Biological Activities of Essential Oils from the Genus Ferula (Apiaceae)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chemical Composition of Volatile Oil of Ferula Assafoetida L
International Journal of Research Studies in Agricultural Sciences (IJRSAS) Volume 5, Issue 8, 2019, PP 9-14 ISSN No. (Online) 2454–6224 DOI: http://dx.doi.org/10.20431/2454-6224.0508002 www.arcjournals.org Chemical Composition of Volatile Oil of Ferula Assafoetida L P. Estekhdami1*, A. Nasiri Dehsorkhi2 1M.sc. Agronomy, Shahroud of University in Iran (2008). 2Ph.D. student of Agroecology , Agronomy Department, Agricultural Faculty , University of Zabol, in Iran. *Corresponding Author: P. Estekhdami, M.Sc. Agronomy, Shahroud of University in Iran (2008). Abstract: Asafoetida is an oleo-gum-resin obtained from the exudates of the roots of the Iranian endemic medicinal plant, F. asafoetida. It is used widely all over the world as a flavoring spice in a variety of foods. was analysed by GC and GC/MS. The constituents were identified by their mass spectra and Kovats' indices. Among those, The main constituents were (E)-1-propenyl sec-butyl disulfide (58.9%), (Z)-β-ocimene (11.9%), (E)-β-ocimene (9.0%), β-pinene (5.0%) and (Z)-1-propenyl sec-butyl disulfide (3.9%). Keywords: Asafoetida , GC/MS 1. INTRODUCTION The genus Ferula, the third largest genus of the Apiaceae (alt.Umbelliferae) family,is composed of ca. 180 species (Yaqoob and Nawchoo, 2016), 15 of whichare endemic to Iran (Mozaffarian, 1996),nine species to Turkey, seven to China (Yaqoob and Nawchoo, 2016) and one species to Italy, and the rest are indigenousentities of several other countries.The majority of the Ferula plants have a pungent odor and can beused for different purposes.In the literature, numerous reports have described various biolo- gical and medicinal activities for different essential oils and ex-tracts of the Ferula plants. -
The Vascular Plants of Massachusetts
The Vascular Plants of Massachusetts: The Vascular Plants of Massachusetts: A County Checklist • First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Somers Bruce Sorrie and Paul Connolly, Bryan Cullina, Melissa Dow Revision • First A County Checklist Plants of Massachusetts: Vascular The A County Checklist First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Massachusetts Natural Heritage & Endangered Species Program Massachusetts Division of Fisheries and Wildlife Natural Heritage & Endangered Species Program The Natural Heritage & Endangered Species Program (NHESP), part of the Massachusetts Division of Fisheries and Wildlife, is one of the programs forming the Natural Heritage network. NHESP is responsible for the conservation and protection of hundreds of species that are not hunted, fished, trapped, or commercially harvested in the state. The Program's highest priority is protecting the 176 species of vertebrate and invertebrate animals and 259 species of native plants that are officially listed as Endangered, Threatened or of Special Concern in Massachusetts. Endangered species conservation in Massachusetts depends on you! A major source of funding for the protection of rare and endangered species comes from voluntary donations on state income tax forms. Contributions go to the Natural Heritage & Endangered Species Fund, which provides a portion of the operating budget for the Natural Heritage & Endangered Species Program. NHESP protects rare species through biological inventory, -
Apiaceae) - Beds, Old Cambs, Hunts, Northants and Peterborough
CHECKLIST OF UMBELLIFERS (APIACEAE) - BEDS, OLD CAMBS, HUNTS, NORTHANTS AND PETERBOROUGH Scientific name Common Name Beds old Cambs Hunts Northants and P'boro Aegopodium podagraria Ground-elder common common common common Aethusa cynapium Fool's Parsley common common common common Ammi majus Bullwort very rare rare very rare very rare Ammi visnaga Toothpick-plant very rare very rare Anethum graveolens Dill very rare rare very rare Angelica archangelica Garden Angelica very rare very rare Angelica sylvestris Wild Angelica common frequent frequent common Anthriscus caucalis Bur Chervil occasional frequent occasional occasional Anthriscus cerefolium Garden Chervil extinct extinct extinct very rare Anthriscus sylvestris Cow Parsley common common common common Apium