Index Seminum 2020

Total Page:16

File Type:pdf, Size:1020Kb

Index Seminum 2020 Hortus Pharmacognosticus Universitatis Medicinalis Lublinensis INDEX SEMINUM 2020 fot. E. Sieniawska Chair and Department of Pharmacognosy Medical University of Lublin 1 W. Chodźki Str., 20-093 Lublin, Poland Grażyna Zgórka, Assoc. Prof. The Head of the Chair and Department of Pharmacognosy Medical University of Lublin 1 W. Chodźki Str., 20-093 Lublin tel./fax + 48 81 448 70 80 http://www.pharmacognosy.org e-mail: [email protected] Elwira Sieniawska, Assist. Prof. The Head of Medicinal Plants Garden with the Lab Unit Magdalena Maciejewska-Turska, M.Sc. Garden technical assistant: Monika Białecka Location: Hortus Pharmacognosticus Universitatis Medicinalis Lublinensis 4 Jaczewskiego Str. 20-093 Lublin Geographic position 700 m N-W near Center of town Lublin Latitude 51º 15’ 22” Longitude 22º 33’ 51” Altitude ca 185 m above sea level Acanthaceae 1. Acanthus balcanicus Heywood & F.B.K.Richardson Amaranthaceae 2. Dysphania ambrosioides (L.) Mosyakin & Clemants (syn. Chenopodium ambrosioides ) Apiaceae (Umbelliferae) 3. Ammi majus L. 4. Ammi visnaga (L.) Lam. 5. Angelica archangelica L. 6. Angelica sylvestris L. 7. Anthriscus cerefolium L. Hoffm.** 8. Astrantia major L. 9. Bifora radians Bieb. 10. Bupleurum rotundifolium L. “Griffiti” 11. Carum carvi L. ** 12. Chaerophyllum temulum L. 13. Conium maculatum L. 14. Eryngium amethystinum L. 15. Eryngium alpinum L. 16. Eryngium campestre L. 17. Eryngium creticum Lam. 18. Eryngium giganteum L. 19. Eryngium palmatum Pancic. & Vis. 20. Eryngium planum L. 21. Falcaria vulgaris Bernh. 22. Ferula assa-foetida L. 23. Ferula communis subsp. glauca (L.) Rouy & E.G.Camus 24. Ferula tingitana L. 25. Foeniculum vulgare Mill. 26. Heracleum leskowii L. 27. Heracleum sphondylium L. 28. Levisticum officinale L. 29. Ligusticum jeholense Nakai & Kitag. 30. Ligusticum lucidum Mill. 31. Ligusticum mutellina (L.) Crantz (syn. Mutelina purpurea (Poir.) Thell. 32. Meum athamanticum Jacq 33. Myrrhis odorata (L.) Scop. (syn. Scandix odorata L.) 34. Oenanthe aquatica (L.) Poir. 35. Oenanthe fistulosa L. 36. Oenanthe pimpinelloides L. 37. Orlaya grandiflora (L.) Hoffm. 38. Pastinaca sativa L. 39. Peucedanum alsaticum L. 40. Peucedanum cervaria (L.)Cusson ex Lapeyr. 41. Peucedanum ruthenicum M. 42. Peucedanum schotii Besser ex DC. 43. Peucedanum verticillare (L.) W.J.D.Koch ex DC. 44. Portenschlagiella ramosissima (Port.) Tutin 45. Scandix pecten-veneris L. 46. Seseli annuum L. 47. Seseli austriacum Wohlf. 48. Seseli elatum subsp. osseum (Crantz) P.W.Ball (syn. Seseli osseum Crantz) 49. Seseli glaucum L. 50. Seseli gracile Waldst. et Kit. 51. Seseli gummiferum Pall. ex Sm. 52. Seseli libanotis (L.) W.D.J. Koch. (syn. Libanotis pyrenaica (L.) Bourg) 53. Seseli montanum L. 54. Seseli osseum Crantz. 