ZENTEL™ Albendazole
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Expert Review 2
2021 Expert Committee on Selection and Use of Essential Medicines Application review I.1 Albendazole, mebendazole and praziquantel for the indication of treatment of (item number) taeniid cestode cysts Does the application adequately ☒ Yes address the issue of the public health ☐ need for the medicine? No ☐ Not applicable Comments: The larval stages of three taeniid cestode parasites, Echinococcus granulosus, Echinococcus multilocularis and Taenia solium, produce cysts in humans that are of medical relevance. The diseases caused by these parasitic cysts are called cystic echinococcosis (CE), alveolar echinococcosis (AE), and cysticercosis (being neurocysticercosis (NCC) the most common form) respectively, and they are recognised by WHO as neglected tropical diseases. NCC is mainly a disease of poverty that predominantly affects rural populations in Africa, Asia and Latin America. Access to diagnostic and treatment, to better manage epilepsy and other NCC is a challenge for the people affected in these communities due to the availability and costs of specialised diagnostic and care. Stigma and social discrimination also mean that many people try to “hide” the disease. Briefly summarize the role of the The only real options for treatment of CE are albendazole (ALB) and Mebendazole proposed medicine(s) relative to other (MEB). ALB is the drug of choice as it has better bioavailability. ALB is also preferred to therapeutic agents currently included in MEB, because MEB requires a higher dose and a higher pill burden, for example, an the Model List, or available in the adult patient would require 8 tablets/day of MEB compared with 2 tablets/day ALB. market. ALB and praziquantel ( PZQ) are the only drugs used for the antiparasitic treatment of NCC. -
ALBENDAZOLE (Extrapolation to All Ruminants)
European Medicines Agency Veterinary Medicines and Inspections EMEA/MRL/865/03-FINAL June 2004 COMMITTEE FOR MEDICINAL PRODUCTS FOR VETERINARY USE ALBENDAZOLE (Extrapolation to all ruminants) SUMMARY REPORT (3) 1. Albendazole is a benzimidazole carbamate, used for the treatment of gastrointestinal infestations with roundworms, lungworms and tapeworms and adult flukes of Fasciola hepatica. Albendazole is currently entered into Annex I of Council Regulation (EEC) No. 2377/90 in accordance with the following table: Pharmacologically Marker residue Animal MRLs Target Other active substance(s) species tissues provisions Albendazole Sum of albendazole Bovine, 100 µg/kg Muscle sulphoxide, ovine 100 µg/kg Fat albendazole sulphone 1000 µg/kg Liver and albendazole 2- 500 µg/kg Kidney amino sulphone 100 µg/kg Milk expressed as albendazole 2. In reviewing the availability of endo- and ectoparasiticides for sheep and goats, albendazole was considered for extrapolation from bovine and ovine species to all ruminants. The considerations and criteria leading to the identification of albendazole are described in the Position Paper Regarding Availability of Veterinary Medicines – Extrapolation of MRLs (EMEA/CVMP/457/03-FINAL). 3. The scientific justification for this extrapolation was assessed in accordance with the Notes for Guidance on Risk Analysis Approach for Residues of Veterinary Medicinal Products in Food of Animal Origin (EMEA/CVMP/187/00-FINAL) and on the Establishment of Maximum Residue Limits for Minor Animal Species (EMEA/CVMP/153a/97-FINAL). 4. In setting the ADI in the original assessment of albendazole, the data summarised on the paragraphs below were considered. 5. The mode of action of albendazole is by binding strongly with the tubulin in the cells of nematodes. -
Efficacy and Tolerability of Quinacrine Monotherapy and Albendazole Plus Chloroquine Combination Therapy in Nitroimidazole-Refractory Giardiasis: a Tropnet Study