graveolens Wild Celery rare occasional very rare native ssp. Apium inundatum Lesser Marshwort very rare or extinct very rare extinct very rare Apium nodiflorum Fool's Water-cress common common common common Astrantia major Astrantia extinct very rare Berula erecta Lesser Water-parsnip occasional frequent occasional occasional x Beruladium procurrens Fool's Water-cress x Lesser very rare Water-parsnip Bunium bulbocastanum Great Pignut occasional very rare Bupleurum rotundifolium Thorow-wax extinct extinct extinct extinct Bupleurum subovatum False Thorow-wax very rare very rare very rare Bupleurum tenuissimum Slender Hare's-ear very rare extinct very rare or extinct Carum carvi Caraway very rare very rare very rare extinct Chaerophyllum temulum Rough Chervil common common common common Cicuta virosa Cowbane extinct extinct Conium maculatum Hemlock common common common common Conopodium majus Pignut frequent occasional occasional frequent Coriandrum sativum Coriander rare occasional very rare very rare Daucus carota Wild Carrot common common common common Eryngium campestre Field Eryngo very rare, prob. -
Well-Known Plants in Each Angiosperm Order
Well-known plants in each angiosperm order This list is generally from least evolved (most ancient) to most evolved (most modern). (I’m not sure if this applies for Eudicots; I’m listing them in the same order as APG II.) The first few plants are mostly primitive pond and aquarium plants. Next is Illicium (anise tree) from Austrobaileyales, then the magnoliids (Canellales thru Piperales), then monocots (Acorales through Zingiberales), and finally eudicots (Buxales through Dipsacales). The plants before the eudicots in this list are considered basal angiosperms. This list focuses only on angiosperms and does not look at earlier plants such as mosses, ferns, and conifers. Basal angiosperms – mostly aquatic plants Unplaced in order, placed in Amborellaceae family • Amborella trichopoda – one of the most ancient flowering plants Unplaced in order, placed in Nymphaeaceae family • Water lily • Cabomba (fanwort) • Brasenia (watershield) Ceratophyllales • Hornwort Austrobaileyales • Illicium (anise tree, star anise) Basal angiosperms - magnoliids Canellales • Drimys (winter's bark) • Tasmanian pepper Laurales • Bay laurel • Cinnamon • Avocado • Sassafras • Camphor tree • Calycanthus (sweetshrub, spicebush) • Lindera (spicebush, Benjamin bush) Magnoliales • Custard-apple • Pawpaw • guanábana (soursop) • Sugar-apple or sweetsop • Cherimoya • Magnolia • Tuliptree • Michelia • Nutmeg • Clove Piperales • Black pepper • Kava • Lizard’s tail • Aristolochia (birthwort, pipevine, Dutchman's pipe) • Asarum (wild ginger) Basal angiosperms - monocots Acorales -
Foeniculum Vulgare) in Thyroid and Testes of Male Rats
Plant Archives Vol. 18 No. 1, 2018 pp. 341-353 ISSN 0972-5210 PHYSIOLOGICAL, HORMONAL AND HISTOLOGICAL EFFECTS OF FENNEL SEEDS (FOENICULUM VULGARE) IN THYROID AND TESTES OF MALE RATS Noori Mohammed Luaibi Department of Biology, College of Science, AL-Mustansyriah University, Baghdad, Iraq. E-mail: [email protected] Abstract In various parts of the world Fennel seeds Foeniculum vulgare has been used in a herbal medicine. The present study aims to shed light on fennel’s side effects in male rats in the weights , hormonal, histological changes and some of the physiological parameters of thyroid and testes. About 60 Spargue-Dawley albino adult male rats were daily fed with fennel pellet in three different doses (50, 100, 200)gm/kg bw for three different periods of time (10, 20, 30) days. After end of each experiment animals were weighed then it scarified for blood and tissue collection , blood collected by heart puncture then it centrifuged for serum separation and kept at -80oC to hormonal, biochemical analysis and some histological standards , then thyroid and testes were excised and fixed in neutral buffered 10% formalin for histological preparation. The results showed that increased doses of fennel consumption and treatment duration statistically caused Highly significant increase (p<0.01) in thyroid weights in experimental treated groups (7, 8, 9, 10, 11, 12) while group (5 and 6) showed significant increase (p<0.05) compared to the control group. No changes illustrated in values of Thyroid stimulating hormone(TSH) in all periods of time and in all concentrations of fennel in comparison with the control group. -