55. Seseli pallasii Besser. 56. Silaum silaus (L.) Schinz & Thell. 57. Sium sisarum L. 58. Trinia glauca (L.) Dumort. ssp. glauca Asclepiadaceae 59. Vincetoxicum nigrum (L.) Moench. Asteraceae (Compositae) 60. Achillea millefolium L. 61. Achillea filipendulina Lam. 62. Artemisia absinthium L. 63. Calendula officinalis L. 64. Carduus carolinensis Gouan. 65. Centaurea jacea L. 66. Centaurea scabiosa L.* 67. Coreopsis grandiflora Hogg ex Sweet. 68. Echinacea purpurea (L.) Moench. 69. Inula helenium L. 70. Onopodium acanthium L. 71. Silybum marianum (L.) Gaertn. 72. Symphyotrichum ericoides (L.) G. L. Nesom (syn. Aster ericoides L.).* 73. Tanacetum cinerariaefolium (Trevir.) Schultz-Bip. 74. Tanacetum vulgare L. 75. Taraxacum officinale (L.) Weber ex F.H. Wigg Asphodelaceae 76. Asphodelus albus Wild.* Brassicaceae (Cruciferae) 77. Capsella bursa-pastoris (L.) Medik.* 78. Sinapis alba L.* Caryophyllaceae 79. Herniaria glabra L.* 80. Saponaria officinalis L. Fabaceae (Papilionaceae) 81. Baptisia australis (L.) R.Br. 82. Desmodium canadense (L.) DC. 83. Glycyrrhiza glabra L. 84. Melilotus officinalis L. 85. Trifolium arvense L.* 86. Trifolium campestre Schreb.* 87. Trifolium ochroleucum Huds. 88. Trifolium pannonicum Jacq. 89. Trifolium rubens L. 90. Trifolium trichocephalum M. Bieb. Gentianaceae 91. Gentiana kurroo Royle 92. Gentiana cruciata L. 93. Gentiana dahurica Fisch. 94. Gentiana macrophylla Pall. Hypericaceae (Guttiferae) 95. Hypericum olympicum L.* 96. Hypericum perforatum L.* 97. Hypericum pulchrum L.* Lamiaceae (Labiatae) 98. Dracocephalum argunense Fisch. ex Link 99. Dracocephalum grandiflorum L. 100. Dracocephalum ruyschiana L. 101. Hyssopus officinalis subsp. aristatus (Godr.) Nyman (syn. Hyssopus officinalis subsp. pilifer (Pant.) Murb.)* 102. Hyssopus officinalis ssp. canescens (DC.) Nyman* 103. Hyssopus seravschanicus (Dubjan.) Pazji.* 104. Lavandula angustifolia Mill. (syn. Lavandula officinalis Chaix) 105. Leonurus cardiaca ssp. villosus (Desf. ex d’Urv.) Hyl. 106. Leonurus japonicus Houtt. 107. Leonurus sibiricus L.* 108. Leonurus quinquelobatus Gilib.* 109. Leonurus turkestanicus V.I. Krecz. & Kuprian. 110. Marrubium vulgare L. 111. Melissa officinalis L. 112. Mentha x piperita L.* 113. Phlomis alpina L. 114. Phlomis herba-venti L. 115. Phlomis tuberosa L. 116. Physostegia virginiana (L.) Benth.* 117. Salvia candelabrum Boiss. 118. Salvia officinalis L. 119. Salvia przewalski Y.H.Wu (unresolved name) 120. Salvia sclarea L. 121. Salvia virgata Jacq.* 122. Salvia viscosa Jacq. 123. Satureja montana L. 124. Scutellaria albida L. 125. Scutellaria alpina L. 126. Scutellaria baicalensis Georgi. 127. Scutellaria incana Spreng.