Disrupting the Transmembrane Domain Oligomerization of Protein Tyrosine Phosphatase Receptor J Promotes Its Activity in Cancer Cells

Total Page:16

File Type:pdf, Size:1020Kb

Disrupting the Transmembrane Domain Oligomerization of Protein Tyrosine Phosphatase Receptor J Promotes Its Activity in Cancer Cells bioRxiv preprint doi: https://doi.org/10.1101/672147; this version posted October 7, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Disrupting the Transmembrane Domain Oligomerization of Protein Tyrosine Phosphatase Receptor J Promotes its Activity in Cancer Cells Elizabeth Bloch1¶ , Eden L. Sikorski1¶, David Pontoriero2, Evan K. Day2, Bryan W. Berger2, Matthew J. Lazzara2, and Damien Thévenin1* 1Department of Chemistry, Lehigh University, Bethlehem, PA 18015; 2Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22903 *To whom correspondence should be addressed: [email protected]; Tel. (610) 758-2886 ¶These authors contributed equally to this work Despite the critical regulatory roles that receptor Introduction protein tyrosine phosphatases (RPTP) play in mammalian signal transduction, the detailed Normally, cell signaling by receptor tyrosine kinases structural basis for the regulation of their catalytic (RTKs) is tightly controlled by the counterbalancing activity is not fully understood, nor are they actions of protein tyrosine phosphatases (PTPs), generally therapeutically targetable. It is due, in which dephosphorylate regulatory tyrosines on RTKs part, to the lack of known natural ligands or to attenuate their signal-initiating potency. Twenty- selective agonists. In contrast to conventional two PTPs are classified as receptor-like PTPs structure-function relationship for receptor (RPTPs), which all share the same architecture: an tyrosine kinases (RTKs), the activity of RPTPs has extracellular region (often including fibronectin type been reported to be suppressed by dimerization, III repeats and immunoglobin-like domains), a single- which may prevent their access to their RTK pass transmembrane segment, and either one or two substrates. We report here that: (i) cytosolic highly conserved PTP domains (1, 2). These homodimerization of PTPRJ (also known as DEP- integral membrane PTPs are some of the most 1) is regulated by specific transmembrane (TM) important regulators of RTKs, and their normal residues, and (ii) disrupting these interactions can function is critical for homeostatic control (2, 3). destabilize full-length PTPRJ homodimerization Interestingly, while RPTPs can act as suppressors of in cells, reduce the phosphorylation of EGFR (a several tumors, including colon, lung, breast, and known substrate) and downstream signaling thyroid cancers, they can also act as oncogenes when effectors, antagonize EGFR-driven cell deregulated either through reduced expression, often phenotypes, and promote substrate access. We due to loss of heterozygosity or loss-of-function demonstrate these points in human cancer cells mutations (4-8). Notably, fewer than one-third of using both mutational studies and through the reported point mutations occur within the identification of a peptide designed to bind to the intracellular phosphatase domains indicating PTPRJ TM domain. This peptide is the first inactivation occurs without structural changes to the example of such allosteric agonist of RPTPs. This catalytic domain (9). RPTPs have therefore long been study, therefore, provides not only fundamental viewed as potential therapeutic targets. structure-function insights on how PTPRJ activity Of the RPTPs characterized, PTPRJ (also known as is tuned by TM interactions in cells but also DEP-1) is particularly intriguing as it has been opportunities to develop a unique class of agents identified as a regulator of C-terminal tyrosine that could be used as tools to probe RPTPs phosphorylation in the epidermal growth factor signaling regulating mechanisms or for receptor (EGFR) (10-12), a frequent driver of therapeutic purposes in cancers driven by RTK oncogenic signaling across numerous cancers. signaling. Deregulation of mechanisms controlling EGFR 1 bioRxiv preprint doi: https://doi.org/10.1101/672147; this version posted October 7, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. activation and expression results in abnormal cell to identify and characterize a synthetic peptide