Lenses and the Human Eye
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Te2, Part Iii
TERMINOLOGIA EMBRYOLOGICA Second Edition International Embryological Terminology FIPAT The Federative International Programme for Anatomical Terminology A programme of the International Federation of Associations of Anatomists (IFAA) TE2, PART III Contents Caput V: Organogenesis Chapter 5: Organogenesis (continued) Systema respiratorium Respiratory system Systema urinarium Urinary system Systemata genitalia Genital systems Coeloma Coelom Glandulae endocrinae Endocrine glands Systema cardiovasculare Cardiovascular system Systema lymphoideum Lymphoid system Bibliographic Reference Citation: FIPAT. Terminologia Embryologica. 2nd ed. FIPAT.library.dal.ca. Federative International Programme for Anatomical Terminology, February 2017 Published pending approval by the General Assembly at the next Congress of IFAA (2019) Creative Commons License: The publication of Terminologia Embryologica is under a Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0) license The individual terms in this terminology are within the public domain. Statements about terms being part of this international standard terminology should use the above bibliographic reference to cite this terminology. The unaltered PDF files of this terminology may be freely copied and distributed by users. IFAA member societies are authorized to publish translations of this terminology. Authors of other works that might be considered derivative should write to the Chair of FIPAT for permission to publish a derivative work. Caput V: ORGANOGENESIS Chapter 5: ORGANOGENESIS -
Panoramas Shoot with the Camera Positioned Vertically As This Will Give the Photo Merging Software More Wriggle-Room in Merging the Images
P a n o r a m a s What is a Panorama? A panoramic photo covers a larger field of view than a “normal” photograph. In general if the aspect ratio is 2 to 1 or greater then it’s classified as a panoramic photo. This sample is about 3 times wider than tall, an aspect ratio of 3 to 1. What is a Panorama? A panorama is not limited to horizontal shots only. Vertical images are also an option. How is a Panorama Made? Panoramic photos are created by taking a series of overlapping photos and merging them together using software. Why Not Just Crop a Photo? • Making a panorama by cropping deletes a lot of data from the image. • That’s not a problem if you are just going to view it in a small format or at a low resolution. • However, if you want to print the image in a large format the loss of data will limit the size and quality that can be made. Get a Really Wide Angle Lens? • A wide-angle lens still may not be wide enough to capture the whole scene in a single shot. Sometime you just can’t get back far enough. • Photos taken with a wide-angle lens can exhibit undesirable lens distortion. • Lens cost, an auto focus 14mm f/2.8 lens can set you back $1,800 plus. What Lens to Use? • A standard lens works very well for taking panoramic photos. • You get minimal lens distortion, resulting in more realistic panoramic photos. • Choose a lens or focal length on a zoom lens of between 35mm and 80mm. -
Chapter 3 (Aberrations)
Chapter 3 Aberrations 3.1 Introduction In Chap. 2 we discussed the image-forming characteristics of optical systems, but we limited our consideration to an infinitesimal thread- like region about the optical axis called the paraxial region. In this chapter we will consider, in general terms, the behavior of lenses with finite apertures and fields of view. It has been pointed out that well- corrected optical systems behave nearly according to the rules of paraxial imagery given in Chap. 2. This is another way of stating that a lens without aberrations forms an image of the size and in the loca- tion given by the equations for the paraxial or first-order region. We shall measure the aberrations by the amount by which rays miss the paraxial image point. It can be seen that aberrations may be determined by calculating the location of the paraxial image of an object point and then tracing a large number of rays (by the exact trigonometrical ray-tracing equa- tions of Chap. 10) to determine the amounts by which the rays depart from the paraxial image point. Stated this baldly, the mathematical determination of the aberrations of a lens which covered any reason- able field at a real aperture would seem a formidable task, involving an almost infinite amount of labor. However, by classifying the various types of image faults and by understanding the behavior of each type, the work of determining the aberrations of a lens system can be sim- plified greatly, since only a few rays need be traced to evaluate each aberration; thus the problem assumes more manageable proportions. -
Considering Contact Lens CORNEAL RESHAPING