* 128. Scutellaria integrifolia L. 129. Teucrium scorodonia L. 130. Thymus vulgaris L. Liliaceae 131. Convallaria majalis L. Linaceae 132. Linum usitatissimum L.* Lythraceae 133. Lythrum salicaria L.* Malvaceae 134. Althaea officinalis L. 135. Malva sylvestris L. Melanthiaceae 136. Veratrum nigrum L. Papaveraceae 137. Agremone mexicana L. 138. Glaucium flavum Crantz. 139. Papaver dubium L.** 140. Papaver nudicale L.** 141. Papaver orientale L. cv. rosea ** 142. Papaver pseudo-orientale Medw.** 143. Papaver rhoeas L. Plantaginaceae 144. Globularia vulgaris L. (syn. Globularia bisnagarica L.) 145. Plantago lanceolata L.* 146. Plantago major L. 147. Veronica repens Clarion ex DC.* Polygonaceae 148. Fagopyrum esculentum Moench* 149. Polygonum bistorta L. 150. Rheum officinale Baill. 151. Rheum palmatum L. Primulaceae 152. Primula officinalis (L.) Hill.* Ranunculaceae 153. Actaea europaea (Schipcz.) J.Compton (syn. Cimicifuga europaea Schipcz.) 154. Actaea dahurica (Turcz. ex Fisch. & C.A.Mey.) Franch. (syn.Cimicifuga dahurica (Turcz.) Maxim.) 155. Actaea racemosa L. (syn. Cimicifuga racemosa (L.) Nutt.) 156. Nigella sativa L. Rosaceae 157. Agrimonia eupatoria L. 158. Filipendula ulmaria (L.) Maxim. 159. Potentilla tanacetifolia Willd. ex Schltdl.* 160. Rosa canina L. 161. Sanguisorba minor Scop. Rutaceae 162. Dictamnus albus L. 163. Ruta angustifolia Pers. 164. Ruta corsica DC. 165. Ruta graveolens L. ssp. hortensis (Mill.) Gams. 166. Ruta macrophylla Sol. Scrophulariaceae 167. Digitalis lanata Ehrh. 168. Digitalis purpurea L. 169. Verbascum austriacum Schott.* 170. Verbascum levanticum I.K. Ferguson 171. Verbascum nigrum L. 172. Verbascum phlomoides L. 173. Verbascum thapsus L. Solanaceae 174. Atropa belladonna L. 175. Datura stramonium L. 176. Hyoscyamus niger L. Violaceae 177. Viola tricolor L. ** - Seeds collected in 2018 * - Seeds collected in 2019 Compiling and publishing: December 2020 Chair and Department of Pharmacognosy Medical University of Lublin 1 W. Chodźki Str., 20-093 Lublin POLAND Agreement for supplying plant material In consideration to the Convention on Biological Diversity 1992, we distribute the seeds from our Index Seminum as well as any plant material under following conditions: - The delivered material may be used for non-commercial proposes only such as scientific study, educational purposes and environmental protection - The material cannot be transferred to any third party without written agreement containing all terms - If plant material is to be used for publication our Garden should be quoted as a supplier and receive an unsolicited reprint I herewith accept the abovementioned conditions Date, Signature Recipient’s name and address, stamp DESIDERATA Please send your order no later than 10th April 2021 Nr Nr Nr Nr Nr Nr Nr Nr Nr Nr Nr Nr Nr Nr Nr Nr Nr Nr Nr Nr Nr Nr Nr Nr Nr Nr Nr Nr YOUR ADDRESS: .