that growth and proliferation. PTPRJ has a direct role in interacts with and disrupts PTPRJ homodimers regulating EGFR activity, implicating it as a relevant through specific TM interactions. We show the tumor suppressor. Furthermore, PTPRJ is often delivery of this peptide selectively modulates the down-regulated in numerous cancers, and its dimerization state and activity of PTPRJ in EGFR- restoration was shown to inhibit malignant driven cancer cells. The present study represents a phenotypes both in vitro and in vivo (13). structure-function determination of the TM domain of PTPRJ, and a new way to selectively modulate the While small molecule allosteric inhibition of some activity of this important class of phosphatases in non-receptor PTPs is now possible (14), methods to cancer cells. specifically target RPTPs are missing, due, in part, to the limited understanding of their mechanism of action and the lack of known natural ligands. Indeed, Results compared to the structure-function relationships for RTKs, relatively little has been elucidated for RPTPs. PTPRJ self-association is mediated by For instance, the reported ability of specific TM residues homodimerization to antagonize RPTP catalytic activity appears to be a general feature of the entire To assess whether the transmembrane (TM) domain family, but there is no proposed common model. The and specific amino acid residues play a role in the “head-to-toe” dimerization model for the PTP D1 and self-association of PTPRJ, we first used the D2 intracellular domains, proposed originally by Barr dominant-negative AraC-based transcriptional et al. for PTPRG, is generally accepted for RPTPs reporter assay (DN-AraTM) (21, 22). This assay with tandemly repeated intracellular domains (1). reports on the propensity of TM domains to self- However, since PTPRJ and other members of the R3 associate and heterodimerize in cell membranes. sub-family have only one catalytic intracellular PTP Briefly, it relies on a protein chimera containing the domain, the “head-to-toe” model and the “inhibitory receptor domain of interest fused to either the wedge” model proposed for PTPRA (15, 16) seem to transcription factor AraC (which is active at the be incompatible. Nevertheless, the reported ability of araBAD promoter as a homodimer), or to an AraC homodimerization to antagonize PTPRJ catalytic mutant unable to activate transcription (AraC*). Both activity and substrate access presents potential chimeras include an N-terminal maltose-binding opportunities to develop strategies to promote RPTP protein (MBP) fusion that directs chimera insertion in activity against their oncogenic RTK substrate (17). the inner membrane of AraC-deficient E. coli While the transmembrane (TM) domain of several (SB1676). Homodimerization of AraC (a result from RPTPs has been proposed to be involved in their receptor domain self-association) induces the homodimerization (17-20), and therefore represents transcription of the gene coding for the green an attractive target, there is no clear structure-based fluorescent protein (GFP). Thus, GFP fluorescence proposal for how this occurs. Therefore, elucidating intensity is a measure of receptor domain the contribution of the TM domain in RPTPs, and dimerization. particularly in PTPRJ regulation, can provide When the TM domain of wild-type PTPRJ (WT) significant insight into how these receptors function, (Figure 1A) was expressed as a fusion to AraC, a interact, and eventually be modulated, leading to new strong GFP signal was observed, indicating that the methods to target signaling of oncogenic RTKs that TM domain has a high propensity to self-associate may be less susceptible to common mechanisms of (Figure 1B; black bar). On the other hand, when resistance. PTPRJ WT-AraC* was co-expressed as a competitor Here, we employed mutational studies to show that to PTPRJ WT-AraC, a significant decrease in GFP PTPRJ homodimerization is regulated through signal was observed (Figure 1B, hashed bar), specific TM residue interactions. Furthermore, consistent with specific TM-TM interactions. Having disrupting these interactions antagonizes PTPRJ confirmed that PTPRJ self-associates, in part through homodimerization, thereby promoting its the TM domain, we sought to identify the amino acids phosphatase activity and ultimately inhibiting EGFR- required for this interaction. To alter interfacial driven cell phenotypes. We used these new findings packing and introduce steric clashes, amino acids in 2 bioRxiv preprint doi: https://doi.org/10.1101/672147; this version posted October 7, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. the TM region with small side chains (Ala, Cys, Gly,) does expression of WT PTPRJ significantly inhibit were mutated to leucine, while those with larger side EGFR-driven cell migration when compared to chains (Ile, Leu, Phe, Val) were mutated to alanine empty