Considering Contact Lens CORNEAL RESHAPING Patient Information Booklet for Potential Users of PARAGON RG-4 Contact Lens Corneal Reshaping PATIENT INFORMATION BOOKLET FOR POTENTIAL USERS OF PARAGON RG-4 Manufactured in Paragon HDS® 100 (paflufocon D) Contact Lenses For Contact Lens Corneal Reshaping Overnight Wear CAUTION: Federal (US) law restricts this device to sale by, or on the order of a licensed practitioner. Contact lenses for corneal reshaping should be fitted only by a trained and certified contact lens fitter. Nonsterile. Clean and condition lenses prior to use. ii TABLE OF CONTENTS Page Introduction 1 How The Eye Functions 1 How Paragon RG-4 Contact Lenses For Corneal Reshaping Function 2 Alternative Ways To Correct Nearsightedness 3 Risk Analysis 3 Indications 4 Precautions 4 Contraindications (Reasons Not To Use) 6 Warnings 6 Adverse Effects (Problems and What To Do) 7 Clinical Study Data 7 Overnight Wear Safety Summary 12 Maintaining Effects of Paragon RG-4 Lenses For Corneal Reshaping 13 Glossary 14 iii INTRODUCTION The information in this booklet is to help you decide whether or not to be fitted with Paragon RG-4 lens designs for Contact Lens Corneal Reshaping. Corneal reshaping is a fitting procedure that temporarily corrects or greatly reduces nearsightedness (known by the medical name, myopia) with or without astigmatism after contact lenses have been removed. By temporary, it is meant that the contact lenses are worn while sleeping (overnight) and then removed upon awaking; whereupon the nearsightedness remains corrected or greatly reduced for all or most of your waking hours. The exact time period over which the myopia remains corrected varies with each patient. -
Ground-Based Photographic Monitoring
United States Department of Agriculture Ground-Based Forest Service Pacific Northwest Research Station Photographic General Technical Report PNW-GTR-503 Monitoring May 2001 Frederick C. Hall Author Frederick C. Hall is senior plant ecologist, U.S. Department of Agriculture, Forest Service, Pacific Northwest Region, Natural Resources, P.O. Box 3623, Portland, Oregon 97208-3623. Paper prepared in cooperation with the Pacific Northwest Region. Abstract Hall, Frederick C. 2001 Ground-based photographic monitoring. Gen. Tech. Rep. PNW-GTR-503. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 340 p. Land management professionals (foresters, wildlife biologists, range managers, and land managers such as ranchers and forest land owners) often have need to evaluate their management activities. Photographic monitoring is a fast, simple, and effective way to determine if changes made to an area have been successful. Ground-based photo monitoring means using photographs taken at a specific site to monitor conditions or change. It may be divided into two systems: (1) comparison photos, whereby a photograph is used to compare a known condition with field conditions to estimate some parameter of the field condition; and (2) repeat photo- graphs, whereby several pictures are taken of the same tract of ground over time to detect change. Comparison systems deal with fuel loading, herbage utilization, and public reaction to scenery. Repeat photography is discussed in relation to land- scape, remote, and site-specific systems. Critical attributes of repeat photography are (1) maps to find the sampling location and of the photo monitoring layout; (2) documentation of the monitoring system to include purpose, camera and film, w e a t h e r, season, sampling technique, and equipment; and (3) precise replication of photographs. -
To See the Invisible: the Quest of Imaging Vitreous J
DOP42005.qxd 4/15/08 11:34 AM Page 5 Meyer CH (ed): Vital Dyes in Vitreoretinal Surgery. Dev Ophthalmol. Basel, Karger, 2008, vol 42, pp 5–28 To See the Invisible: The Quest of Imaging Vitreous J. Sebag VMR Institute, University of Southern California, Los Angeles, Calif., USA Abstract Purpose: Imaging vitreous has long been a quest to view what is, by design, invisible. This chapter will review important historical aspects, past and present imaging methodologies, and new technologies that are currently in development for future research and clinical applications. Methods: Classic and modern histologic techniques, dark-field slit microscopy, clinical slit lamp biomicroscopy, standard and scanning laser ophthalmoscopy (SLO), ultrasonography, optical coherence tomography (OCT), com- bined OCT-SLO, magnetic resonance and Raman spectroscopies, and dynamic light scattering method- ologies are presented. Results: The best available histologic techniques for imaging vitreous are those that avoid rapid dehydration of vitreous specimens. Dark-field slit microscopy enables in vitro imaging without dehydration or tissue fixatives. OCT enables better in vivo visualization of the vitreoretinal inter- face than SLO and ultrasonography, but does not adequately image the vitreous body. The combination of OCT with SLO has provided useful new imaging capabilities, but only at the vitreoretinal interface. Dynamic light scattering can evaluate the vitreous body by determining the average sizes of vitreous macromolecules in aging, disease, and as a means to assess the effects of pharmacologic vitreolysis. Raman spectroscopy can detect altered vitreous molecules, such as glycated collagen and other pro- teins in diabetic vitreopathy and possibly other diseases. Conclusions: A better understanding of normal vitreous physiology and structure and how these change in aging and disease is needed to develop more effective therapies and prevention. -