Recommended publications
  • Status of the Umbelliferae Ssp. in Russia
    Status of the Umbelliferae ssp. in Russia Tatiana Khmelinskaya Olga Zvereva Anna Artemyeva The collection status The formation of Russian Umbelliferae collection had begun in 1923 after N.I.Vavilov visit West-European countries, USA and Canada (1921- 1922), from the seed samples shipped by breeding companies of the United States, United Kingdom, France, Germany, Austria. Russian resources were registered in VIR collection through All-Russian agricultural exhibition. The local landraces were collected during collection missions in Afghanistan, Iran, Armenia, Uzbekistan, Turkey, etc. In 1926 VIR scientists started to study the collection. From 1928 the new expeditions were arranged to Mediterranean countries, Ethiopia, and Western China by Vavilov, to India by Markovich, to Minor Asia of Zhukovskiy, etc. , and also collection had started to grow by exchange of material with different Institutes and companies. Now VIR Genebank contains genetic resources of different status from more than 90 countries, includes wild species, landraces, old and advanced cultivars, hybrids F1, breeding materials . Umbelliferae collections are divided into two parts: constant (base) catalogue and temporary catalogue. The constant catalogue includes landraces and breeding cultivars with sufficient quantity of seeds in accession. All accessions of constant catalogue are documented for computerized passport data. The temporary catalogue includes the hybrids F1, breeding materials and the samples with insufficient quantity of seeds. These latter cultivars need to
    [Show full text]
  • DOKTORI ÉRTEKEZÉS Szarvas József
    DOKTORI ÉRTEKEZÉS Törzs-összehasonlító vizsgálatok és gyakorlati fejlesztések az ördögszekér laskagomba [Pleurotus eryngii (DC.:Fr.) Quél.] termesztésében Szarvas József Budapesti Corvinus Egyetem, Kertészettudományi Kar Zöldség- és Gombatermesztési Tanszék Budapest 2011 A doktori iskola megnevezése: Kertészettudományi Doktori Iskola tudományága: Növénytermesztési és kertészeti tudományok vezetője: Dr. Tóth Magdolna egyetemi tanár, DSc. Budapesti Corvinus Egyetem, Kertészettudományi Kar, Gyümölcstermő Növények Tanszék témavezető: Dr. Győrfi Júlia habilitált egyetemi docens, PhD. Budapesti Corvinus Egyetem, Kertészettudományi Kar, Zöldség- és Gombatermesztési Tanszék témacsoport: Zöldségnövények és termeszthető gomba témacsoport tanszék: Zöldség- és Gombatermesztési Tanszék, tanszékvezető: Dr. Terbe István, DSc., egyetemi tanár A jelölt a Budapesti Corvinus Egyetem Doktori Szabályzatában előírt valamennyi feltételnek eleget tett, a műhelyvita során elhangzott észrevételeket és javaslatokat az értekezés átdolgozásakor figyelembe vette, ezért az értekezés védési eljárásra bocsátható. ..…………………………….... ………………………………. Iskolavezető jóváhagyása Témavezető jóváhagyása 2 A Budapesti Corvinus Egyetem Élettudományi Területi Doktori Tanácsának 2011. 10. 04-i határozatában a nyilvános vita lefolytatására az alábbi Bíráló Bizottságot jelölte ki: BÍRÁLÓ BIZOTTSÁG Elnöke: Balázs Sándor, MHAS Tagjai: Rimóczi Imre, DSc Hodossi Sándor, DSc Isépy István, CSc Erős-Honti Zsolt, PhD Opponensek: Szántó Mária, CSc Kovács András, CSc Titkár: Erős-Honti Zsolt, PhD
    [Show full text]
  • The Vascular Plants of Massachusetts
    The Vascular Plants of Massachusetts: The Vascular Plants of Massachusetts: A County Checklist • First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Somers Bruce Sorrie and Paul Connolly, Bryan Cullina, Melissa Dow Revision • First A County Checklist Plants of Massachusetts: Vascular The A County Checklist First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Massachusetts Natural Heritage & Endangered Species Program Massachusetts Division of Fisheries and Wildlife Natural Heritage & Endangered Species Program The Natural Heritage & Endangered Species Program (NHESP), part of the Massachusetts Division of Fisheries and Wildlife, is one of the programs forming the Natural Heritage network. NHESP is responsible for the conservation and protection of hundreds of species that are not hunted, fished, trapped, or commercially harvested in the state. The Program's highest priority is protecting the 176 species of vertebrate and invertebrate animals and 259 species of native plants that are officially listed as Endangered, Threatened or of Special Concern in Massachusetts. Endangered species conservation in Massachusetts depends on you! A major source of funding for the protection of rare and endangered species comes from voluntary donations on state income tax forms. Contributions go to the Natural Heritage & Endangered Species Fund, which provides a portion of the operating budget for the Natural Heritage & Endangered Species Program. NHESP protects rare species through biological inventory,
    [Show full text]
  • Apiaceae) - Beds, Old Cambs, Hunts, Northants and Peterborough