Klinik für Infektiologie & Spitalhygiene Efficacy and tolerability of quinacrine monotherapy and albendazole plus chloroquine combination therapy in nitroimidazole-refractory giardiasis: a TropNet study Andreas Neumayr, Mirjam Schunk, Caroline Theunissen, Marjan Van Esbroeck, Matthieu Mechain, Manuel Jesús Soriano Pérez, Kristine Mørch, Peter Sothmann, Esther Künzli, Camilla Rothe, Emmanuel Bottieau Journal Club 01.03.21 Andreas Neumayr Background on giardia treatment: • 1st-line treatment: 5-nitroimidazoles: metronidazole (1957), tinidazole, ornidazole, secnidazole • cure rate of 5NIs in 1st-line treatment: ~90% • in the last decade, an increase of 5NI-refractory giardia cases has been observed in travel medicine clinics across Europe: Hospital for Tropical Diseases, London: 2008: 15% --> 2013: 40% 70% of 5NI-refractory cases imported from India • 2nd-line treatment: effectiveness of a 2nd round with a 5NI: ~17% alternative drugs: albendazole, mebendazole, nitazoxanide, quinacrine, furazolidone, chloroquine, paromomycin 2012 TropNet member survey: 53 centres use 39 different treatment regimens, consisting of 7 different drugs in mono- or combination-therapy in various dosages and durations JC 01.03.21 Nabarro LE et al. Clin Microbiol Infect. 2015;21:791-6. • by 2013, there were only 13 reports of 2nd-line therapy for giardiasis (8 case series, 5 individual case reports): n=110 Cure rates Albendazole 6/32 18.7% Paromomycin 5/17 29.4% Nitazoxanide 2/5 40.0% Albendazole + 5-NI 42/53 79.2% Quinacrine 19/21 90.5% Quinacrine + 5-NI 14/14 100% Quinacrine + Paromomycin 2/2 100% • 2013: TropNet "GiardiaREF" study kick-off: Study on efficacy and tolerability of two 2nd-line regimens in nitroimidazole-refractory giardiasis: Quinacrine JC 01.03.21 Meltzer E et al. -
Study Assessing Prices, Availability and Affordability of Children's
Study assessing prices, availability and affordability of children’s medicine in Chhattisgarh, India Part of the Better Medicine for Children project Authors Dr Antony KR Virendra Jain Puni Kokho Dr Kamlesh Jain The salient findings and views expressed in this report are solely those of the authors. Please direct correspondence to the authors: ([email protected], [email protected] [email protected], [email protected]). This publication does not necessarily represent the decisions or policies of the World Health Organization. ii Contents Acknowledgements ........................................................................................... v Abbreviations ................................................................................................... vi Executive summary ......................................................................................... vii Medicine availability .............................................................................................vii Medicine costs ................................................................................................... viii Affordability of standard treatment regimens ........................................................... ix Price components survey ...................................................................................... ix Conclusion .......................................................................................................... x 1. Introduction ................................................................................................. -
Valbazen ® (Albendazole)
® (albendazole oral suspension) Broad-Spectrum Dewormer Oral Suspension for Use in Cattle, Sheep, and Goats for removal and control of liver flukes, tapeworms, stomach worms (including 4th stage inhibited larvae of Ostertagia ostertagi), intestinal worms, and lungworms in cattle and sheep and for the treatment of adult liver flukes in nonlactating goats Active Ingredient Albendazole ............................. 11.36% (equivalent to 113.6 mg/mL) 1 L/33.8 fl oz (1 qt 1.8 fl oz) Approved by FDA under NADA # 110-048 40029175 ® (albendazole oral suspension) Broad-Spectrum Dewormer Oral Suspension for Use in Cattle, Sheep, and Goats for removal and control of liver Indications: flukes, tapeworms, stomach worms (including 4th stage inhibited larvae of Ostertagia Cattle and sheep: Valbazen is a broad-spectrum anthelmintic effective in the removal ostertagi), intestinal worms, and lungworms in cattle and sheep and for the treatment and control of liver flukes, tapeworms, stomach worms (including 4th stage inhibited of adult liver flukes in nonlactating goats larvae of Ostertagia ostertagi ), intestinal worms, and lungworms as indicated below. Active Ingredient: Goats: For the treatment of adult liver flukes in nonlactating goats. Albendazole .......................................................... 11.36% (Equivalent to 113.6 mg/mL) Parasite Cattle Sheep Goats Adult Liver Flukes Fasciola hepatica Fasciola hepatica, Fascioloides magna Fasciola hepatica Heads and Segments Moniezia benedeni, M. expansa Common Tapeworm (Moniezia expansa), Fringed Tapeworm of Tapeworms (Thysanosoma actinioides) Adult and 4th Stage Brown Stomach Worm, including 4th stage Brown Stomach Worm (Ostertagia circumcincta, Marshallagia Larvae of Stomach inhibited larvae (Ostertagia ostertagi), marshalli), Barber Pole Worm (Haemonchus contortus), Small Worms Barber Pole Worm (Haemonchus Stomach Worm (Trichostrongylus axei) contortus, H. -