Conserving Europe's Threatened Plants
Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation By Suzanne Sharrock and Meirion Jones May 2009 Recommended citation: Sharrock, S. and Jones, M., 2009. Conserving Europe’s threatened plants: Progress towards Target 8 of the Global Strategy for Plant Conservation Botanic Gardens Conservation International, Richmond, UK ISBN 978-1-905164-30-1 Published by Botanic Gardens Conservation International Descanso House, 199 Kew Road, Richmond, Surrey, TW9 3BW, UK Design: John Morgan, [email protected] Acknowledgements The work of establishing a consolidated list of threatened Photo credits European plants was first initiated by Hugh Synge who developed the original database on which this report is based. All images are credited to BGCI with the exceptions of: We are most grateful to Hugh for providing this database to page 5, Nikos Krigas; page 8. Christophe Libert; page 10, BGCI and advising on further development of the list. The Pawel Kos; page 12 (upper), Nikos Krigas; page 14: James exacting task of inputting data from national Red Lists was Hitchmough; page 16 (lower), Jože Bavcon; page 17 (upper), carried out by Chris Cockel and without his dedicated work, the Nkos Krigas; page 20 (upper), Anca Sarbu; page 21, Nikos list would not have been completed. Thank you for your efforts Krigas; page 22 (upper) Simon Williams; page 22 (lower), RBG Chris. We are grateful to all the members of the European Kew; page 23 (upper), Jo Packet; page 23 (lower), Sandrine Botanic Gardens Consortium and other colleagues from Europe Godefroid; page 24 (upper) Jože Bavcon; page 24 (lower), Frank who provided essential advice, guidance and supplementary Scumacher; page 25 (upper) Michael Burkart; page 25, (lower) information on the species included in the database. -
DNA Barcoding Reveals Limited Accuracy of Identifications Based on Folk Taxonomy
DNA Barcoding Reveals Limited Accuracy of Identifications Based on Folk Taxonomy Hugo J. de Boer1,2,3., Abderrahim Ouarghidi4,5., Gary Martin5, Abdelaziz Abbad4, Anneleen Kool3* 1 Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden, 2 Naturalis Biodiversity Center, Leiden, The Netherlands, 3 Natural History Museum, University of Oslo, Oslo, Norway, 4 Faculty of Science Semlalia, Cadi Ayyad University, Marrakech, Morocco, 5 Global Diversity Foundation, Marrakech, Morocco Abstract Background: The trade of plant roots as traditional medicine is an important source of income for many people around the world. Destructive harvesting practices threaten the existence of some plant species. Harvesters of medicinal roots identify the collected species according to their own folk taxonomies, but once the dried or powdered roots enter the chain of commercialization, accurate identification becomes more challenging. Methodology: A survey of morphological diversity among four root products traded in the medina of Marrakech was conducted. Fifty-one root samples were selected for molecular identification using DNA barcoding using three markers, trnH-psbA, rpoC1, and ITS. Sequences were searched using BLAST against a tailored reference database of Moroccan medicinal plants and their closest relatives submitted to NCBI GenBank. Principal Findings: Combining psbA-trnH, rpoC1, and ITS allowed the majority of the market samples to be identified to species level. Few of the species level barcoding identifications matched the scientific names given in the literature, including the most authoritative and widely cited pharmacopeia. Conclusions/Significance: The four root complexes selected from the medicinal plant products traded in Marrakech all comprise more than one species, but not those previously asserted. -
Of Foeniculum Vulgare - a Review
