Effects of Paternal Obesity on the Metabolic Profile of Offspring: Alterations In

Total Page:16

File Type:pdf, Size:1020Kb

Effects of Paternal Obesity on the Metabolic Profile of Offspring: Alterations In Effects of Paternal Obesity on the Metabolic Profile of Offspring: Alterations in Gastrocnemius Muscle GLUT4 Trafficking and Mesenteric Adipose Tissue Transcriptome A dissertation presented to the faculty of the College of Arts and Sciences of Ohio University In partial fulfillment of the requirements for the degree Doctor of Philosophy Xinhao Liu August 2018 © 2018 Xinhao Liu. All Rights Reserved 2 This dissertation titled Effects of Paternal Obesity on the Metabolic Profile of Offspring: Alterations in Gastrocnemius Muscle GLUT4 Trafficking and Mesenteric Adipose Tissue Transcriptome by XINHAO LIU has been approved for the Department of Biological Science and the College of Arts and Sciences by Felicia V. Nowak Associate Professor of Biomedical Science Joseph Shields Interim Dean, College of Arts and Sciences 3 ABSTRACT LIU, XINHAO, Ph.D., August 2018, Molecular and Cellular Biology Effects of Paternal Obesity on the Metabolic Profile of Offspring: Alterations in Gastrocnemius Muscle GLUT4 Trafficking and Mesenteric Adipose Tissue Transcriptome Director of Dissertation: Felicia V. Nowak Parental obesity increases the risk of obesity in offspring. The overall hypothesis of this work is that offspring inherit altered epigenetic marks from parents that are obese due to consumption of high fat diet (HFD). The first specific hypothesis was that decreased GLUT4 synthesis or impaired trafficking to plasma membrane occurs in insulin resistant HFDO. This study measured expression of total glucose transporter 4, (GLUT4), the major insulin-stimulated transporter of glucose into muscle and adipose cells, as well as its subcellular distribution in the gastrocnemius muscle. The data showed that the level of total GLUT-4, as indicated by a 46kd protein band, exhibits no difference between LFDO and HFDO at 1.5, 6 or 12 months. However, when data from animals of all ages are combined, total GLUT4 expression is significantly higher in female than male HFDO, suggesting that females are protected from IR at least initially by increased GLUT4 expression facilitating increased glucose transport into skeletal muscle. In contrast, male HFDO have higher plasma membrane GLUT4 expression when compared to male LFDO, 4 suggesting a mechanism in skeletal muscle in males to alter GLUT4 subcellular distribution and prevent worsening of IR. It was next hypothesized that adipose tissue, as an endocrine organ that secretes multiple adipokines, also contributes to IR. Male HFDO also have increased body fat and increased weight of white adipose tissue (WAT), including mesenteric, subcutaneous, gonadal and retroperitoneal depots. Thus, the second specific hypothesis was that altered production of certain adipokines occurs in insulin resistant HFDO. Data showed that cytokines that increase the risk of IR such as IL1b and Fam3b were increased in male HFDO. Ingenuity Pathway Analysis (IPA) analysis showed that differentially expressed genes (DEGs) were enriched in pathways related to lipid metabolism, endocrine function and multiple organ injuries, such as liver and kidney injuries. This study also characterized the transcriptome of adipose tissue and explored the DNA methylation status of CpG islands located in the promoter regions of several DEGs. However, no DNA methylation differences were detected among these genes, suggesting that the observed differential expression is associated with other epigenetic modifications such as modification of non-coding RNAs and microRNAs. The sex-specificity of strategies in offspring to maintain metabolic balance and resist development of IR strongly suggests that epigenetic mechanisms have been set into play by the metabolic status of their obese HFD-fed sires. 5 In conclusion, sex-specific strategies in offspring were identified to maintain metabolic balance and resist development of IR. GLUT4 expression was increased in female offspring and translocation to the active site in plasma membrane was increased in HFDO males. RNA sequence analysis revealed altered expression of specific genes in mesenteric adipose tissue in HFDO males that may contribute to the observed IR. Epigenetic analysis showed that DNA methylation was not the mechanism affecting the DEGs studied. 6 ACKNOWLEDGMENTS The PhD education at Ohio University is an important milestone of my life. I learn precious knowledge that I will benefit from in my future career, and more importantly I gain a better mindset of research. I received great help and guidance from the people around me to whom I am genuinely grateful. First of all, I would like to give my most sincere appreciation to my advisor Dr. Nowak whom I have been working with for five years. I was able to choose the research project and design the study freely. And I received great help from her in developing a challenging method for the study. She gave me the intellectual guidance in research with great patience and cares about me in life. With her tremendous help, I was able to get financial support from University to collaborate with colleagues at the University of Massachusetts Medical School where I got to know great scientists and learn new techniques which allowed me to complete my project. Also Dr. Nowak has made every effort to be supportive of my physician scientist career plan. I would like also to express my sincere appreciation to Dr. Leslie Consitt, Dr. Xiaozhuo Chen and Dr. Allan Showalter. Dr. Consitt has similar research field with me, so she provided me great research insight. I would like to thank Dr. Chen who gave me precious guidance in solving technical issues. Dr. Allan Showalter is considerate to join my committee. 