    CHECKLIST OF UMBELLIFERS (APIACEAE) - BEDS, OLD CAMBS, HUNTS, NORTHANTS AND PETERBOROUGH Scientific name Common Name Beds old Cambs Hunts Northants and P'boro Aegopodium podagraria Ground-elder common common common common Aethusa cynapium Fool's Parsley common common common common Ammi majus Bullwort very rare rare very rare very rare Ammi visnaga Toothpick-plant very rare very rare Anethum graveolens Dill very rare rare very rare Angelica archangelica Garden Angelica very rare very rare Angelica sylvestris Wild Angelica common frequent frequent common Anthriscus caucalis Bur Chervil occasional frequent occasional occasional Anthriscus cerefolium Garden Chervil extinct extinct extinct very rare Anthriscus sylvestris Cow Parsley common common common common Apium graveolens Wild Celery rare occasional very rare native ssp. Apium inundatum Lesser Marshwort very rare or extinct very rare extinct very rare Apium nodiflorum Fool's Water-cress common common common common Astrantia major Astrantia extinct very rare Berula erecta Lesser Water-parsnip occasional frequent occasional occasional x Beruladium procurrens Fool's Water-cress x Lesser very rare Water-parsnip Bunium bulbocastanum Great Pignut occasional very rare Bupleurum rotundifolium Thorow-wax extinct extinct extinct extinct Bupleurum subovatum False Thorow-wax very rare very rare very rare Bupleurum tenuissimum Slender Hare's-ear very rare extinct very rare or extinct Carum carvi Caraway very rare very rare very rare extinct Chaerophyllum temulum Rough Chervil common common common common Cicuta virosa Cowbane extinct extinct Conium maculatum Hemlock common common common common Conopodium majus Pignut frequent occasional occasional frequent Coriandrum sativum Coriander rare occasional very rare very rare Daucus carota Wild Carrot common common common common Eryngium campestre Field Eryngo very rare, prob.
    [Show full text]
  • Well-Known Plants in Each Angiosperm Order
    Well-known plants in each angiosperm order This list is generally from least evolved (most ancient) to most evolved (most modern). (I’m not sure if this applies for Eudicots; I’m listing them in the same order as APG II.) The first few plants are mostly primitive pond and aquarium plants. Next is Illicium (anise tree) from Austrobaileyales, then the magnoliids (Canellales thru Piperales), then monocots (Acorales through Zingiberales), and finally eudicots (Buxales through Dipsacales). The plants before the eudicots in this list are considered basal angiosperms. This list focuses only on angiosperms and does not look at earlier plants such as mosses, ferns, and conifers. Basal angiosperms – mostly aquatic plants Unplaced in order, placed in Amborellaceae family • Amborella trichopoda – one of the most ancient flowering plants Unplaced in order, placed in Nymphaeaceae family • Water lily • Cabomba (fanwort) • Brasenia (watershield) Ceratophyllales • Hornwort Austrobaileyales • Illicium (anise tree, star anise) Basal angiosperms - magnoliids Canellales • Drimys (winter's bark) • Tasmanian pepper Laurales • Bay laurel • Cinnamon • Avocado • Sassafras • Camphor tree • Calycanthus (sweetshrub, spicebush) • Lindera (spicebush, Benjamin bush) Magnoliales • Custard-apple • Pawpaw • guanábana (soursop) • Sugar-apple or sweetsop • Cherimoya • Magnolia • Tuliptree • Michelia • Nutmeg • Clove Piperales • Black pepper • Kava • Lizard’s tail • Aristolochia (birthwort, pipevine, Dutchman's pipe) • Asarum (wild ginger) Basal angiosperms - monocots Acorales
    [Show full text]
  • Foeniculum Vulgare) in Thyroid and Testes of Male Rats
    Plant Archives Vol. 18 No. 1, 2018 pp. 341-353 ISSN 0972-5210 PHYSIOLOGICAL, HORMONAL AND HISTOLOGICAL EFFECTS OF FENNEL SEEDS (FOENICULUM VULGARE) IN THYROID AND TESTES OF MALE RATS Noori Mohammed Luaibi Department of Biology, College of Science, AL-Mustansyriah University, Baghdad, Iraq. E-mail: [email protected] Abstract In various parts of the world Fennel seeds Foeniculum vulgare has been used in a herbal medicine. The present study aims to shed light on fennel’s side effects in male rats in the weights , hormonal, histological changes and some of the physiological parameters of thyroid and testes. About 60 Spargue-Dawley albino adult male rats were daily fed with fennel pellet in three different doses (50, 100, 200)gm/kg bw for three different periods of time (10, 20, 30) days. After end of each experiment animals were weighed then it scarified for blood and tissue collection , blood collected by heart puncture then it centrifuged for serum separation and kept at -80oC to hormonal, biochemical analysis and some histological standards , then thyroid and testes were excised and fixed in neutral buffered 10% formalin for histological preparation. The results showed that increased doses of fennel consumption and treatment duration statistically caused Highly significant increase (p<0.01) in thyroid weights in experimental treated groups (7, 8, 9, 10, 11, 12) while group (5 and 6) showed significant increase (p<0.05) compared to the control group. No changes illustrated in values of Thyroid stimulating hormone(TSH) in all periods of time and in all concentrations of fennel in comparison with the control group.
