Comparison of Technologies for General-Purpose Computing on Graphics Processing Units

Total Page:16

File Type:pdf, Size:1020Kb

Comparison of Technologies for General-Purpose Computing on Graphics Processing Units Master of Science Thesis in Information Coding Department of Electrical Engineering, Linköping University, 2016 Comparison of Technologies for General-Purpose Computing on Graphics Processing Units Torbjörn Sörman Master of Science Thesis in Information Coding Comparison of Technologies for General-Purpose Computing on Graphics Processing Units Torbjörn Sörman LiTH-ISY-EX–16/4923–SE Supervisor: Robert Forchheimer isy, Linköpings universitet Åsa Detterfelt MindRoad AB Examiner: Ingemar Ragnemalm isy, Linköpings universitet Organisatorisk avdelning Department of Electrical Engineering Linköping University SE-581 83 Linköping, Sweden Copyright © 2016 Torbjörn Sörman Abstract The computational capacity of graphics cards for general-purpose computing have progressed fast over the last decade. A major reason is computational heavy computer games, where standard of performance and high quality graphics con- stantly rise. Another reason is better suitable technologies for programming the graphics cards. Combined, the product is high raw performance devices and means to access that performance. This thesis investigates some of the current technologies for general-purpose computing on graphics processing units. Tech- nologies are primarily compared by means of benchmarking performance and secondarily by factors concerning programming and implementation. The choice of technology can have a large impact on performance. The benchmark applica- tion found the difference in execution time of the fastest technology, CUDA, com- pared to the slowest, OpenCL, to be twice a factor of two. The benchmark applica- tion also found out that the older technologies, OpenGL and DirectX, are compet- itive with CUDA and OpenCL in terms of resulting raw performance. iii Acknowledgments I would like to thank Åsa Detterfelt for the opportunity to make this thesis work at MindRoad AB. I would also like to thank Ingemar Ragnemalm at ISY. Linköping, Februari 2016 Torbjörn Sörman v Contents List of Tables ix List of Figures xi Acronyms xiii 1 Introduction 1 1.1 Background . 1 1.2 Problem statement . 2 1.3 Purpose and goal of the thesis work . 2 1.4 Delimitations . 2 2 Benchmark algorithm 3 2.1 Discrete Fourier Transform . 3 2.1.1 Fast Fourier Transform . 4 2.2 Image processing . 4 2.3 Image compression . 4 2.4 Linear algebra . 5 2.5 Sorting . 5 2.5.1 Efficient sorting . 6 2.6 Criteria for Algorithm Selection . 6 3 Theory 7 3.1 Graphics Processing Unit . 7 3.1.1 GPGPU . 7 3.1.2 GPU vs CPU . 8 3.2 Fast Fourier Transform . 9 3.2.1 Cooley-Tukey . 9 3.2.2 Constant geometry . 10 3.2.3 Parallelism in FFT . 10 3.2.4 GPU algorithm . 10 3.3 Related research . 12 vii viii Contents 4 Technologies 15 4.1 CUDA . 15 4.2 OpenCL . 16 4.3 DirectCompute . 18 4.4 OpenGL . 19 4.5 OpenMP . 19 4.6 External libraries . 20 5 Implementation 21 5.1 Benchmark application GPU . 21 5.1.1 FFT . 21 5.1.2 FFT 2D . 24 5.1.3 Differences . 26 5.2 Benchmark application CPU . 29 5.2.1 FFT with OpenMP . 29 5.2.2 FFT 2D with OpenMP . 30 5.2.3 Differences with GPU . 30 5.3 Benchmark configurations . 31 5.3.1 Limitations . 31 5.3.2 Testing . 31 5.3.3 Reference libraries . 31 6 Evaluation 33 6.1 Results . 33 6.1.1 Forward FFT . 34 6.1.2 FFT 2D . 38 6.2 Discussion . 42 6.2.1 Qualitative assessment . 44 6.2.2 Method . 45 6.3 Conclusions . 46 6.3.1 Benchmark application . 46 6.3.2 Benchmark performance . 47 6.3.3 Implementation . 47 6.4 Future work . 48 6.4.1 Application . 48 6.4.2 Hardware . 48 Bibliography 51 List of Tables 3.1 Global kernel parameter list with argument depending on size of input N and stage. ........................... 11 3.2 Local kernel parameter list with argument depending on size of input N and number of stages left to complete. 12 4.1 Table of function types in CUDA. 16 5.1 Shared memory size in bytes, threads and block configuration per device. 22 5.2 Integer intrinsic bit-reverse function for different technologies. 24 5.3 Table illustrating how to set parameters and launch a kernel. 28 5.4 Synchronization in GPU technologies. 29 5.5 Twiddle factors for a 16-point sequence where α equals (2 · π)=16. Each row i corresponds to the ith butterfly operation. 30 5.6 Libraries included to compare with the implementation. 31 6.1 Technologies included in the experimental setup. 34 6.2 Table comparing CUDA to CPU implementations. 47 ix x LIST OF TABLES List of Figures 3.1 The GPU uses more transistors for data processing . 8 3.2 Radix-2 butterfly operations . 9 3.3 8-point radix-2 FFT using Cooley-Tukey algorithm . 9 3.4 Flow graph of an radix-2 FFT using the constant geometry algo- rithm. 