7 I would like to thank Dr. Yuriy Slyvka for editing my manuscript with insightful comments and Jie Xiang for assisting me in completion of the most laborious part of my research project. Last but not the least, I would like to express my genuine gratitude to my family. My mother, Lan Liu, my grandmother, Shufang Duan, and my grandfather, Qikui Liu, granted me the genuine support during my Ph.D. study. Their understanding and support are priceless. 8 TABLE OF CONTENTS Page Abstract ........................................................................................................................... 3 Acknowledgments .......................................................................................................... 6 List of Tables................................................................................................................. 10 List of Figures ............................................................................................................... 11 List of Abbreviation ...................................................................................................... 12 Chapter 1: Background ................................................................................................. 14 1.1 Introduction to Obesity ...................................................................................... 14 1.1.1 Genetic Regulation of Obesity .................................................................... 15 1.1.2 Epigenetic Regulation of Obesity ............................................................... 20 1.2 Introduction to the Effects of Parental Obesity .................................................. 23 1.2.1 Effects of Maternal Obesity ........................................................................ 25 1.2.2 Effects of Paternal Obesity ......................................................................... 26 1.3 Development of Insulin Resistance in Offspring of Obese Sires ....................... 28 1.3.1 Relationship of Insulin Resistance and Adipose Tissue .............................. 28 1.3.2 Epigenetic Mechanisms of Adipokine Regulation ...................................... 29 1.3.3 Relationship of Insulin Resistance and Muscle .......................................... 30 1.3.4 Epigenetic Mechanisms of Muscle Insulin Resistance ............................... 33 1.4 Project Summary ................................................................................................ 33 Chapter 2: Materials And Methods ............................................................................... 36 2.1 Chemicals and Solutions .................................................................................... 36 2.2 Animal Care And Use ........................................................................................ 36 2.3 Glucose Tolerance Test (GTT) ........................................................................... 37 2.4 Insulin Resistance Index .................................................................................... 37 2.5 Total GLUT4 Sample Preparation ...................................................................... 37 2.6 Fractionated GLUT4 Sample Preparation.......................................................... 38 2.7 Analysis of Proteins by Immunoblot .................................................................. 39 9 2.8 RNA Extraction, Library Construction and RNA Sequencing .......................... 40 2.9 RNA Sequencing Analysis ................................................................................. 42 2.9.1 Sequence Data Quality Control .................................................................. 42 2.9.2 Read Alignment and Gene Abundance Estimation ..................................... 42 2.9.3 Differential Gene Expression Analysis ....................................................... 43 2.9.4 Ingenuity Pathway Analysis
Recommended publications
  • Strategies to Increase ß-Cell Mass Expansion
    This electronic thesis or dissertation has been downloaded from the King’s Research Portal at https://kclpure.kcl.ac.uk/portal/ Strategies to increase -cell mass expansion Drynda, Robert Lech Awarding institution: King's College London The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without proper acknowledgement. END USER LICENCE AGREEMENT Unless another licence is stated on the immediately following page this work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence. https://creativecommons.org/licenses/by-nc-nd/4.0/ You are free to copy, distribute and transmit the work Under the following conditions: Attribution: You must attribute the work in the manner specified by the author (but not in any way that suggests that they endorse you or your use of the work). Non Commercial: You may not use this work for commercial purposes. No Derivative Works - You may not alter, transform, or build upon this work. Any of these conditions can be waived if you receive permission from the author. Your fair dealings and other rights are in no way affected by the above. Take down policy If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to the work immediately and investigate your claim. Download date: 02. Oct. 2021 Strategies to increase β-cell mass expansion A thesis submitted by Robert Drynda For the degree of Doctor of Philosophy from King’s College London Diabetes Research Group Division of Diabetes & Nutritional Sciences Faculty of Life Sciences & Medicine King’s College London 2017 Table of contents Table of contents .................................................................................................