    [Show full text]
  • Table Des Matières
    République Algérienne démocratique et populaire Ministère de l’enseignement supérieur et de la recherche scientifique UNIVERSITE ABDELHAMID BEN BADIS-MOSTAGANEM FACULTE DES SCIENCES DE LA NATURE ET DE LA VIE DEPARTEMENT D’AGRONOMIE MEMOIRE Pour l’obtention du diplôme de MASTER Option : biotechnologie alimentaire Présenté par : Melle : LARBI Fatima THEME : Dosage des polyphénols et l’amidon dans les tubercules de la noix de terre «Bunium bulbocastanum » : effet de région et la technologie de transformation. Devant le jury Président M. BEKADA Ahmed Encadreur M. BENABDELMOUMENE Djilali Examinateur M. SACI ElHachemi Co encadreur : BOUHALA Warda Année universitaire : 2019/2020 Remerciements Ce mémoire n’aurait pas pu être ce qu’il est, sans l’aide de ALLAH qui m’a donné la force afin de l’accomplir et de m’avoir permis d’en arriver là. Tout d’abord, je tiens particulièrement à remercier mon encadreur Me BENABDELMOUMENE Djilali pour m’avoir encadré et fait confiance, Ce travail n’aurait pas pu se faire sans son aide précieuse, ses compétences, Ses encouragements, C’est pourquoi je lui exprimé ma plus grande gratitude. Je la remercie d’avoir su me guider dans ce travail, d’avoir été présenté chaque fois que j’en avais besoin tout au long de la réalisation de ce travail. Je tiens à remercier sincèrement les membres du jury qui me font le grand honneur d'évaluer ce travail. Me BEKADA Ahmed et Me SACI Elhachemi : Merci pour avoir accepté de faire partie du jury de ce mémoire, pour l’intérêt que vous portez à mon travail et pour le temps consacré afin de l’évaluer.
    [Show full text]
  • Seedling Establishment, Bud Movement, and Subterranean Diversity of Geophilous Systems in Apiaceae
    Flora (2002) 197, 385–393 http://www.urbanfischer.de/journals/flora Seedling establishment, bud movement, and subterranean diversity of geophilous systems in Apiaceae Norbert Pütz1* & Ina Sukkau2 1 Institute of Nature Conservation and Environmental Education, University of Vechta, Driverstr. 22, D-49377 Vechta, Germany 2 Institute of Botany, RWTH Aachen, Germany * author for correspondence: e-mail: [email protected] Received: Nov 29, 2001 · Accepted: Jun 10, 2002 Summary Geophilous systems of plants are not only regarded as organs of underground storage. Such systems also undergo a large range of modifications in order to fulfill other ‚cryptical‘ functions, e.g. positioning of innovation buds, vegetative cloning, and vege- tative dispersal. Seedlings should always be the point of departure for any investigation into the structure of geophilous systems. This is because in the ability to survive of geophilous plants it is of primary importance that innovation buds can reach a safe position in the soil by the time the first period hostile to vegetation commences. Our analysis of such systems thus focused on examining the development of 34 species of the Apiaceae, beginning with their germination. Independent of life-form and life-span, all species exhibit noticeable terminal bud movement with the aid of contractile organs. Movement was found to be at least 5 mm, reaching a maximum of 45 mm. All species exhibit a noticeable contraction of the primary root. In most cases the contraction phenomenon also occurs in the hypocotyl, and some species show contraction of their lateral and / or adventitious roots. Analysis of movement shows the functional importance of pulling the inno- vation buds down into the soil.