10 4.1 CUDA global kernel . 16 4.2 OpenCL global kernel . 17 4.3 DirectCompute global kernel . 18 4.4 OpenGL global kernel . 19 4.5 OpenMP procedure completing one stage . 20 5.1 Overview of the events in the algorithm. 21 5.2 Flow graph of a 16-point FFT using (stage 1 and 2) Cooley-Tukey algorithm and (stage 3 and 4) constant geometry algorithm. The solid box is the bit-reverse order output. Dotted boxes are separate kernel launches, dashed boxes are data transfered to local memory before computing the remaining stages. 23 5.3 CUDA example code showing index calculation for each stage in the global kernel, N is the total number of points. io_low is the index of the first input in the butterfly operation and io_high the index of the second. 23 5.4 CUDA code for index calculation of points in shared memory. 24 5.5 Code returning a bit-reversed unsigned integer where x is the in- put. Only 32-bit integer input and output. 24 5.6 Original image in 5.6a transformed and represented with a quad- rant shifted magnitude visualization (scale skewed for improved illustration) in 5.6b. 25 5.7 CUDA device code for the transpose kernel. 26 5.8 Illustration of how shared memory is used in transposing an image. Input data is tiled and each tile is written to shared memory and transposed before written to the output memory. 27 5.9 An overview of the setup phase for the GPU technologies. 27 5.10 OpenMP implementation overview transforming sequence of size N...................................... 29 xi xii LIST OF FIGURES 5.11 C/C++ code performing the bit-reverse ordering of a N-point se- quence. 30 6.1 Overview of the results of a single forward transform. The clFFT was timed by host synchronization resulting in an overhead in the range of 60µs. Lower is faster. 35 6.2 Performance relative CUDA implementation in 6.2a and OpenCL in 6.2b. Lower is better. 36 6.3 Performance relative CUDA implementation on GeForce GTX 670 and Intel Core i7 3770K 3.5GHz CPU. 37 6.4 Comparison between Radeon R7 R260X and GeForce GTX 670. 37 6.5 Performance relative OpenCL accumulated from both cards. 38 6.6 Overview of the results of measuring the time of a single 2D for- ward transform. 39 6.7 Time of 2D transform relative CUDA in 6.7a and OpenCL in 6.7b. 40 6.8 Performance relative CUDA implementation on GeForce GTX 670 and Intel Core i7 3770K 3.5GHz CPU. 41 6.9 Comparison between Radeon R7 R260X and GeForce GTX 670 run- ning 2D transform. 41 6.10 Performance relative OpenCL accumulated from both cards. 42 Acronyms 1D One-dimensional. 2D Two-dimensional. 3D Three-dimensional. ACL AMD Compute Libraries. API Application Programming Interface. BLAS Basic Linear Algebra Subprograms. CPU Central Processing Unit. CUDA Compute Unified Device Architecture. DCT Discrete Cosine Transform. DFT Discrete Fourier Transform. DIF Decimation-In-Frequency. DWT Discrete Wavelet Transform. EBCOT Embedded Block Coding with Optimized Truncation. FFT Fast Fourier Transform. FFTW Fastest Fourier Transform in the West. FLOPS Floating-point Operations Per Second. FPGA Field-Programmable Gate Array. GCN Graphics Core Next. xiii xiv Acronyms GLSL OpenGL Shading Language. GPGPU General-Purpose computing on Graphics Processing Units. GPU Graphics Processing Unit. HBM High Bandwidth Memory. HBM2 High Bandwidth Memory. HLSL High-Level Shading Language. HPC High-Performance Computing. ILP Instruction-Level Parallelism. OpenCL Open Computing Language. OpenGL Open Graphics Library. OpenMP Open Multi-Processing. OS Operating System. PTX Parallel Thread Execution. RDP Remote Desktop Protocol. SM Streaming Multiprocessor. VLIW Very Long Instruction Word-processor. 1 Introduction This chapter gives an introduction to the thesis. The background, purpose and goal of the thesis, describes a list of abbreviations and the structure of this report. 1.1 Background Technical improvements of hardware has for a long period of time been the best way to solve computationally demanding problems faster. However, during the last decades, the limit of what can be achieved by hardware improvements appear to have been reached: The operating frequency of the Central Processing Unit (CPU) does no longer significantly improve. Problems relying on single thread performance are limited by three primary technical factors: 1. The Instruction-Level Parallelism (ILP) wall 2. The memory wall 3. The power wall The first wall states that it is hard to further exploit simultaneous CPU instruc- tions: techniques such as instruction pipelining, superscalar execution and Very Long Instruction Word-processor (VLIW) exists but complexity and latency of hardware reduces the benefits. The second wall, the gap between CPU speed and memory access time, that may cost several hundreds of CPU cycles if accessing primary memory. The third wall is the power and heating problem.