Albendazole: a Review of Anthelmintic Efficacy and Safety in Humans
S113 Albendazole: a review of anthelmintic efficacy and safety in humans J.HORTON* Therapeutics (Tropical Medicine), SmithKline Beecham International, Brentford, Middlesex, United Kingdom TW8 9BD This comprehensive review briefly describes the history and pharmacology of albendazole as an anthelminthic drug and presents detailed summaries of the efficacy and safety of albendazole’s use as an anthelminthic in humans. Cure rates and % egg reduction rates are presented from studies published through March 1998 both for the recommended single dose of 400 mg for hookworm (separately for Necator americanus and Ancylostoma duodenale when possible), Ascaris lumbricoides, Trichuris trichiura, and Enterobius vermicularis and, in separate tables, for doses other than a single dose of 400 mg. Overall cure rates are also presented separately for studies involving only children 2–15 years. Similar tables are also provided for the recommended dose of 400 mg per day for 3 days in Strongyloides stercoralis, Taenia spp. and Hymenolepis nana infections and separately for other dose regimens. The remarkable safety record involving more than several hundred million patient exposures over a 20 year period is also documented, both with data on adverse experiences occurring in clinical trials and with those in the published literature and\or spontaneously reported to the company. The incidence of side effects reported in the published literature is very low, with only gastrointestinal side effects occurring with an overall frequency of just "1%. Albendazole’s unique broad-spectrum activity is exemplified in the overall cure rates calculated from studies employing the recommended doses for hookworm (78% in 68 studies: 92% for A. duodenale in 23 studies and 75% for N. -
Comparative Genomics of the Major Parasitic Worms
Comparative genomics of the major parasitic worms International Helminth Genomes Consortium Supplementary Information Introduction ............................................................................................................................... 4 Contributions from Consortium members ..................................................................................... 5 Methods .................................................................................................................................... 6 1 Sample collection and preparation ................................................................................................................. 6 2.1 Data production, Wellcome Trust Sanger Institute (WTSI) ........................................................................ 12 DNA template preparation and sequencing................................................................................................. 12 Genome assembly ........................................................................................................................................ 13 Assembly QC ................................................................................................................................................. 14 Gene prediction ............................................................................................................................................ 15 Contamination screening ............................................................................................................................ -
TCM Diagnostics Applied to Parasite-Related Disease