    [Show full text]
  • Major Lineages Within Apiaceae Subfamily Apioideae: a Comparison of Chloroplast Restriction Site and Dna Sequence Data1
    American Journal of Botany 86(7): 1014±1026. 1999. MAJOR LINEAGES WITHIN APIACEAE SUBFAMILY APIOIDEAE: A COMPARISON OF CHLOROPLAST RESTRICTION SITE AND DNA SEQUENCE DATA1 GREGORY M. PLUNKETT2 AND STEPHEN R. DOWNIE Department of Plant Biology, University of Illinois, Urbana, Illinois 61801 Traditional sources of taxonomic characters in the large and taxonomically complex subfamily Apioideae (Apiaceae) have been confounding and no classi®cation system of the subfamily has been widely accepted. A restriction site analysis of the chloroplast genome from 78 representatives of Apioideae and related groups provided a data matrix of 990 variable characters (750 of which were potentially parsimony-informative). A comparison of these data to that of three recent DNA sequencing studies of Apioideae (based on ITS, rpoCl intron, and matK sequences) shows that the restriction site analysis provides 2.6± 3.6 times more variable characters for a comparable group of taxa. Moreover, levels of divergence appear to be well suited to studies at the subfamilial and tribal levels of Apiaceae. Cladistic and phenetic analyses of the restriction site data yielded trees that are visually congruent to those derived from the other recent molecular studies. On the basis of these comparisons, six lineages and one paraphyletic grade are provisionally recognized as informal groups. These groups can serve as the starting point for future, more intensive studies of the subfamily. Key words: Apiaceae; Apioideae; chloroplast genome; restriction site analysis; Umbelliferae. Apioideae are the largest and best-known subfamily of tem, and biochemical characters exhibit similarly con- Apiaceae (5 Umbelliferae) and include many familiar ed- founding parallelisms (e.g., Bell, 1971; Harborne, 1971; ible plants (e.g., carrot, parsnips, parsley, celery, fennel, Nielsen, 1971).
    [Show full text]
  • Evolutionary Shifts in Fruit Dispersal Syndromes in Apiaceae Tribe Scandiceae
    Plant Systematics and Evolution (2019) 305:401–414 https://doi.org/10.1007/s00606-019-01579-1 ORIGINAL ARTICLE Evolutionary shifts in fruit dispersal syndromes in Apiaceae tribe Scandiceae Aneta Wojewódzka1,2 · Jakub Baczyński1 · Łukasz Banasiak1 · Stephen R. Downie3 · Agnieszka Czarnocka‑Cieciura1 · Michał Gierek1 · Kamil Frankiewicz1 · Krzysztof Spalik1 Received: 17 November 2018 / Accepted: 2 April 2019 / Published online: 2 May 2019 © The Author(s) 2019 Abstract Apiaceae tribe Scandiceae includes species with diverse fruits that depending upon their morphology are dispersed by gravity, carried away by wind, or transported attached to animal fur or feathers. This diversity is particularly evident in Scandiceae subtribe Daucinae, a group encompassing species with wings or spines developing on fruit secondary ribs. In this paper, we explore fruit evolution in 86 representatives of Scandiceae and outgroups to assess adaptive shifts related to the evolutionary switch between anemochory and epizoochory and to identify possible dispersal syndromes, i.e., patterns of covariation of morphological and life-history traits that are associated with a particular vector. We also assess the phylogenetic signal in fruit traits. Principal component analysis of 16 quantitative fruit characters and of plant height did not clearly separate spe- cies having diferent dispersal strategies as estimated based on fruit appendages. Only presumed anemochory was weakly associated with plant height and the fattening of mericarps with their accompanying anatomical changes. We conclude that in Scandiceae, there are no distinct dispersal syndromes, but a continuum of fruit morphologies relying on diferent dispersal vectors. Phylogenetic mapping of ten discrete fruit characters on trees inferred by nrDNA ITS and cpDNA sequence data revealed that all are homoplastic and of limited use for the delimitation of genera.