IOSR Journal Of Pharmacy www.iosrphr.org (e)-ISSN: 2250-3013, (p)-ISSN: 2319-4219 Volume 8, Issue 5 Version. I (May 2018), PP. 81-96 The chemical constituents and pharmacological effects of Foeniculum vulgare - A review Prof Dr Ali Esmail Al-Snafi Department of Pharmacology, College of Medicine, University of Thi qar, Iraq. Corresponding Author: Prof Dr Ali Esmail Al-Snafi Abstract: As a result of accumulated experience from the past generations, today, all the world’s cultures have an extensive knowledge of herbal medicine. Plants are a valuable source of a wide range of secondary metabolites, which are used as pharmaceuticals, agrochemicals, flavours, fragrances, colours, biopesticides and food additives. This study was designed to highlight the chemical constituents and pharmacological effects of Foeniculum vulgare. Keywords: Foeniculum vulgare, chemical constituents, pharmacology, herb, medicinal plant ----------------------------------------------------------------------------------------------------------------------------- ----- ----- Date of Submission: 28-05-2018 Date of acceptance: 11-06-2018 ----------------------------------------------------------------------------------------------------------------------------- ----- ----- I. INTRODUCTION: As a result of accumulated experience from the past generations, today, all the world’s cultures have an extensive knowledge of herbal medicine. Plants are a valuable source of a wide range of secondary metabolites, which are used as pharmaceuticals, agrochemicals, flavours, fragrances, -
Ethnobotanical Knowledge of Apiaceae Family in Iran: a Review
Review Article Ethnobotanical knowledge of Apiaceae family in Iran: A review Mohammad Sadegh Amiri1*, Mohammad Reza Joharchi2 1Department of Biology, Payame Noor University, Tehran, Iran 2Department of Botany, Research Center for Plant Sciences, Ferdowsi University of Mashhad, Mashhad, Iran Article history: Abstract Received: Dec 28, 2015 Objective: Apiaceae (Umbelliferae) family is one of the biggest Received in revised form: Jan 08, 2016 plant families on the earth. Iran has a huge diversity of Apiaceae Accepted: Jan10, 2016 members. This family possesses a range of compounds that have Vol. 6, No. 6, Nov-Dec 2016, many biological activities. The members of this family are well 621-635. known as vegetables, culinary and medicinal plants. Here, we present a review of ethnobotanical uses of Apiaceae plants by the * Corresponding Author: Iranian people in order to provide a comprehensive documentation Tel: +989158147889 for future investigations. Fax: +985146229291 Materials and Methods: We checked scientific studies published [email protected] in books and journals in various electronic databases (Medline, PubMed, Science Direct, Scopus and Google Scholar websites) Keywords: Apiaceae from 1937 to 2015 and reviewed a total of 52 publications that Ethnobotany provided information about different applications of these plant Medicinal Plants species in human and livestock. Non- Medicinal Plants Results: As a result of this review, several ethnobotanical usages Iran of 70 taxa, 17 of which were endemic, have been determined. These plants were used for medicinal and non-medicinal purposes. The most commonly used parts were fruits, leaves, aerial parts and gums. The most common methods of preparation were decoction, infusion and poultice. -
Evaluation of Ferula Assa-Foetida Accessions for Germination
Evaluation of Ferula Assa-Foetida Accessions for Germination Parameters Under Cold Stratication to Overcome Seed Dormancy and Effect of Media Mixtures on Seedling Growth Ashok Kumar ( [email protected] ) Institute of Himalayan Bioresource Technology Ravi Kumar Institute of Himalayan Bioresource Technology Satbeer Singh Institute of Himalayan Bioresource Technology Sahil Sharma Institute of Himalayan Bioresource Technology Sanatsujat Singh Institute of Himalayan Bioresource Technology Sanjay Kumar Institute of Himalayan Bioresource Technology Research Article Keywords: Seed dormancy, chilling, germination, genotypes, Apiaceae and Ferula assa-foetida. Posted Date: December 3rd, 2020 DOI: https://doi.org/10.21203/rs.3.rs-112608/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License 1 Evaluation of Ferula assa-foetida accessions for germination parameters 2 under cold stratification to overcome seed dormancy and effect of media 3 mixtures on seedling growth 4 Ashok Kumar*1, Ravi Kumar1, Satbeer Singh1, Sahil Sharma1, Sanatsujat Singh1 and Sanjay 5 Kumar2 6 1Agrotechnology Division, Council of Scientific and Industrial Research - Institute of Himalayan 7 Bioresource Technology (CSIR–IHBT), Palampur 176061 (HP), India 8 2Director, (CSIR–IHBT), Palampur 176061 (HP), India 9 *Corresponding author: Ashok Kumar, Tel.: +91 9418835423 10 Email address: [email protected]; [email protected] 11 ABSTRACT 12 Ferula assa-foetida L. is a perennial of Apiaceae family having seed dormancy which inhibits 13 the germination. Oleo-gum resin obtained from the rhizomes of Ferula assa-foetida plant has 14 several medicinal properties and used for the treatment of various diseases, pharmaceutical 15 industries and in cooking of food in some countries. -