    [Show full text]
  • Table S1 the Four Gene Sets Derived from Gene Expression Profiles of Escs and Differentiated Cells
    Table S1 The four gene sets derived from gene expression profiles of ESCs and differentiated cells Uniform High Uniform Low ES Up ES Down EntrezID GeneSymbol EntrezID GeneSymbol EntrezID GeneSymbol EntrezID GeneSymbol 269261 Rpl12 11354 Abpa 68239 Krt42 15132 Hbb-bh1 67891 Rpl4 11537 Cfd 26380 Esrrb 15126 Hba-x 55949 Eef1b2 11698 Ambn 73703 Dppa2 15111 Hand2 18148 Npm1 11730 Ang3 67374 Jam2 65255 Asb4 67427 Rps20 11731 Ang2 22702 Zfp42 17292 Mesp1 15481 Hspa8 11807 Apoa2 58865 Tdh 19737 Rgs5 100041686 LOC100041686 11814 Apoc3 26388 Ifi202b 225518 Prdm6 11983 Atpif1 11945 Atp4b 11614 Nr0b1 20378 Frzb 19241 Tmsb4x 12007 Azgp1 76815 Calcoco2 12767 Cxcr4 20116 Rps8 12044 Bcl2a1a 219132 D14Ertd668e 103889 Hoxb2 20103 Rps5 12047 Bcl2a1d 381411 Gm1967 17701 Msx1 14694 Gnb2l1 12049 Bcl2l10 20899 Stra8 23796 Aplnr 19941 Rpl26 12096 Bglap1 78625 1700061G19Rik 12627 Cfc1 12070 Ngfrap1 12097 Bglap2 21816 Tgm1 12622 Cer1 19989 Rpl7 12267 C3ar1 67405 Nts 21385 Tbx2 19896 Rpl10a 12279 C9 435337 EG435337 56720 Tdo2 20044 Rps14 12391 Cav3 545913 Zscan4d 16869 Lhx1 19175 Psmb6 12409 Cbr2 244448 Triml1 22253 Unc5c 22627 Ywhae 12477 Ctla4 69134 2200001I15Rik 14174 Fgf3 19951 Rpl32 12523 Cd84 66065 Hsd17b14 16542 Kdr 66152 1110020P15Rik 12524 Cd86 81879 Tcfcp2l1 15122 Hba-a1 66489 Rpl35 12640 Cga 17907 Mylpf 15414 Hoxb6 15519 Hsp90aa1 12642 Ch25h 26424 Nr5a2 210530 Leprel1 66483 Rpl36al 12655 Chi3l3 83560 Tex14 12338 Capn6 27370 Rps26 12796 Camp 17450 Morc1 20671 Sox17 66576 Uqcrh 12869 Cox8b 79455 Pdcl2 20613 Snai1 22154 Tubb5 12959 Cryba4 231821 Centa1 17897
    [Show full text]
  • R&D Assay for Alzheimer's Disease
    R&DR&D assayassay forfor Alzheimer’sAlzheimer’s diseasedisease Target screening⳼ Ⲽ㬔 antibody array, ᢜ⭉㬔 ⸽ἐⴐ Amyloid β-peptide Alzheimer’s disease⯸ ኸᷠ᧔ ᆹ⸽ inhibitor, antibody, ELISA kit Surwhrph#Surilohu#Dqwlerg|#Duud| 6OUSFBUFE 1."5SFBUFE )41 $3&# &3, &3, )41 $3&# &3, &3, 壤伡庰䋸TBNQMF ɅH 侴䋸嵄䍴䋸BOBMZUFT䋸䬱娴哜塵 1$ 1$ 1$ 1$ 5IFNPTUSFGFSFODFEBSSBZT 1$ 1$ QQ α 34, .4, 503 Q α 34, .4, 503 %SVHTDSFFOJOH0òUBSHFUFòFDUT0ATHWAY涭廐 6OUSFBUFE 堄币䋸4BNQMF侴䋸8FTUFSOPS&-*4"䍘䧽 1."5SFBUFE P 8FTUFSOCMPU廽喜儤应侴䋸0, Z 4VCTUSBUF -JHIU )31DPOKVHBUFE1BO "OUJQIPTQIPUZSPTJOF .FBO1JYFM%FOTJUZ Y $BQUVSF"OUJCPEZ 5BSHFU"OBMZUF "SSBZ.FNCSBOF $3&# &3, &3, )41 .4, Q α 34, 503 Human XL Cytokine Array kit (ARY022, 102 analytes) Adiponectin,Aggrecan,Angiogenin,Angiopoietin-1,Angiopoietin-2,BAFF,BDNF,Complement,Component