Recommended publications
  • The Proteintyrosine Phosphatase Receptor Type J Is Regulated by The
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2013 The Protein-Tyrosine Phosphatase Receptor Type J is regulated by the pVHL-HIF axis in Clear Cell Renal Cell Carcinoma Casagrande, Silvia ; Ruf, Melanie ; Rechsteiner, Markus ; Morra, Laura ; Brun-Schmid, Sonja ; von Teichman, Adriana ; Krek, Wilhelm ; Schraml, Peter ; Moch, Holger Abstract: Mass spectrometry analysis of renal cancer cell lines recently suggested that the Protein- Tyrosine Phosphatase Receptor Type J (PTPRJ), an important regulator of tyrosine kinase receptors, is tightly linked to the von-Hippel Lindau protein (pVHL). Therefore, we aimed to characterize the biological relevance of PTPRJ for clear cell renal cell carcinoma (ccRCC). In pVHL negative ccRCC cell lines both RNA and protein expression levels of PTPRJ were lower than those in the corresponding pVHL reconstituted cells. Quantitative RT-PCR and Western blot analysis of ccRCC with known VHL mutation status and normal matched tissues as well as RNA in situ hybridization on a Tissue Microarray (TMA) confirmed a decrease of PTPRJ expression in more than 80 % of ccRCCs, but inonly12%of papillary RCCs. ccRCC patients with no or reduced PTPRJ mRNA expression had a less favourable outcome than those with a normal expression status (p = 0.05). Sequence analysis of 32 PTPRJ mRNA negative ccRCC samples showed five known polymorphisms, but no mutations implying other mechanisms leading to PTPRJ’s down-regulation. Selective silencing of HIF-฀ by siRNA and reporter gene assays demonstrated that pVHL inactivation reduces PTPRJ expression through a HIF-dependent mechanism, which is mainly driven by HIF-2฀ stabilization.
    [Show full text]
  • The Regulatory Roles of Phosphatases in Cancer
    Oncogene (2014) 33, 939–953 & 2014 Macmillan Publishers Limited All rights reserved 0950-9232/14 www.nature.com/onc REVIEW The regulatory roles of phosphatases in cancer J Stebbing1, LC Lit1, H Zhang, RS Darrington, O Melaiu, B Rudraraju and G Giamas The relevance of potentially reversible post-translational modifications required for controlling cellular processes in cancer is one of the most thriving arenas of cellular and molecular biology. Any alteration in the balanced equilibrium between kinases and phosphatases may result in development and progression of various diseases, including different types of cancer, though phosphatases are relatively under-studied. Loss of phosphatases such as PTEN (phosphatase and tensin homologue deleted on chromosome 10), a known tumour suppressor, across tumour types lends credence to the development of phosphatidylinositol 3--kinase inhibitors alongside the use of phosphatase expression as a biomarker, though phase 3 trial data are lacking. In this review, we give an updated report on phosphatase dysregulation linked to organ-specific malignancies. Oncogene (2014) 33, 939–953; doi:10.1038/onc.2013.80; published online 18 March 2013 Keywords: cancer; phosphatases; solid tumours GASTROINTESTINAL MALIGNANCIES abs in sera were significantly associated with poor survival in Oesophageal cancer advanced ESCC, suggesting that they may have a clinical utility in Loss of PTEN (phosphatase and tensin homologue deleted on ESCC screening and diagnosis.5 chromosome 10) expression in oesophageal cancer is frequent, Cao et al.6 investigated the role of protein tyrosine phosphatase, among other gene alterations characterizing this disease. Zhou non-receptor type 12 (PTPN12) in ESCC and showed that PTPN12 et al.1 found that overexpression of PTEN suppresses growth and protein expression is higher in normal para-cancerous tissues than induces apoptosis in oesophageal cancer cell lines, through in 20 ESCC tissues.