Antioxidant Activity of Hydroalcholic Extract of Ferula Gummosa Boiss Roots
European Review for Medical and Pharmacological Sciences 2011; 15: 658-664 Antioxidant activity of hydroalcholic extract of Ferula gummosa Boiss roots M.A. EBRAHIMZADEH1*, S.M. NABAVI1,2, S.F. NABAVI1,3, A.A. DEHPOUR4 1Pharmaceutical Sciences Research Center, School of Pharmacy, Mazandaran University of Medical Sciences, Sari (Iran) 2Department of Biology, University of Mazandaran, Babolsar (Iran) 3Student Research Development Committee, Mazandaran University of Medical Sciences, Sari (Iran) 4Department of Biology, Islamic Azad University, Ghaemshahr Branch (Iran) Abstract. – Objectives: Ferula gummosa Introduction Boiss is native to central Asia. This plant has traditionally been used in the treatment of Free radicals are usually short-lived species many diseases. The antihypoxic and antioxi- but they possess a single unpaired electron, ren- dant activities of Ferula gummosa roots were investigated. dering them highly reactive against biologically Material and Methods: 1,1-diphenyl-2- important macromolecules including DNA, pro- picryl hydrazyl radical (DPPH), nitric oxide and teins and membrane lipids. To counteract this hydrogen peroxide scavenging activities, Fe2+ threat to their integrity, cells have evolved a vari- chelating ability, reducing power and hemoglo- ety of defense systems based on both water-solu- bin-induced linoleic acid peroxidation were ble and lipid-soluble antioxidant species, and on used to evaluate antioxidant activities. Antihe- antioxidant enzymes. A high proportion of the molytic activity was evaluated by H2O2 induced hemolysis in rat erythrocytes. The total amount antioxidant systems of the human body are de- of phenolic compounds was determined as gal- pendent on dietary constituents1. Synthetic an- lic acid equivalents and total flavonoid con- tioxidants such as butylhydroxyanisole (BHA) or tents were calculated as quercetin equivalents butylhydroxytoluene (BHT) are used to deceler- from a calibration curve. -
Chemical Composition and Acaricidal Effects of Essential Oils of Foeniculum Vulgare Mill
Hindawi Publishing Corporation Psyche Volume 2014, Article ID 424078, 6 pages http://dx.doi.org/10.1155/2014/424078 Research Article Chemical Composition and Acaricidal Effects of Essential Oils of Foeniculum vulgare Mill. (Apiales: Apiaceae) and Lavandula angustifolia Miller (Lamiales: Lamiaceae) against Tetranychus urticae Koch (Acari: Tetranychidae) Asgar Ebadollahi,1 Jalal Jalali Sendi,1 Alireza Aliakbar,2 and Jabraeil Razmjou3 1 Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht 416351314, Iran 2Department of Chemistry, Faculty of Basic Sciences, University of Guilan, Rasht, Iran 3Department of Plant Protection, Faculty of Agriculture, University of Mohaghegh Ardabili, Ardabil, Iran Correspondence should be addressed to Asgar Ebadollahi; [email protected] Received 17 September 2014; Revised 14 November 2014; Accepted 24 November 2014; Published 14 December 2014 Academic Editor: Nguya K. Maniania Copyright © 2014 Asgar Ebadollahi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Utilization of synthetic acaricides causes negative side-effects on nontarget organisms and environment and most of the mite species such as two spotted spider mite, Tetranychus urticae Koch, are becoming resistant to these chemicals. In the present study, essential oils of fennel, Foeniculum vulgare Mill., and lavender, Lavandula angustifolia Miller, were hydrodistilled using Clevenger apparatus and chemical composition of these oils was analyzed by GC-MS. Anethole (46.73%), limonene (13.65%), and -fenchone (8.27%) in the fennel essential oil and linalool (28.63%), 1,8-cineole (18.65%), and 1-borneol (15.94%) in the lavender essential oil were found as main components.