C5/C5a,CD14,CD30,CD40L, Chitinase 3-like 1,Complement Factor D,C-Reactive Protein,Cripto-1,Cystatin C,Dkk-1,DPPIV,EGF,EMMPRIN,ENA-78,Endoglin, Fas L,FGF basic,FGF- 7,FGF-19,Flt-3 L,G-CSF,GDF-15,GM-CSF,GRO-α,Grow th Hormone,HGF,ICAM-1,IFN-γ,IGFBP-2,IGFBP-3, IL-1α,IL-1β, IL-1ra,IL-2,IL-3,IL-4,IL- 5,IL-6,IL-8, IL-10,IL-11,IL-12, IL-13,IL-15,IL-16,IL-17A,IL-18 BPa,IL-19,IL-22, IL-23,IL-24,IL-27, IL-31,IL-32α/β/γ,IL-33,IL-34,IP-10,I-TAC,Kallikrein 3,Leptin,LIF,Lipocalin-2,MCP-1,MCP-3,M-CSF,MIF,MIG,MIP-1α/MIP-1β,MIP-3α,MIP-3β,MMP-9, Myeloperoxidase,Osteopontin, p70, PDGF-AA, PDGF-AB/BB,Pentraxin-3, PF4, RAGE, RANTES,RBP4,Relaxin-2, Resistin,SDF-1α,Serpin E1, SHBG, ST2, TARC,TFF3,TfR,TGF- ,Thrombospondin-1,TNF-α, uPAR, VEGF, Vitamin D BP Human Protease (34 analytes) /
    [Show full text]
  • Bone Marrow Cells Produce a Novel Tshβ Splice Variant That Is
    Genes and Immunity (2009) 10, 18–26 & 2009 Macmillan Publishers Limited All rights reserved 1466-4879/09 $32.00 www.nature.com/gene ORIGINAL ARTICLE Bone marrow cells produce a novel TSHb splice variant that is upregulated in the thyroid following systemic virus infection BH Vincent1, D Montufar-Solis1, B-B Teng2, BA Amendt3, J Schaefer1 and JR Klein1 1Department of Diagnostic Sciences, Dental Branch, The University of Texas Health Science Center, Houston, TX, USA; 2Center for Human Genetics, The Brown Foundation of Molecular Medicine for the Prevention of Human Disease, The University of Texas Health Science Center, Houston, TX, USA and 3Department of Environmental and Genetic Medicine, Texas A&M Health Science Center, Houston, TX, USA Although cells of the immune system can produce thyroid-stimulating hormone (TSH), the significance of that remains unclear. Using 50 rapid amplification of cDNA ends (RACE), we show that mouse bone marrow (BM) cells produce a novel in-frame TSHb splice variant generated from a portion of intron 4 with all of the coding region of exon 5, but none of exon 4. The TSHb splice variant gene was expressed at low levels in the pituitary, but at high levels in the BM and the thyroid, and the protein was secreted from transfected Chinese hamster ovary (CHO) cells. Immunoprecipitation identified an 8 kDa product in lysates of CHO cells transfected with the novel TSHb construct, and a 17 kDa product in lysates of CHO cells transfected with the native TSHb construct. The splice variant TSHb protein elicited a cAMP response from FRTL-5 thyroid follicular cells and a mouse alveolar macrophage (AM) cell line.
