70-71 9-10 5-6 BCu, BAg,a Copper,11 brass," low- Decarburizes gas (decarbur- temp. RBCuZn," , nickel, izing) BCuP , medium car- bon steelc Combusted fuel -40° C 15-16 73-75 10-11 Same as 2 Same as 2 plus medium gas, dried (-40°F) and high-carbon steels, monel, nickel alloys Combusted fuel -40°C 38-40 41-45 17-19 Same as 2 Same as 2 plus medium Carburizes gas, dried (car- (-40° F) and high-carbon 03 burizing) steels Dissociated am- -54°C 75 25 BAg,"BCuP, Same as for 1, 2, 3, 4 I monia (-65° F) RBCuZn," plus alloys contain- BCu.BNi ing chromiuma Cylinder hydro- Room 97-100 Same as 2 Same as 2 Dccarburi/.es gen temp. Deoxygenated -59°C 100 Same as 5 Same as 5 plus , and dried hy- (-75-F) , tungsten drogen alloys and " Healed volatile Inorganic vapors (i.e., , cad- BAg Special purpose. May materials mium, , volatile fluorides be used in conjunc- tion with 1 thru 7 to avoid use of flux Purified inert gas Inert gas (e.g., helium, , etc.) Same as 5 Same as 5 plus , Special purpose. zirconium, Pans must be very clean and atmo- sphere musi be pure 5. 3

AWS brazing Approximate atmo- composition, % Application sphere type number Source Pressure 1\ N, CO CO, Filler metals' Base metals Remarks 10 Vacuum Vacuum above 2 Ion' BCuP, BAg Cu 10A Vacuum 0.5 to 2 torr BCu, BAg Low carbon steel, Cu I0B Vacuum 0.001 to 0.5 torr BCu, BAg Carbon and low alloy steels, Cu IOC Vacuum 1 x 10'3iorrand BNi, BAu, Hi. and corn resisting lower BAISi, steels, Al.Ti.Zr, Ti alloys refractory metals Note: AWS Types 6, 7, and 9 include reduced pressures down to 2 torr. i a. Flux is required in addition to atmosphere when alloys containing volatile components are used. b. Copper should be fully deoxidized or oxygen free. c. Heating time should be kept to a minimum to avoid objectionable decaiburization. 00 c. Flux must be used in addition if appreciable quantities of aluminum, titanium, silicon, or are present. OI e. See Table 11.3 for explanation of filler metals. f. lTorr = 133Pa. 5. 4 Brazing

Filler metal AWS classification0 Joint clearance3

BAISi group 0.15-0.25 0.006-0.010 For length at lap less than 6.35 mm (1/4 in.) 0.25-0.61 0.010-0.025 For length at lap greater than 6.35 mm (1/4 in.) BCuP group 0.03-0.12 0.001-0.005 BAg group 0.05-0.12 0.002-0.005 Flux brazing (mineral fluxes) 0.03-0.05 0.001-0.002" Atmosphere brazing (gas phase fluxes) BAu group 0.05-0.12 0.002-0.005 Flux brazing (mineral fluxes) 0.00-0.05 0.000-0.002b Atmosphere brazing (gas phase fluxes) BCu group 0.00-0.05 0.0OO-0.002" Atmosphere brazing (gas phase fluxes) BCuZn group 0.05-0.12 0.002-0.005 Flux brazing (mineral fluxes) BMg group 0.10-0.25 0.004-0.010 Flux brazing (mineral fluxes) BNi group 0.05-0.12 0.002-0.005 General applications (flux or atmosphere) 0.00-0.05 0.0O0-0.O02 Free flowing types, atmosphere brazing a. Clearance on the radius when rings, plugs, or tubular members are involved. On some applications it may be necessary to use the recommended clearance on the diameter to assure not having excessive clearance when all the clearance is on one side. An excessive clearance will produce voids. This is particularly true when brazing is accomplished in a high quality atmosphere (gas phase fluxing). b. For maximum strength, a press fit of 0.001 mm/mm or in./in. of diameter should be used. c. See Table 11.3 for an explanation of filler metals.