    [Show full text]
  • Genetic Alterations of Protein Tyrosine Phosphatases in Human Cancers
    Oncogene (2015) 34, 3885–3894 © 2015 Macmillan Publishers Limited All rights reserved 0950-9232/15 www.nature.com/onc REVIEW Genetic alterations of protein tyrosine phosphatases in human cancers S Zhao1,2,3, D Sedwick3,4 and Z Wang2,3 Protein tyrosine phosphatases (PTPs) are enzymes that remove phosphate from tyrosine residues in proteins. Recent whole-exome sequencing of human cancer genomes reveals that many PTPs are frequently mutated in a variety of cancers. Among these mutated PTPs, PTP receptor T (PTPRT) appears to be the most frequently mutated PTP in human cancers. Beside PTPN11, which functions as an oncogene in leukemia, genetic and functional studies indicate that most of mutant PTPs are tumor suppressor genes. Identification of the substrates and corresponding kinases of the mutant PTPs may provide novel therapeutic targets for cancers harboring these mutant PTPs. Oncogene (2015) 34, 3885–3894; doi:10.1038/onc.2014.326; published online 29 September 2014 INTRODUCTION tyrosine/threonine-specific phosphatases. (4) Class IV PTPs include Protein tyrosine phosphorylation has a critical role in virtually all four Drosophila Eya homologs (Eya1, Eya2, Eya3 and Eya4), which human cellular processes that are involved in oncogenesis.1 can dephosphorylate both tyrosine and serine residues. Protein tyrosine phosphorylation is coordinately regulated by protein tyrosine kinases (PTKs) and protein tyrosine phosphatases 1 THE THREE-DIMENSIONAL STRUCTURE AND CATALYTIC (PTPs). Although PTKs add phosphate to tyrosine residues in MECHANISM OF PTPS proteins, PTPs remove it. Many PTKs are well-documented oncogenes.1 Recent cancer genomic studies provided compelling The three-dimensional structures of the catalytic domains of evidence that many PTPs function as tumor suppressor genes, classical PTPs (RPTPs and non-RPTPs) are extremely well because a majority of PTP mutations that have been identified in conserved.5 Even the catalytic domain structures of the dual- human cancers are loss-of-function mutations.
    [Show full text]
  • Protein Tyrosine Phosphatase PTPN3 Inhibits Lung Cancer Cell Proliferation and Migration by Promoting EGFR Endocytic Degradation
    Oncogene (2015) 34, 3791–3803 © 2015 Macmillan Publishers Limited All rights reserved 0950-9232/15 www.nature.com/onc ORIGINAL ARTICLE Protein tyrosine phosphatase PTPN3 inhibits lung cancer cell proliferation and migration by promoting EGFR endocytic degradation M-Y Li1,2, P-L Lai1, Y-T Chou3, A-P Chi1, Y-Z Mi1, K-H Khoo1,2, G-D Chang2, C-W Wu3, T-C Meng1,2 and G-C Chen1,2 Epidermal growth factor receptor (EGFR) regulates multiple signaling cascades essential for cell proliferation, growth and differentiation. Using a genetic approach, we found that Drosophila FERM and PDZ domain-containing protein tyrosine phosphatase, dPtpmeg, negatively regulates border cell migration and inhibits the EGFR/Ras/mitogen-activated protein kinase signaling pathway during wing morphogenesis. We further identified EGFR pathway substrate 15 (Eps15) as a target of dPtpmeg and its human homolog PTPN3. Eps15 is a scaffolding adaptor protein known to be involved in EGFR endocytosis and trafficking. Interestingly, PTPN3-mediated tyrosine dephosphorylation of Eps15 promotes EGFR for lipid raft-mediated endocytosis and lysosomal degradation. PTPN3 and the Eps15 tyrosine phosphorylation-deficient mutant suppress non-small-cell lung cancer cell growth and migration in vitro and reduce lung tumor xenograft growth in vivo. Moreover, depletion of PTPN3 impairs the degradation of EGFR and enhances proliferation and tumorigenicity of lung cancer cells. Taken together, these results indicate that PTPN3 may act as a tumor suppressor in lung cancer through its modulation of EGFR signaling. Oncogene (2015) 34, 3791–3803; doi:10.1038/onc.2014.312; published online 29 September 2014 INTRODUCTION sorting EGFR to multivesicular bodies.15 Recently, Ali et al.16 Reversible tyrosine protein phosphorylation by protein tyrosine showed that the ESCRT accessory protein HD-PTP/PTPN23 kinases and protein tyrosine phosphatases (PTPs) acts as a coordinates with the ubiquitin-specific peptidase UBPY to drive molecular switch that regulates a variety of biological pro- EGFR sorting to the multivesicular bodies.