    [Show full text]
  • SYMPOSIUM References 1
    J Orthopaed Traumatol (2008): 24 November 2008 DOI 10.1007/s10195-008-0030-6 24 NOVEMBER 2008 SYMPOSIUM References 1. Pola E, Lattanzi W, Pecorini G, Logroscino CA, Robbins PD (2005) Gene therapy for in vivo bone formation: recent TISSUE ENGINEERING advances. Eur Rev Med Pharmacol Sci 9(3):167–174 2. Pola E, Gao W, Zhou Y, Pola R, Lattanzi W, Sfeir C, et al (2004) A CLINICALLY RELEVANT GENE THERAPY APPROACH Efficient bone formation by gene transfer of human LIM miner- TO INDUCE OSTEOGENESIS: STUDY OF THE NEW alization protein-3. Gene Ther 11(8):683 –693 GROWTH FACTOR LIM MINERALIZAZION PROTEIN-3 3. Lattanzi W, Parrilla C, Fetoni A, Logroscino G, Straface G, Pecorini G, Tampieri A, Bedini R, Pecci R, Michetti F, E. Pola Gambotto A, Robbins PD, Pola E (2008) Ex-vivo transduced autologous skin fibroblasts expressing human Lim Minera - Department of Orthopaedics and Traumatology, Università lization Protein-3 efficiently form new bone in animal models. Cattolica del Sacro Cuore, School of Medicine (Rome-IT) Gene Therapy [Epub ahead of print] Recombinant proteins, such as the bone morphogenetic proteins have been used to enhance repair of non-union fractures and facil- TYPE-I COLLAGEN MEMBRANE AS A SCAFFOLD FOR itate new bone formation in animal models as well as in clinical TENDON REPAIR: AN IN VITRO AND IN VIVO STUDY applications. However, a significant amount of recombinant BMP is required to promote osteogenesis and frequently the extent of A. Gigante, E. Cesari, A. Busilacchi, S. Manzotti, F. Greco new bone formation is low. In contrast, local gene transfer of BMPs has been shown to be more efficient in promoting osteogenesis in Department of Orthopaedics, Polytechnic University of Marche rodents than the use of recombinant proteins.
    [Show full text]
  • Impact of a Diet and Activity Health Promotion Intervention on Regional
    Hibler et al. Clinical Epigenetics (2019) 11:133 https://doi.org/10.1186/s13148-019-0707-0 RESEARCH Open Access Impact of a diet and activity health promotion intervention on regional patterns of DNA methylation Elizabeth Hibler1* , Lei Huang2, Jorge Andrade2,3 and Bonnie Spring1 Abstract Background: Studies demonstrate the impact of diet and physical activity on epigenetic biomarkers, specifically DNA methylation. However, no intervention studies have examined the combined impact of dietary and activity changes on the blood epigenome. The objective of this study was to examine the impact of the Make Better Choices 2 (MBC2) healthy diet and activity intervention on patterns of epigenome-wide DNA methylation. The MBC2 study was a 9-month randomized controlled trial among adults aged 18–65 with non-optimal levels of health behaviors. The study compared three 12-week interventions to (1) simultaneously increase exercise and fruit/ vegetable intake, while decreasing sedentary leisure screen time; (2) sequentially increase fruit/vegetable intake and decrease leisure screen time first, then increase exercise; (3) increase sleep and decrease stress (control). We collected blood samples at baseline, 3 and 9 months, and measured DNA methylation using the Illumina EPIC (850 k) BeadChip. We examined region-based differential methylation patterns using linear regression models with the false discovery rate of 0.05. We also conducted pathway analysis using gene ontology (GO), KEGG, and IPA canonical pathway databases. Results: We found no differences between the MBC2 population (n = 340) and the subsample with DNA methylation measured (n = 68) on baseline characteristics or the impact of the intervention on behavior change.