- 86 - S. 5 ^BH

AWS Nominal composition, percent Melting Brazing Classi- tempera- temperature Ikation Ag Cu Zn Cd Ni Sn l.i ture,°F range.°F Color Characteristic's

BAgl 45 15 16 24 — 1145 1145-1400 Whitish Tree-flowing yellow BAgli 50 15.5 16.5 18 — 1175 1175-1400 Whitish Free-flowing yellow BAj2 35 26 21 18 — 1295 1295-1550 tight Good for nonuniform yellow clearance BAg3 50 15.5 15.5 16 3.0 1270 1270-1500 Whitish Retards corrosion at yellow joint BAS4 40 30 28 — 2.0 1435 1435-1650 Light Flows better than BAf3 yellow BAg5 45 30 25 — -- 1370 1370-1550 Light Not free-flowing, cad- yellow mium-free, useful in food industry I BA86 50 34 16 — — 1425 1425-1600 Ugh Similar to BAe5 oo yellow BAB7 56 22 17 1205 1205-1400 White Good color match BAg8 72 bal. - — 1435 1435-1650 While Wetting is slow 72 bal. 0.25 1410 141 ()• 1600 White For furnace bra/ing PH stainless steels

BA8I3 54 bal. 5 1 1575 1575-1775 While Useful to 7001- BA818 60 bal. _ 10 1325 1325-1550 While Wets well for brazing PH stainless steels BA«I9 92.5 bal. - — — 0.25 1635 1610-1800 White Good for furnace braz- ing BAg21 63 28.5 ... 2.5 1475 1475-1650 Immune to crevice corrosion 1£ 6 brazing-g- Ni r£ Au t"u

Composition, percent'

Nickel base Other Hnmnjl AWS elements Solidus, Lkjuidus. temp, range, Classification Cr Cu /.i total "I" "I* "K

BNi-l . 13.015.0 2.75-3.50 4.0-5 0 4.0-5.0 0.6-0.9 0.02 0.02 (1.05 0 05 0.05 Bal 0.50 1790 1900 1950-2200 BNi-la .... . 13.0-15.0 2.75-3.50 4 0-5.0 4 0-5.0 0.06 0.02 0.02 0.05 0.05 0.05 Hal 0.50 1790 1970 197O-22IX) BNi-2 . 6.0-8.0 2.75-3.50 4.0-5.0 2 5-3.5 0.06 0.02 0.02 0.05 0.05 0 05 H.il 0 50 1780 1830 I850-:i50 BNi-3 ..'... 2.75-3.50 4.0-5.0 0.5 0.06 0.02 0.02 0.05 0.05 - - 0.05 Hal 0.50 1800 1900 1850-2150 BNi-4 1.5-2.2 3.0-4.0 1.5 0 06 0.02 0.02 0.05 0.05 - - 0,05 Dal 0.50 1800 1950 1850-2150 BNi-5 ...... 18.5-19.5 0.03 9.75-10.50 0.10 0.02 0.02 0.05 0.05 • - 0.05 Ual 0.50 1975 2075 2IOO-2200 BNi-6 0.10 10.0-12.0 0.02 0.05 0.05 - - 0.05 Bal 0.50 1610 1610 1700-2000 BNi-7 . 13.0-15.0 0.01 0.10 0.2 0.08 9.7-10.5 0.02 0.05 0.05 0.04 - 0.05 Bal 0.50 1630 1630 1700-2000 BNi-8 6.0-8.0 0.10 0.02 0.02 0.05 0.05 21.5-24.54.0-5.0 0.05 Ual 0.50 1800 1850 1850-2000

03 Gold-base 00

Other elements. Cu Pli Nt total

BAu-l 37.O-3K.O Ual 0.15 1815 I860 I8M).2(KXI BAu-2 79.5 80. 5 Ual 0.15 1635 1635 1635-1850 BAu-3 34 5 35 .5 lial 2 5-3 5 0.15 1785 1885 I8X5-I995 BAu-4 81.5 82 5 Ual 0.15 1740 1740 1740-1840 BAu-5 29.5 •30 5 3.1 5-34.5 35 5-36.5 0.15 2075 2130 2130-2250

a Single values arc maximum S. 7 a. ]: x 10"7°C

\ °C 50 100 150 200 250 300 350 400 500 600 700 800

PT-7M 8.6 8.8 8.8 8.9 9.0 9.2 9.2

PT-3V 8.5 8.6 8.8 8.9 9.0 9.2 9.3

99.0% 8.5 8.6 9.0 9.4 9.4 9.4 9.4 9.5 9.6 9.9 10,1 10.2 Ti*

* : ASM Metals Handbook^ b. i : x 10 fi/°C

c X° 50 100 150 200 250 300 350 400 500 600 700 800

316 16.02 16.2 17.5 20.0

321 16.7 17.1 18.5 20.2

* : ASM Metals Handbook^

- 89 - it 7 (314=0 c. Ag* : x 106/°C

\°c 50 100 150 200 250 300 350 400 500 600 700 800

316 19.6 19.6 19.7 19.8 19.9 20.0 20.1 20.3 20.6 21.0 21.4 21.8

6 9 12 2 *: Lt=l+19.494xl0 +1.0379xl0 t+2.375xl0 t

3. 8 : wt%

Ti Al V Zr Si Fe 0 H N C other

2.5- 2.0- base - - 0.25 0.12 0.013 0.02 0.1 0.4 3.5 3.0

3. 9 ASTM Gr. 9 Ti • wt%

Ti Al V Zr Si Fe 0 H N C other

3.5- 1.2- base 0.3 0.12 0.25 0.15 0.006 0.04 0.1 0.3 5.0 2.5

- 90 - a 10.