TCM Diagnostics Applied to Parasite-Related Disease by Laraine Crampton, M.A.T.C.M., L. Ac. Capstone Advisor: Lawrence J. Ryan, Ph.D. Presented in partial fulfillment of the requirements for the degree Doctor of Acupuncture and Oriental Medicine Yo San University of Traditional Chinese Medicine Los Angeles, California April 2014 TCM and Parasites/Crampton 2 Approval Signatures Page This Capstone Project has been reviewed and approved by: April 30th, 2014 ____________________________________________________________________________ Lawrence J. Ryan, Ph. D. Capstone Project Advisor Date April 30th, 2014 ________________________________________________________________________ Don Lee, L. Ac. Specialty Chair Date April 30th, 2014 ________________________________________________________________________ Andrea Murchison, D.A.O.M., L.Ac. Program Director Date TCM and Parasites/Crampton 3 Abstract Complex, chronic disease affects millions in the United States, imposing a significant cost to the affected individuals and the productivity and economic realities those individuals and their families, workplaces and communities face. There is increasing evidence leading towards the probability that overlooked and undiagnosed parasitic disease is a causal, contributing, or co- existent factor for many of those afflicted by chronic disease. Yet, frustratingly, inadequate diagnostic methods and clever adaptive mechanisms in parasitic organisms mean that even when physicians are looking for parasites, they may not find what is there to be found. Examining the practice of medicine in the United States just over a century ago reveals that fully a third of diagnostic and treatment concerns for leading doctors of the time revolved around parasitic organisms and related disease, and that the population they served was largely located in rural areas. By the year 2000, more than four-fifths of the population had migrated to cities, enjoying the benefits of municipal services, water treatment systems, grocery stores and restaurants. -
Prediction of Drug Interactions with Methadone, Buprenorphine and Oxycodone from in Vitro Inhibition of Metabolism
The author(s) shown below used Federal funds provided by the U.S. Department of Justice and prepared the following final report: Document Title: Prediction of Drug Interactions with Methadone, Buprenorphine and Oxycodone from In Vitro Inhibition of Metabolism Author(s): David E. Moody, Ph.D. Document No.: 250127 Date Received: July 2016 Award Number: 2011-DN-BX-K532 This report has not been published by the U.S. Department of Justice. To provide better customer service, NCJRS has made this federally funded grant report available electronically. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice. February 2016 Research and Development in Forensic Toxicology Prediction of drug interactions with methadone, buprenorphine and oxycodone from in vitro inhibition of metabolism Final Technical Report Submitted electronically to: U.S. Department of Justice Office of Justice Programs National Institute of Justice Prepared by: David E. Moody. Ph.D. Director of the Center for Human Toxicology, and Research Professor of Pharmacology and Toxicology [email protected] / 801-581-5117 NIJ Award Number: 2011-DN-BX-K532 Reporting Period: January 1, 2012 to December 31, 2015 Recipient Organization: University of Utah 75 South 2000 East, Room 222 Salt Lake City, UT 84112-8930 Organizational DUNS: 0090953650000 EIN: 876000525 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. -
Parasitic Organisms Chart
Parasitic organisms: Pathogen (P), Potential pathogen (PP), Non-pathogen (NP) Parasitic Organisms NEMATODESNematodes – roundworms – ROUNDWORMS Organism Description Epidemiology/Transmission Pathogenicity Symptoms Ancylostoma -Necator Hookworms Found in tropical and subtropical Necator can only be transmitted through penetration of the Some are asymptomatic, though a heavy burden is climates, as well as in areas where skin, whereas Ancylostoma can be transmitted through the associated with anemia, fever, diarrhea, nausea, Ancylostoma duodenale Soil-transmitted sanitation and hygiene are poor.1 skin and orally. vomiting, rash, and abdominal pain.2 nematodes Necator americanus Infection occurs when individuals come Necator attaches to the intestinal mucosa and feeds on host During the invasion stages, local skin irritation, elevated into contact with soil containing fecal mucosa and blood.2 ridges due to tunneling, and rash lesions are seen.3 matter of infected hosts.2 (P) Ancylostoma eggs pass from the host’s stool to soil. Larvae Ancylostoma and Necator are associated with iron can penetrate the skin, enter the lymphatics, and migrate to deficiency anemia.1,2 heart and lungs.3 Ascaris lumbricoides Soil-transmitted Common in Sub-Saharan Africa, South Ascaris eggs attach to the small intestinal