    [Show full text]
  • Receptor Protein-Tyrosine Phosphatases Controlling Activity of the Oncoprotein
    Receptor protein-tyrosine phosphatases controlling activity of the oncoprotein FLT3 ITD Dissertation zur Erlangung des akademischen Grades Doctor rerum naturalium (Dr. rer. nat.) vorgelegt dem Rat der Medizinischen Fakultät der Friedrich-Schiller-Universität Jena vorgelegt von M. Sc. Anne Kresinsky geboren am 13.05.1990 in Elsterwerda Gutachter: 1. PD Dr. rer. nat. habil. Jörg Paul Müller, Universitätsklinikum Jena 2. Apl. Prof. Dr. rer. nat. habil. Frank-Dietmar Böhmer, Universitätsklinikum Jena 3. Prof. Dr. med. habil. Carsten Müller-Tidow, Universitätsklinikum Heidelberg Tag der öffentlichen Verteidigung: 15.01.2019 Table of Contents Table of Contents TABLE OF CONTENTS .................................................................................................. I ABBREVIATIONS .......................................................................................................... V ZUSAMMENFASSUNG ............................................................................................... VII SUMMARY .................................................................................................................... IX 1. INTRODUCTION ........................................................................................................ 1 1.1 Hematopoietic system ............................................................................................ 1 1.2 Acute myeloid leukemia (AML) .............................................................................. 2 1.2.1 General aspects of AML ....................................................................................
    [Show full text]
  • Live-Cell Imaging Rnai Screen Identifies PP2A–B55α and Importin-Β1 As Key Mitotic Exit Regulators in Human Cells
    LETTERS Live-cell imaging RNAi screen identifies PP2A–B55α and importin-β1 as key mitotic exit regulators in human cells Michael H. A. Schmitz1,2,3, Michael Held1,2, Veerle Janssens4, James R. A. Hutchins5, Otto Hudecz6, Elitsa Ivanova4, Jozef Goris4, Laura Trinkle-Mulcahy7, Angus I. Lamond8, Ina Poser9, Anthony A. Hyman9, Karl Mechtler5,6, Jan-Michael Peters5 and Daniel W. Gerlich1,2,10 When vertebrate cells exit mitosis various cellular structures can contribute to Cdk1 substrate dephosphorylation during vertebrate are re-organized to build functional interphase cells1. This mitotic exit, whereas Ca2+-triggered mitotic exit in cytostatic-factor- depends on Cdk1 (cyclin dependent kinase 1) inactivation arrested egg extracts depends on calcineurin12,13. Early genetic studies in and subsequent dephosphorylation of its substrates2–4. Drosophila melanogaster 14,15 and Aspergillus nidulans16 reported defects Members of the protein phosphatase 1 and 2A (PP1 and in late mitosis of PP1 and PP2A mutants. However, the assays used in PP2A) families can dephosphorylate Cdk1 substrates in these studies were not specific for mitotic exit because they scored pro- biochemical extracts during mitotic exit5,6, but how this relates metaphase arrest or anaphase chromosome bridges, which can result to postmitotic reassembly of interphase structures in intact from defects in early mitosis. cells is not known. Here, we use a live-cell imaging assay and Intracellular targeting of Ser/Thr phosphatase complexes to specific RNAi knockdown to screen a genome-wide library of protein substrates is mediated by a diverse range of regulatory and targeting phosphatases for mitotic exit functions in human cells. We subunits that associate with a small group of catalytic subunits3,4,17.