^£(°C) 20 50 100 150 200 250 300 350

637 596 535 466 406 392 375 360 (MPa)

589 529 470 417 353 323 294 279 (MPa)

118 115 111 109 106 104 101 98 (GPa)

8 8.2 8.6 8.5 8.5 8.5 8.5 8.5 ^^ 10 10.3 10.8 10.8 10.8 10.8 10.8 10.8 - - - 10.08 11.34 12.18 - (W/mTC) «11 - - 546 - - - - - (J/kgt)

S. 11 Stainless steel 321^1

Fe C Mn P S Si Ni Cr Ti

9.00- 17.0- <5 x carbon base 0.08 2.00 0.040 0.030 0.75 13.0 20.0 or 0.70

- 91 - 3. 12 -§-7>7flsl 4 a. -BAg-19 : wt%

Ag Cu Li Other

92.0-93.0 Remainder 0.15-0.30 0.15

-BVAg-30 ]: wt%

Ag Cu Pd Zn Cd Pb P C

67.0-69.0 Remainder 4.5-5.5 0.002 0.002 0.002 0.02 0.005

-Gapasil-9 1: wt%

Ag Pd Ga

82 9 9

- 92 - S. 12 b.

WCC)

BAg-19 760 891 877-982

BVAg-30 807 810 810-927

Gapasil-9 845 880 895-950

C. 71 Til

BAg-19 BVAg-30 Gapiasil-9

-^(g/cnf) 10.1 10.0 -

-^^-7ovH(MPa) 333 118

-^l^-7oVtE(MPa) 380 285

-

-l^^-^l^r 17.2 - (xl0 7°C) -«l^l*j- 31 37 136 (xlO-'ohm-m) — 11 41

- 93 - S. 13

3 3 (mm) (^^11/2) (kHz) (ram) Case 1 24 4 20 (FW)

Case 1 40 4 20 (Steam)

Case 2 50 7.5 6 (FW)

Case 2 92 4.5 15 (Steam)

- 94 - torch brazing

Brazed joint Filler metal Filler metal melts and flows

Flux Furnace

2 Furnace brazing

- 95 - induction brazing

Round Cooling fl tube

Milled Pancake Internal VN^ooocL V,V. t slot Cover Braze External Section coi| Brazing alloy x-x ring Braze

Pancake Brazing internal coil alloy coi! sheet

Rectangular Formed Spiral-helical

4 Induction brazing0)!

- 96 - Brazed joint

5 SJ-4J-2: dip brazing

Brazing Processes I 375

Quartz lamps

m Part

Cooling m i platens

6 Infrared brazing

- 97 - 1100 - 961° c 1083° C (1981° F) s --r- 2000 1000 - Liquid ^^->- 7-- 1761 Solid & 900 - liquid sys0^^^ Solid & o ^^^-"^ liquid : ^^^ j 1600 4; (Cu) 800 - (AgF D Solidus-779° C (1435° F) E \ a. --1200

600 - Q.

•/ \ 800 Solid 400 - (Ag + Cu)

- -- 400 \- 200 " j Eutectic 100% Ag 72% Ag 0% Ag 0% Cu 28% Cu 100% Cu Composition

7 Ag-Cu

- 98 - Temperature, °F

°F 1500 2000 2500 3000 3500

+100 Metals easier to reduce +80 than those plotted: Au, Pt, Ag, Pd, +60 Ir.Cu, Pb, Co, Ni, Sn, Os +40 Bi

+20

| 0 "O t -20 o 40 (0 I -

Q -60

-80

-100

-120

-140 L-100-L 500 1000 1500 2000

Temperature, °C

8 brazing

- 100 - 1/

Lap joint Butt joint

10

Scarf joint Scarf joint

11 Scarf

- 101 - Gas phase flux

Strength of as cast

sz brazing filler metal ca c

CO in

Joint clearance Recommended clearance

12

~ 102 - 0.03 0.05 0.08 0.10 0.13 60 000 - 400

50 000

-•J 300 40 000 \ • X • \ •• \ 30 000 • \ __200 • •A ——*--^ 20 000

- too 10000

0 0.001 0.002 0.003 0.004 0.005 Joint thickness, in.

13 «!-

Thickness/diameter

10s x 10"-1 x 10" 120 ' 1 ' ' ' ' 1 1 ' ' ' '1 ' 1 1 1 ' ' I I '1 1 • 1 ' ' 1 • Sound and voidfess joints 110 » Slight imperfection o Imperfect joints 100 : 1 \ 90

o 80 - / 70 — o 60 o o o

40 _ * / o 0 o o 30 0 o ° o —. • °o o o o 20 o 0_ . ... n 10 U.T.S of pure cast silver °?"