    [Show full text]
  • Pharmacogenetics of Response to Neoadjuvant Paclitaxel Treatment for Locally Advanced Breast Cancer
    www.impactjournals.com/oncotarget/ Oncotarget, 2017, Vol. 8, (No. 63), pp: 106454-106467 Research Paper Pharmacogenetics of response to neoadjuvant paclitaxel treatment for locally advanced breast cancer Andric C. Perez-Ortiz1,2, Israel Ramírez1, Juan C. Cruz-López3,*, Cynthia Villarreal- Garza4,*, Alexandra Luna-Angulo5, Esmeralda Lira-Romero1, Salvador Jiménez- Chaidez1, José Díaz-Chávez6, Juan A. Matus-Santos6, Laura Sánchez-Chapul5, Patricia Mendoza-Lorenzo7 and Francisco J. Estrada-Mena1 1Universidad Panamericana, Escuela de Medicina, Mexico City, Mexico 2Yale University School of Public Health, Laboratory of Epidemiology and Public Health, New Haven, CT, USA 3Hospital Regional ISSSTE Puebla and Hospital General Zona Norte SSEP Puebla, Puebla City, Mexico 4Depto. de Investigacion, Instituto Nacional de Cancerologia, Centro de Cancer de Mama, Tecnologico de Monterrey, Monterrey, Nuevo León, Mexico 5Instituto Nacional de Rehabilitación, Mexico City, Mexico 6Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, UNAM/Instituto Nacional de Cancerología, Mexico City, Mexico 7División Académica de Ciencias Básicas, Unidad Chontalpa, Universidad Juárez Autónoma de Tabasco, Tabasco, Mexico *These authors contributed equally to this work Correspondence to: Francisco J. Estrada-Mena, email: festrada@up.edu.mx Keywords: pharmacogenetics; paclitaxel; breast cancer; genetic markers; single nucleotide polymorphism Received: July 27, 2017 Accepted: October 27, 2017 Published: November 15, 2017 Copyright: Perez-Ortiz et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Locally advanced breast cancer (LABC) cases have a varying five-year survival rate, mainly influenced by the tumor response to chemotherapy.
    [Show full text]
  • Structure of Neurolysin Reveals a Deep Channel That Limits Substrate Access
    Structure of neurolysin reveals a deep channel that limits substrate access C. Kent Brown*†, Kevin Madauss*, Wei Lian‡, Moriah R. Beck§, W. David Tolbert¶, and David W. Rodgersʈ Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, KY 40536 Communicated by Stephen C. Harrison, Harvard University, Cambridge, MA, December 29, 2000 (received for review November 14, 2000) The zinc metallopeptidase neurolysin is shown by x-ray crystallog- cytosolic, but it also can be secreted or associated with the raphy to have large structural elements erected over the active site plasma membrane (11), and some of the enzyme is made with a region that allow substrate access only through a deep narrow mitochondrial targeting sequence by initiation at an alternative channel. This architecture accounts for specialization of this neu- transcription start site (12). ropeptidase to small bioactive peptide substrates without bulky Although neurolysin cleaves a number of neuropeptides in secondary and tertiary structures. In addition, modeling studies vitro, its most established (5, 13, 14) role in vivo (along with indicate that the length of a substrate N-terminal to the site of thimet oligopeptidase) is in metabolism of neurotensin, a 13- hydrolysis is restricted to approximately 10 residues by the limited residue neuropeptide. It hydrolyzes this peptide between resi- size of the active site cavity. Some structural elements of neuro- dues 10 and 11, creating shorter fragments that are believed to ␤ lysin, including a five-stranded -sheet and the two active site be inactive. helices, are conserved with other metallopeptidases. The connect- Neurotensin (pGlu-Leu-Tyr-Gln-Asn-Lys-Pro-Arg-Arg- ing loop regions of these elements, however, are much extended Pro s Tyr-Ile-Leu) is found in a variety of peripheral and in neurolysin, and they, together with other open coil elements, central tissues where it is involved in a number of effects, line the active site cavity.