    [Show full text]
  • The Receptor Protein-Tyrosine Phosphatase, Dep1, Acts in Arterial/Venous Cell Fate Decisions in Zebrafish Development
    Developmental Biology 324 (2008) 122–130 Contents lists available at ScienceDirect Developmental Biology journal homepage: www.elsevier.com/developmentalbiology The receptor protein-tyrosine phosphatase, Dep1, acts in arterial/venous cell fate decisions in zebrafish development Fiona Rodriguez, Andrei Vacaru, John Overvoorde, Jeroen den Hertog ⁎ Hubrecht Institute-KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands article info abstract Article history: Dep1 is a transmembrane protein-tyrosine phosphatase (PTP) that is expressed in vascular endothelial cells Received for publication 3 August 2007 and has tumor suppressor activity. Mouse models with gene targeted Dep1 either show vascular defects, or Revised 8 September 2008 do not show any defects at all. We used the zebrafish to investigate the role of Dep1 in early development. Accepted 9 September 2008 The zebrafish genome encodes two highly homologous Dep1 genes, Dep1a and Dep1b. Morpholinos specific Available online 23 September 2008 for Dep1a and Dep1b induced defects in vasculature, resulting in defective blood circulation. However, Green fl Keywords: Fluorescent Protein expression in i1a::gfp1 transgenic embryos and cdh5 expression, markers of vascular Dep1 endothelial cells, were normal upon Dep1a- and Dep1b-MO injection. Molecular markers indicated that Protein-tyrosine phosphatase arterial specification was reduced and venous markers were expanded in Dep1 morphants. Moreover, the Arterial Dep1a/Dep1b knockdowns were rescued by inhibition of Phosphatidylinositol-3 kinase (PI3K) and by Venous expression of active Notch and Grl/Hey2. Our results suggest a model in which Dep1 acts upstream in a Cell specification signaling pathway inhibiting PI3K, resulting in expression of Notch and Grl, thus regulating arterial fi Zebra sh specification in development.
    [Show full text]
  • Research Article Complex and Multidimensional Lipid Raft Alterations in a Murine Model of Alzheimer’S Disease
    SAGE-Hindawi Access to Research International Journal of Alzheimer’s Disease Volume 2010, Article ID 604792, 56 pages doi:10.4061/2010/604792 Research Article Complex and Multidimensional Lipid Raft Alterations in a Murine Model of Alzheimer’s Disease Wayne Chadwick, 1 Randall Brenneman,1, 2 Bronwen Martin,3 and Stuart Maudsley1 1 Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA 2 Miller School of Medicine, University of Miami, Miami, FL 33124, USA 3 Metabolism Unit, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA Correspondence should be addressed to Stuart Maudsley, [email protected] Received 17 May 2010; Accepted 27 July 2010 Academic Editor: Gemma Casadesus Copyright © 2010 Wayne Chadwick et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Various animal models of Alzheimer’s disease (AD) have been created to assist our appreciation of AD pathophysiology, as well as aid development of novel therapeutic strategies. Despite the discovery of mutated proteins that predict the development of AD, there are likely to be many other proteins also involved in this disorder. Complex physiological processes are mediated by coherent interactions of clusters of functionally related proteins. Synaptic dysfunction is one of the hallmarks of AD. Synaptic proteins are organized into multiprotein complexes in high-density membrane structures, known as lipid rafts. These microdomains enable coherent clustering of synergistic signaling proteins.