0 , ., i . 1 . . . J • .t,.,.l . , , i , , , , x 10" xiO-4 x 10"3 x 10"

Joint thickness, in. 14

- 103 Temperature, ° F

400 800 1200 1600 2000 1 f 0.018 / 1/ 0.016 /11 / 1 / / : 0.014 I

o / il 0.012 in / 1 1 i | 0.010 A u / O # / £ 0.008 il y h o 1/ / A u /A z ^.0.006 7 // // / fa y 2 0.004 / / o I- / '/f . r, IA 0 0.002 IlkLu

100 200 300 400 500 600 700 800 900 1000 1100

Temperature, =C

15

- 104 - Total expansion, 21° C to temperature, mm/mm (70° F to temp., in./in.] o o o o o o p o

u o CJl in 3 s Low stress

T 1T A

t B 3T

4T- T D High stress 16

Low stress

-f! C \J

-xf-

High stress

17

- 106 - A Butt flange joint

Butt joint & doubler

D

18

Low stress

» A

High stress

19 fe- T

- 107 - Kxl

'A ^ (A) (B) (C) (D)

20

Load Load I Preplaced shim ! or washer

(B)

21

Void \ / \ \ 1

22

- 108 - Weight Percent Silver 0 10 20 30 40 50 60 70 30 i?00-i 1 1'*»'

23 Ti-Ag

Weight Percent Chromium 10 ZO 30 40 50 60 TO 80 90

10 20 30 40 50 SO 70 80 90 100

24 Ti-Cr

- 109 - Weight Percent Copper 0 10 20 'JO so so TO

o 30 40 50 60 70 30 90 100 Ti • Atomic Percent Copper Cu

25 Ti-Cu

Weight Percent Iron 10 20 30 40 50 50 70 90 100

1427°C

N / I085°C

585°C

0 10 20 30 40 50 60 70 80 90 100 Xi Atomic Percent Iron Fe

26 Ti-Fe

- 110 - Weight Percent Nickel 10 SO 30 AO 50 60 70 60 SO

10 2H 30 40 50 60 70 90 100 Ti Atomic Percent Nickel Ni

27 Ti-Ni

- 111 - Brazing Joint

I-- -1- ^ b=) -T- ^ O > I Oil Ul t=) tj All

Zl^J. 28. §^l^h^^! brazing joint ¥

- 112 - M

CO

tf?! -Iff

G KAERI/AR-589/2001 BIBLIOGRAPHIC INFORMATION SHEET

Performing Org. Sponsoring Org. Stamdard Report No. INIS Subject Code Report No. Report No.

KAERI/AR-589/2001

Brazing Technology of Ti alloy/Stainless Steel Dissmilar Metal Joint; Title / Subtitle at System Integrated Modular Advanced Reactor | Main Author Kwon, Sang-ChuKNuclear Material Technology Development Team) and Department Kim, Sung-Ho(Nuclear Material Technology Development Team) Researcher and Kim, Yong-Wan(Advanced Reactor System Development Team) Department Kim, .Iong-In(Advanced Reactor System Development Team) Publication Publication Taejon Publisher KAERI 2001. 2 Place Date

Page 113 p. III. & Tab. Yes( O ), No ( ) Size 21 x 29.7 .cm

Note

Open( O ), Restricted( Classified Report Type State-of-the -Art Report Class Document Sponsoring Org. MOST Contract No. For the technoldogy development of brazing Ti alloy to stainless steel Abstract 15-20 Lines) joints used at SMART, the status of brazing technology development, brazing processes, and the brazing technology of Ti alloy and stainless steel are reviewed. Because fusion welding process cannot be applied due to the formation of intermetallic compounds in the weld metal, brazing joint was selected at the design. The joint part is assembled with a thread composed with male part of Ti alloy tube and female part of stainless tube. The gap in the thread will be filled with brazing filler metal. However, brittle Ti-Fe intermetallic compounds are formed at the surface of stainless steel through thej diffusion of Ti at the melt. Brazing conditions should be set-up to reduce the formation of intermetallic compounds. For that, 3 kinds of Ag filler metals were selected as the candidates and heating will be done with induction and electric furnaces. Through measuring of joint strength according to the control of pre- and post-braze treatment, heating rate and heating time, optimal brazing method will be fixed. To qualify the brazing procedure and performance and to check defects in final product, the inspection plan will be established according to the requirements of AWS and ASME.

Subject Keywords SMART, steam generator, brazing, filler metal, Ti alloy, stainless j (About 10 words) steel, intermetallic compounds, joint, inspection