mucosa. Larvae Most patients are asymptomatic or have only mild nematode America, Asia, and the Western Pacific. In migrate via the portal circulation into the pulmonary circuit, abdominal discomfort, nausea, dyspepsia, or loss of non-endemic areas, infection occurs in to the alveoli, causing a pneumonitis-like illness. They are appetite. Most common human immigrants and travelers. coughed up and enter back into the GI tract, causing worm infection obstructive symptoms.5 Complications include obstruction, appendicitis, right It is associated with poor personal upper quadrant pain, and biliary colic.4 (P) hygiene, crowding, poor sanitation, and places where human feces are used as Intestinal ascariasis can mimic intestinal obstruction, fertilizer. -
Sounding out Falsified Medicines from Genuine Medicines Using
www.nature.com/scientificreports OPEN Sounding out falsifed medicines from genuine medicines using Broadband Acoustic Resonance Dissolution Spectroscopy (BARDS) Anas Alfarsi1,10, Céline Caillet2,3,4, Garry Fawbert5, Simon Lawrence5, Jacob Krüse6, Seán McSweeney7, Marcus O’Mahony8, Arjen Dondorp9, Paul N. Newton2,3,4 & Dara Fitzpatrick1* The trade in falsifed medicine has increased signifcantly and it is estimated that global falsifed sales have reached $100 billion in 2020. The EU Falsifed Medicines Directive states that falsifed medicines do not only reach patients through illegal routes but also via the legal supply chain. Falsifed medicines can contain harmful ingredients. They can also contain too little or too much active ingredient or no active ingredient at all. BARDS (Broadband Acoustic Resonance Dissolution Spectroscopy) harnesses an acoustic phenomenon associated with the dissolution of a sample (tablet or powder). The resulting acoustic spectrum is unique and intrinsic to the sample and can be used as an identifer or signature profle. BARDS was evaluated in this study to determine whether a product is falsifed or genuine in a rapid manner and at lower cost than many existing technologies. A range of genuine and falsifed medicines, including falsifed antimalarial tablets from south-east Asia, were tested, and compared to their counterpart genuine products. Signifcant diferences between genuine and falsifed doses were found in their acoustic signatures as they disintegrate and dissolve. Principal component analysis was employed to diferentiate between the genuine and falsifed medicines. This demonstrates that the tablets and capsules included here have intrinsic acoustic signatures which could be used to screen the quality of medicines. -
2021 EMPIRE PLAN FLEXIBLE FORMULARY DRUG LIST Administered by CVS Caremark®
April 2021 2021 EMPIRE PLAN FLEXIBLE FORMULARY DRUG LIST Administered by CVS Caremark® The Empire Plan Flexible Formulary is a guide within select therapeutic categories for enrollees and health care providers. Generics should be considered the first line of prescribing. If there is no generic available, there may be more than one brand-name drug to treat a condition. These preferred brand-name drugs are listed to help identify products that are clinically appropriate and cost-effective. This is not an all-inclusive list. This formulary includes a list of commonly prescribed covered drugs by therapeutic class, a Quick Reference Drug List with commonly prescribed covered drugs in alphabetic order, a listing of commonly prescribed non-preferred (Level 3) covered drugs and covered preferred drug alternatives, and a listing of excluded drugs along with covered alternatives. This list represents brand-name drugs in CAPS and generic drugs in lowercase italics. Generally generics are subject to a Level 1 copayment, or the lowest copayment; preferred brand drugs are subject to a Level 2 copayment, and non-preferred brand drugs are subject to a Level 3 copayment, or the highest copayment. Refer to your plan materials for specific information regarding copayment amounts. ENROLLEE HEALTH CARE PROVIDER Your benefit plan provides you with a prescription benefit program Your patient is covered under a prescription benefit plan administered administered by CVS Caremark. Ask your doctor to consider by CVS Caremark. As a way to help manage health care costs, prescribing, when medically appropriate, a preferred generic or a authorize generic substitution whenever possible. If you believe a preferred brand-name drug from this list.