    [Show full text]
  • Phosphatases Page 1
    Phosphatases esiRNA ID Gene Name Gene Description Ensembl ID HU-05948-1 ACP1 acid phosphatase 1, soluble ENSG00000143727 HU-01870-1 ACP2 acid phosphatase 2, lysosomal ENSG00000134575 HU-05292-1 ACP5 acid phosphatase 5, tartrate resistant ENSG00000102575 HU-02655-1 ACP6 acid phosphatase 6, lysophosphatidic ENSG00000162836 HU-13465-1 ACPL2 acid phosphatase-like 2 ENSG00000155893 HU-06716-1 ACPP acid phosphatase, prostate ENSG00000014257 HU-15218-1 ACPT acid phosphatase, testicular ENSG00000142513 HU-09496-1 ACYP1 acylphosphatase 1, erythrocyte (common) type ENSG00000119640 HU-04746-1 ALPL alkaline phosphatase, liver ENSG00000162551 HU-14729-1 ALPP alkaline phosphatase, placental ENSG00000163283 HU-14729-1 ALPP alkaline phosphatase, placental ENSG00000163283 HU-14729-1 ALPPL2 alkaline phosphatase, placental-like 2 ENSG00000163286 HU-07767-1 BPGM 2,3-bisphosphoglycerate mutase ENSG00000172331 HU-06476-1 BPNT1 3'(2'), 5'-bisphosphate nucleotidase 1 ENSG00000162813 HU-09086-1 CANT1 calcium activated nucleotidase 1 ENSG00000171302 HU-03115-1 CCDC155 coiled-coil domain containing 155 ENSG00000161609 HU-09022-1 CDC14A CDC14 cell division cycle 14 homolog A (S. cerevisiae) ENSG00000079335 HU-11533-1 CDC14B CDC14 cell division cycle 14 homolog B (S. cerevisiae) ENSG00000081377 HU-06323-1 CDC25A cell division cycle 25 homolog A (S. pombe) ENSG00000164045 HU-07288-1 CDC25B cell division cycle 25 homolog B (S. pombe) ENSG00000101224 HU-06033-1 CDKN3 cyclin-dependent kinase inhibitor 3 ENSG00000100526 HU-02274-1 CTDSP1 CTD (carboxy-terminal domain,
    [Show full text]
  • The Phosphatase CD148 Promotes Airway Hyperresponsiveness Through SRC Family Kinases
    The phosphatase CD148 promotes airway hyperresponsiveness through SRC family kinases Tamiko R. Katsumoto, … , Dean Sheppard, Arthur Weiss J Clin Invest. 2013;123(5):2037-2048. https://doi.org/10.1172/JCI66397. Research Article Pulmonology Increased airway smooth muscle (ASM) contractility and the development of airway hyperresponsiveness (AHR) are cardinal features of asthma, but the signaling pathways that promote these changes are poorly understood. Tyrosine phosphorylation is tightly regulated by the opposing actions of protein tyrosine kinases and phosphatases, but little is known about whether tyrosine phosphatases influence AHR. Here, we demonstrate that genetic inactivation of receptor- like protein tyrosine phosphatase J (Ptprj), which encodes CD148, protected mice from the development of increased AHR in two different asthma models. Surprisingly, CD148 deficiency minimally affected the inflammatory response to allergen, but significantly altered baseline pulmonary resistance. Mice specifically lacking CD148 in smooth muscle had decreased AHR, and the frequency of calcium oscillations in CD148-deficient ASM was substantially attenuated, suggesting that signaling pathway alterations may underlie ASM contractility. Biochemical analysis of CD148-deficient ASM revealed hyperphosphorylation of the C-terminal inhibitory tyrosine of SRC family kinases (SFKs), implicating CD148 as a critical positive regulator of SFK signaling in ASM. The effect of CD148 deficiency on ASM contractility could be mimicked by treatment of both mouse trachea and human bronchi with specific SFK inhibitors. Our studies identify CD148 and the SFKs it regulates in ASM as potential targets for the treatment of AHR. Find the latest version: https://jci.me/66397/pdf Research article The phosphatase CD148 promotes airway hyperresponsiveness through SRC family kinases Tamiko R.