    [Show full text]
  • The Effects of Ethanol on Growth Hormone and Prolactin Gene Expression in Male Rats
    Loyola University Chicago Loyola eCommons Dissertations Theses and Dissertations 1995 The Effects of Ethanol on Growth Hormone and Prolactin Gene Expression in Male Rats John James Tentler Loyola University Chicago Follow this and additional works at: https://ecommons.luc.edu/luc_diss Part of the Molecular Biology Commons Recommended Citation Tentler, John James, "The Effects of Ethanol on Growth Hormone and Prolactin Gene Expression in Male Rats" (1995). Dissertations. 3384. https://ecommons.luc.edu/luc_diss/3384 This Dissertation is brought to you for free and open access by the Theses and Dissertations at Loyola eCommons. It has been accepted for inclusion in Dissertations by an authorized administrator of Loyola eCommons. For more information, please contact ecommons@luc.edu. This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. Copyright © 1995 John James Tentler LOYOLA UNIVERSITY CHICAGO THE EFFECTS OF ETHANOL ON GROWTH HORMONE AND PROLACTIN GENE EXPRESSION IN MALE RATS A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL IN CANDIDACY FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF MOLECULAR AND CELLULAR BIOCHEMISTRY BY JOHN JAMES TENTLER CHICAGO, ILLINOIS JANUARY 1995 Copyright by John J. Tentler, 1994 All rights reserved ll ACKNOWLEDGEMENTS I would like to recognize numerous people who have contributed throughout my graduate career to help me realize my goal. First, I would especially like to thank my advisors, Drs. Mary Ann Emanuele, Mark R. Kelley, and Nick Emanuele, not only for their guidance and support, but for their close friendship and belief in me as well. Special thanks also go to Dr.
    [Show full text]
  • Recombinant Human Gamma-1-Syntrophin(SNTG1)
    Product Datasheet Recombinant Human Gamma-1-syntrophin(SNTG1) Catalog No: #AP77208 Package Size: #AP77208-1 20ug #AP77208-2 100ug #AP77208-3 500ug Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com Description Product Name Recombinant Human Gamma-1-syntrophin(SNTG1) Brief Description Recombinant Protein Host Species Yeast Purification Greater than 90% as determined by SDS-PAGE. Immunogen Description Expression Region:1-517aaSequence Info:Full Length Other Names Syntrophin-4 Accession No. Q9NSN8 Calculated MW 61.5 kDa Tag Info N-terminal 6xHis-tagged and C-terminal Myc-tagged Target Sequence MDFRTACEETKTGICLLQDGNQEPFKVRLHLAKDILMIQEQDVICVSGEPFYSGERTVTIRRQTVGGFGLSIKG GAEHNIPVVVSKISKEQRAELSGLLFIGDAILQINGINVRKCRHEEVVQVLRNAGEEVTLTVSFLKRAPAFLKLPL NEDCACAPSDQSSGTSSPLCDSGLHLNYHPNNTDTLSCSSWPTSPGLRWEKRWCDLRLIPLLHSRFSQYVP GTDLSRQNAFQVIAVDGVCTGIIQCLSAEDCVDWLQAIATNISNLTKHNIKKINRNFPVNQQIVYMGWCEAREQ DPLQDRVYSPTFLALRGSCLYKFLAPPVTTWDWTRAEKTFSVYEIMCKILKDSDLLDRRKQCFTVQSESGEDL YFSVELESDLAQWERAFQTATFLEVERIQCKTYACVLESHLMGLTIDFSTGFICFDAATKAVLWRYKFSQLKGS SDDGKSKIKFLFQNPDTKQIEAKELEFSNLFAVLHCIHSFFAAKVACLDPLFLGNQATASTAASSATTSKAKYTT Formulation Tris-based buffer50% glycerol Storage The shelf life is related to many factors, storage state, buffer ingredients, storage temperature and the stability of the protein itself. Generally, the shelf life of liquid form is 6 months at -20°C,-80°C. The shelf life of lyophilized form is 12 months at -20°C,-80°C.Notes:Repeated freezing and thawing is not recommended. Store working aliquots at 4°C for up to
    [Show full text]