    [Show full text]
  • Of Foeniculum Vulgare - a Review
    IOSR Journal Of Pharmacy www.iosrphr.org (e)-ISSN: 2250-3013, (p)-ISSN: 2319-4219 Volume 8, Issue 5 Version. I (May 2018), PP. 81-96 The chemical constituents and pharmacological effects of Foeniculum vulgare - A review Prof Dr Ali Esmail Al-Snafi Department of Pharmacology, College of Medicine, University of Thi qar, Iraq. Corresponding Author: Prof Dr Ali Esmail Al-Snafi Abstract: As a result of accumulated experience from the past generations, today, all the world’s cultures have an extensive knowledge of herbal medicine. Plants are a valuable source of a wide range of secondary metabolites, which are used as pharmaceuticals, agrochemicals, flavours, fragrances, colours, biopesticides and food additives. This study was designed to highlight the chemical constituents and pharmacological effects of Foeniculum vulgare. Keywords: Foeniculum vulgare, chemical constituents, pharmacology, herb, medicinal plant ----------------------------------------------------------------------------------------------------------------------------- ----- ----- Date of Submission: 28-05-2018 Date of acceptance: 11-06-2018 ----------------------------------------------------------------------------------------------------------------------------- ----- ----- I. INTRODUCTION: As a result of accumulated experience from the past generations, today, all the world’s cultures have an extensive knowledge of herbal medicine. Plants are a valuable source of a wide range of secondary metabolites, which are used as pharmaceuticals, agrochemicals, flavours, fragrances,
    [Show full text]
  • Vascular Plant Diversity of the Alanya Castle Walls and Their Ecological Effects
    www.biodicon.com Biological Diversity and Conservation ISSN 1308-8084 Online ISSN 1308-5301 Print Research article/Araştırma makalesi 13/1 (2020) 9-18 DOI: 10.46309/biodicon.2020.731423 Vascular plant diversity of the Alanya Castle walls and their ecological effects Ahmet AKSOY 1, Jale ÇELİK *2 ORCID: 0000-0002-9696-7122; 0000-0002-3624-2146 1 University of Akdeniz, Faculty of Science, Department of Biology, Antalya, Turkey 2 University of Akdeniz, Institute of Science and Technology, Department of Biology, Antalya, Turkey Abstract Since historical buildings are living mirrors of the past, it is very important to preserve and transfer them to future generations. In this study, plants growing on the walls of Alanya Castle were identified and the damages that these plants gave to the historical construction and the precautions to be taken to prevent these damages were emphasized. A total of 94 plant taxa, including five pteridophytes, one gymnosperm and 88 angiosperms, belonging to 35 families were identified on the walls of Alanya Castle. Conyza canadensis, Inula heterolepis, Phagnalon graecum, Arabis verna, Mercurialis annua, Fumaria parviflora, Cymbalaria microcalyx, Galium canum subsp. antalyense, Parietaria judaica, Hyoscyamus aureus, Poa bulbosa were the dominant plant species of Alanya Castle walls. Possible seed dispersion of these plants on the castle walls and the methods for controlling them are discussed in detail. We conclude that the most effective method of combating plants that grow naturally on historical buildings and give damage to these buildings is mechanical excavation. Key words: Alanya, biodiversity, mechanical excavation, urban ecosystems, wall flora ---------- ---------- Alanya Kalesi duvarlarının vasküler bitki çeşitliliği ve ekolojik etkileri Özet Tarihi yapılar geçmişin yaşayan aynaları olduklarından, onları korumak ve gelecek nesillere aktarmak çok önemlidir.
    [Show full text]