AG-AF100 28Mm Wide Lens
Contents 1. What change when you use the different imager size camera? 1. What happens? 2. Focal Length 2. Iris (F Stop) 3. Flange Back Adjustment 2. Why Bokeh occurs? 1. F Stop 2. Circle of confusion diameter limit 3. Airy Disc 4. Bokeh by Diffraction 5. 1/3” lens Response (Example) 6. What does In/Out of Focus mean? 7. Depth of Field 8. How to use Bokeh to shoot impressive pictures. 9. Note for AF100 shooting 3. Crop Factor 1. How to use Crop Factor 2. Foal Length and Depth of Field by Imager Size 3. What is the benefit of large sensor? 4. Appendix 1. Size of Imagers 2. Color Separation Filter 3. Sensitivity Comparison 4. ASA Sensitivity 5. Depth of Field Comparison by Imager Size 6. F Stop to get the same Depth of Field 7. Back Focus and Flange Back (Flange Focal Distance) 8. Distance Error by Flange Back Error 9. View Angle Formula 10. Conceptual Schema – Relationship between Iris and Resolution 11. What’s the difference between Video Camera Lens and Still Camera Lens 12. Depth of Field Formula 1.What changes when you use the different imager size camera? 1. Focal Length changes 58mm + + It becomes 35mm Full Frame Standard Lens (CANON, NIKON, LEICA etc.) AG-AF100 28mm Wide Lens 2. Iris (F Stop) changes *distance to object:2m Depth of Field changes *Iris:F4 2m 0m F4 F2 X X <35mm Still Camera> 0.26m 0.2m 0.4m 0.26m 0.2m F4 <4/3 inch> X 0.9m X F2 0.6m 0.4m 0.26m 0.2m Depth of Field 3. -
Choosing Digital Camera Lenses Ron Patterson, Carbon County Ag/4-H Agent Stephen Sagers, Tooele County 4-H Agent
June 2012 4H/Photography/2012-04pr Choosing Digital Camera Lenses Ron Patterson, Carbon County Ag/4-H Agent Stephen Sagers, Tooele County 4-H Agent the picture, such as wide angle, normal angle and Lenses may be the most critical component of the telescopic view. camera. The lens on a camera is a series of precision-shaped pieces of glass that, when placed together, can manipulate light and change the appearance of an image. Some cameras have removable lenses (interchangeable lenses) while other cameras have permanent lenses (fixed lenses). Fixed-lens cameras are limited in their versatility, but are generally much less expensive than a camera body with several potentially expensive lenses. (The cost for interchangeable lenses can range from $1-200 for standard lenses to $10,000 or more for high quality, professional lenses.) In addition, fixed-lens cameras are typically smaller and easier to pack around on sightseeing or recreational trips. Those who wish to become involved in fine art, fashion, portrait, landscape, or wildlife photography, would be wise to become familiar with the various types of lenses serious photographers use. The following discussion is mostly about interchangeable-lens cameras. However, understanding the concepts will help in understanding fixed-lens cameras as well. Figures 1 & 2. Figure 1 shows this camera at its minimum Lens Terms focal length of 4.7mm, while Figure 2 shows the110mm maximum focal length. While the discussion on lenses can become quite technical there are some terms that need to be Focal length refers to the distance from the optical understood to grasp basic optical concepts—focal center of the lens to the image sensor. -
Nomina Histologica Veterinaria, First Edition
NOMINA HISTOLOGICA VETERINARIA Submitted by the International Committee on Veterinary Histological Nomenclature (ICVHN) to the World Association of Veterinary Anatomists Published on the website of the World Association of Veterinary Anatomists www.wava-amav.org 2017 CONTENTS Introduction i Principles of term construction in N.H.V. iii Cytologia – Cytology 1 Textus epithelialis – Epithelial tissue 10 Textus connectivus – Connective tissue 13 Sanguis et Lympha – Blood and Lymph 17 Textus muscularis – Muscle tissue 19 Textus nervosus – Nerve tissue 20 Splanchnologia – Viscera 23 Systema digestorium – Digestive system 24 Systema respiratorium – Respiratory system 32 Systema urinarium – Urinary system 35 Organa genitalia masculina – Male genital system 38 Organa genitalia feminina – Female genital system 42 Systema endocrinum – Endocrine system 45 Systema cardiovasculare et lymphaticum [Angiologia] – Cardiovascular and lymphatic system 47 Systema nervosum – Nervous system 52 Receptores sensorii et Organa sensuum – Sensory receptors and Sense organs 58 Integumentum – Integument 64 INTRODUCTION The preparations leading to the publication of the present first edition of the Nomina Histologica Veterinaria has a long history spanning more than 50 years. Under the auspices of the World Association of Veterinary Anatomists (W.A.V.A.), the International Committee on Veterinary Anatomical Nomenclature (I.C.V.A.N.) appointed in Giessen, 1965, a Subcommittee on Histology and Embryology which started a working relation with the Subcommittee on Histology of the former International Anatomical Nomenclature Committee. In Mexico City, 1971, this Subcommittee presented a document entitled Nomina Histologica Veterinaria: A Working Draft as a basis for the continued work of the newly-appointed Subcommittee on Histological Nomenclature. This resulted in the editing of the Nomina Histologica Veterinaria: A Working Draft II (Toulouse, 1974), followed by preparations for publication of a Nomina Histologica Veterinaria. -