  • Development and Validation of a Protein-Based Risk Score for Cardiovascular Outcomes Among Patients with Stable Coronary Heart Disease
    Supplementary Online Content Ganz P, Heidecker B, Hveem K, et al. Development and validation of a protein-based risk score for cardiovascular outcomes among patients with stable coronary heart disease. JAMA. doi: 10.1001/jama.2016.5951 eTable 1. List of 1130 Proteins Measured by Somalogic’s Modified Aptamer-Based Proteomic Assay eTable 2. Coefficients for Weibull Recalibration Model Applied to 9-Protein Model eFigure 1. Median Protein Levels in Derivation and Validation Cohort eTable 3. Coefficients for the Recalibration Model Applied to Refit Framingham eFigure 2. Calibration Plots for the Refit Framingham Model eTable 4. List of 200 Proteins Associated With the Risk of MI, Stroke, Heart Failure, and Death eFigure 3. Hazard Ratios of Lasso Selected Proteins for Primary End Point of MI, Stroke, Heart Failure, and Death eFigure 4. 9-Protein Prognostic Model Hazard Ratios Adjusted for Framingham Variables eFigure 5. 9-Protein Risk Scores by Event Type This supplementary material has been provided by the authors to give readers additional information about their work. Downloaded From: https://jamanetwork.com/ on 10/02/2021 Supplemental Material Table of Contents 1 Study Design and Data Processing ......................................................................................................... 3 2 Table of 1130 Proteins Measured .......................................................................................................... 4 3 Variable Selection and Statistical Modeling ........................................................................................
    [Show full text]
  • Handbook of Proteolytic Enzymes Second Edition Volume 1 Aspartic and Metallo Peptidases
    Handbook of Proteolytic Enzymes Second Edition Volume 1 Aspartic and Metallo Peptidases Alan J. Barrett Neil D. Rawlings J. Fred Woessner Editor biographies xxi Contributors xxiii Preface xxxi Introduction ' Abbreviations xxxvii ASPARTIC PEPTIDASES Introduction 1 Aspartic peptidases and their clans 3 2 Catalytic pathway of aspartic peptidases 12 Clan AA Family Al 3 Pepsin A 19 4 Pepsin B 28 5 Chymosin 29 6 Cathepsin E 33 7 Gastricsin 38 8 Cathepsin D 43 9 Napsin A 52 10 Renin 54 11 Mouse submandibular renin 62 12 Memapsin 1 64 13 Memapsin 2 66 14 Plasmepsins 70 15 Plasmepsin II 73 16 Tick heme-binding aspartic proteinase 76 17 Phytepsin 77 18 Nepenthesin 85 19 Saccharopepsin 87 20 Neurosporapepsin 90 21 Acrocylindropepsin 9 1 22 Aspergillopepsin I 92 23 Penicillopepsin 99 24 Endothiapepsin 104 25 Rhizopuspepsin 108 26 Mucorpepsin 11 1 27 Polyporopepsin 113 28 Candidapepsin 115 29 Candiparapsin 120 30 Canditropsin 123 31 Syncephapepsin 125 32 Barrierpepsin 126 33 Yapsin 1 128 34 Yapsin 2 132 35 Yapsin A 133 36 Pregnancy-associated glycoproteins 135 37 Pepsin F 137 38 Rhodotorulapepsin 139 39 Cladosporopepsin 140 40 Pycnoporopepsin 141 Family A2 and others 41 Human immunodeficiency virus 1 retropepsin 144 42 Human immunodeficiency virus 2 retropepsin 154 43 Simian immunodeficiency virus retropepsin 158 44 Equine infectious anemia virus retropepsin 160 45 Rous sarcoma virus retropepsin and avian myeloblastosis virus retropepsin 163 46 Human T-cell leukemia virus type I (HTLV-I) retropepsin 166 47 Bovine leukemia virus retropepsin 169 48
    [Show full text]