    [Show full text]
  • SUPPLEMENTARY APPENDIX Exome Sequencing Reveals Heterogeneous Clonal Dynamics in Donor Cell Myeloid Neoplasms After Stem Cell Transplantation
    SUPPLEMENTARY APPENDIX Exome sequencing reveals heterogeneous clonal dynamics in donor cell myeloid neoplasms after stem cell transplantation Julia Suárez-González, 1,2 Juan Carlos Triviño, 3 Guiomar Bautista, 4 José Antonio García-Marco, 4 Ángela Figuera, 5 Antonio Balas, 6 José Luis Vicario, 6 Francisco José Ortuño, 7 Raúl Teruel, 7 José María Álamo, 8 Diego Carbonell, 2,9 Cristina Andrés-Zayas, 1,2 Nieves Dorado, 2,9 Gabriela Rodríguez-Macías, 9 Mi Kwon, 2,9 José Luis Díez-Martín, 2,9,10 Carolina Martínez-Laperche 2,9* and Ismael Buño 1,2,9,11* on behalf of the Spanish Group for Hematopoietic Transplantation (GETH) 1Genomics Unit, Gregorio Marañón General University Hospital, Gregorio Marañón Health Research Institute (IiSGM), Madrid; 2Gregorio Marañón Health Research Institute (IiSGM), Madrid; 3Sistemas Genómicos, Valencia; 4Department of Hematology, Puerta de Hierro General University Hospital, Madrid; 5Department of Hematology, La Princesa University Hospital, Madrid; 6Department of Histocompatibility, Madrid Blood Centre, Madrid; 7Department of Hematology and Medical Oncology Unit, IMIB-Arrixaca, Morales Meseguer General University Hospital, Murcia; 8Centro Inmunológico de Alicante - CIALAB, Alicante; 9Department of Hematology, Gregorio Marañón General University Hospital, Madrid; 10 Department of Medicine, School of Medicine, Com - plutense University of Madrid, Madrid and 11 Department of Cell Biology, School of Medicine, Complutense University of Madrid, Madrid, Spain *CM-L and IB contributed equally as co-senior authors. Correspondence:
    [Show full text]
  • Interdependence of EGFR with Ptps on Juxtaposed Membranes
    bioRxiv preprint doi: https://doi.org/10.1101/309781; this version posted April 29, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Interdependence of EGFR with PTPs on juxtaposed membranes generates a growth factor sensing and responding network Authors: Angel Stanoev1, §, Amit Mhamane1, §, Klaus C. Schuermann1, Hernán E. Grecco1, 2, Wayne Stallaert1, Martin Baumdick1, Yannick Brüggemann1, 5, Maitreyi S. Joshi1, Pedro Roda-Navarro1, 4, Sven Fengler1, 3, Rabea Stockert1, Lisaweta Roßmannek1, Jutta Luig1, Aneta Koseska1, 5, * and Philippe I. H. Bastiaens1, 5, * Affiliations: 1 Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, Dortmund, Germany 2 current address: Department of Physics, University of Buenos Aires, Buenos Aires, Argentina 3 current address: Laboratory Automation Technologies, German Center for Neurodegenerative Diseases e.V. of the Helmholtz Society, Bonn, Germany 4 current address: Department of Microbiology, Faculty of Medicine, University Complutense, Madrid, Spain 5 Faculty of Chemistry and Chemical Biology, TU Dortmund, Dortmund, Germany § These authors contributed equally *Correspondence to: [email protected] (lead contact) [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/309781; this version posted April 29, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.
    [Show full text]