Topic 3: Operation of Simple Lens
V N I E R U S E I T H Y Modern Optics T O H F G E R D I N B U Topic 3: Operation of Simple Lens Aim: Covers imaging of simple lens using Fresnel Diffraction, resolu- tion limits and basics of aberrations theory. Contents: 1. Phase and Pupil Functions of a lens 2. Image of Axial Point 3. Example of Round Lens 4. Diffraction limit of lens 5. Defocus 6. The Strehl Limit 7. Other Aberrations PTIC D O S G IE R L O P U P P A D E S C P I A S Properties of a Lens -1- Autumn Term R Y TM H ENT of P V N I E R U S E I T H Y Modern Optics T O H F G E R D I N B U Ray Model Simple Ray Optics gives f Image Object u v Imaging properties of 1 1 1 + = u v f The focal length is given by 1 1 1 = (n − 1) + f R1 R2 For Infinite object Phase Shift Ray Optics gives Delta Fn f Lens introduces a path length difference, or PHASE SHIFT. PTIC D O S G IE R L O P U P P A D E S C P I A S Properties of a Lens -2- Autumn Term R Y TM H ENT of P V N I E R U S E I T H Y Modern Optics T O H F G E R D I N B U Phase Function of a Lens δ1 δ2 h R2 R1 n P0 P ∆ 1 With NO lens, Phase Shift between , P0 ! P1 is 2p F = kD where k = l with lens in place, at distance h from optical, F = k0d1 + d2 +n(D − d1 − d2)1 Air Glass @ A which can be arranged to|giv{ze } | {z } F = knD − k(n − 1)(d1 + d2) where d1 and d2 depend on h, the ray height. -
Digital Photography Basics for Beginners
DIGITAL PHOTOGRAPHY BASICS FOR BEGINNERS by Robert Berdan [email protected] www.canadiannaturephotographer.com These notes are free to use by anyone learning or teaching photography. 1. Choosing a camera - there are 2 main types of compact cameras A) Point and Shoot Camera (some have interchangeable lenses most don't) - you view the scene on a liquid crystal display (LCD) screen, some cameras also offer viewfinders. B) Single Lens Reflex (SLR) - cameras with interchangeable lenses let you see the image through the lens that is attached to the camera. What you see is what you get - this feature is particularly valuable when you want to use different types of lenses. Digital SLR Camera with Interchangeable zoom lens 1 Point and shoot cameras are small, light weight and can be carried in a pocket. These cameras tend to be cheaper then SLR cameras. Many of these cameras offer a built in macro mode allowing extreme close-up pictures. Generally the quality of the images on compact cameras is not as good as that from SLR cameras, but they are capable of taking professional quality images. SLR cameras are bigger and usually more expensive. SLRs can be used with a wide variety of interchangeable lenses such as telephoto lenses and macro lenses. SLR cameras offer excellent image quality, lots of features and accessories (some might argue too many features). SLR cameras also shoot a higher frame rates then compact cameras making them better for action photography. Their disadvantages include: higher cost, larger size and weight. They are called Single Lens Reflex, because you see through the lens attached to the camera, the light is reflected by a mirror through a prism and then the viewfinder. -
A Theoretical and Practical Introduction to Optics a Theoretical and Practical Introduction to Optics
White Paper A Theoretical and Practical Introduction to Optics A Theoretical and Practical Introduction to Optics Be honest: do you really know how to calculate the focal length of a lens? If so, you are an exception to the rule and can stop reading here !! For the rest of you, here is a second chance. Back to square one "Piece of broken glass starts forest fire"– a common headline during the summer. But how could this have happened? Due to the enormous distance between the Earth and the Sun, the Sun only appears as a tiny point emitting parallel rays of light (figure 1a) Should these parallel rays pass through a lens (or a piece of glass, which has similar characteristics) the rays would meet behind the lens at what is called the focal point. But what happens if our point of light is so near to the lens that we can not assume to have parallel rays of light? They cross each other behind the focal point (figure 1b). If we take a look at the image of our point of light at the focal points position we will see a unclear blurred spot. And so the question arises- "what is focusing?". Focusing is to increase the distance between the focal plane and the lens until the focal plane and the junction of the rays overlap each other (figure 1c). Thus, for single points of light the situation is quite simple. But what happens to the image of screws, PCBs or plates of steel? From points of light to images A point of light does not necessarily originate directly from the sun, candles or lamps, it can also result from a reflection.