Recommended publications
  • Overview: Graphics Processing Units
    Overview: Graphics Processing Units l advent of GPUs l GPU architecture n the NVIDIA Fermi processor l the CUDA programming model n simple example, threads organization, memory model n case study: matrix multiply using shared memory n memories, thread synchronization, scheduling n case study: reductions n performance considerations: bandwidth, scheduling, resource conflicts, instruction mix u host-device data transfer: multiple GPUs, NVLink, Unified Memory, APUs l the OpenCL programming model l directive-based programming models refs: Lin & Snyder Ch 10, CUDA Toolkit Documentation, An Even Easier Introduction to CUDA (tutorial); NCI NF GPU page, Programming Massively Parallel Processors, Kirk & Hwu, Morgan-Kaufman, 2010; Cuda By Example, by Sanders and Kandrot; OpenCL web page, OpenCL in Action, by Matthew Scarpino COMP4300/8300 L18,19: Graphics Processing Units 2021 JJJ • III × 1 Advent of General-purpose Graphics Processing Units l many applications have massive amounts of mostly independent calculations n e.g. ray tracing, image rendering, matrix computations, molecular simulations, HDTV n can be largely expressed in terms of SIMD operations u implementable with minimal control logic & caches, simple instruction sets l design point: maximize number of ALUs & FPUs and memory bandwidth to take advantage of Moore’s’ Law (shown here) n put this on a co-processor (GPU); have a normal CPU to co-ordinate, run the operating system, launch applications, etc l architecture/infrastructure development requires a massive economic base for its development (the gaming industry!) n pre 2006: only specialized graphics operations (integer & float data) n 2006: ‘General Purpose’ (GPGPU): general computations but only through a graphics library (e.g.
    [Show full text]
  • AMD Accelerated Parallel Processing Opencl Programming Guide
    AMD Accelerated Parallel Processing OpenCL Programming Guide November 2013 rev2.7 © 2013 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, AMD Accelerated Parallel Processing, the AMD Accelerated Parallel Processing logo, ATI, the ATI logo, Radeon, FireStream, FirePro, Catalyst, and combinations thereof are trade- marks of Advanced Micro Devices, Inc. Microsoft, Visual Studio, Windows, and Windows Vista are registered trademarks of Microsoft Corporation in the U.S. and/or other jurisdic- tions. Other names are for informational purposes only and may be trademarks of their respective owners. OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos. The contents of this document are provided in connection with Advanced Micro Devices, Inc. (“AMD”) products. AMD makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make changes to specifications and product descriptions at any time without notice. The information contained herein may be of a preliminary or advance nature and is subject to change without notice. No license, whether express, implied, arising by estoppel or other- wise, to any intellectual property rights is granted by this publication. Except as set forth in AMD’s Standard Terms and Conditions of Sale, AMD assumes no liability whatsoever, and disclaims any express or implied warranty, relating to its products including, but not limited to, the implied warranty of merchantability, fitness for a particular purpose, or infringement of any intellectual property right. AMD’s products are not designed, intended, authorized or warranted for use as compo- nents in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or in any other application in which the failure of AMD’s product could create a situation where personal injury, death, or severe property or envi- ronmental damage may occur.
    [Show full text]
  • Candidate Features for Future Opengl 5 / Direct3d 12 Hardware and Beyond 3 May 2014, Christophe Riccio
    Candidate features for future OpenGL 5 / Direct3D 12 hardware and beyond 3 May 2014, Christophe Riccio G-Truc Creation Table of contents TABLE OF CONTENTS 2 INTRODUCTION 4 1. DRAW SUBMISSION 6 1.1. GL_ARB_MULTI_DRAW_INDIRECT 6 1.2. GL_ARB_SHADER_DRAW_PARAMETERS 7 1.3. GL_ARB_INDIRECT_PARAMETERS 8 1.4. A SHADER CODE PATH PER DRAW IN A MULTI DRAW 8 1.5. SHADER INDEXED LOSE STATES 9 1.6. GL_NV_BINDLESS_MULTI_DRAW_INDIRECT 10 1.7. GL_AMD_INTERLEAVED_ELEMENTS 10 2. RESOURCES 11 2.1. GL_ARB_BINDLESS_TEXTURE 11 2.2. GL_NV_SHADER_BUFFER_LOAD AND GL_NV_SHADER_BUFFER_STORE 11 2.3. GL_ARB_SPARSE_TEXTURE 12 2.4. GL_AMD_SPARSE_TEXTURE 12 2.5. GL_AMD_SPARSE_TEXTURE_POOL 13 2.6. SEAMLESS TEXTURE STITCHING 13 2.7. 3D MEMORY LAYOUT FOR SPARSE 3D TEXTURES 13 2.8. SPARSE BUFFER 14 2.9. GL_KHR_TEXTURE_COMPRESSION_ASTC 14 2.10. GL_INTEL_MAP_TEXTURE 14 2.11. GL_ARB_SEAMLESS_CUBEMAP_PER_TEXTURE 15 2.12. DMA ENGINES 15 2.13. UNIFIED MEMORY 16 3. SHADER OPERATIONS 17 3.1. GL_ARB_SHADER_GROUP_VOTE 17 3.2. GL_NV_SHADER_THREAD_GROUP 17 3.3. GL_NV_SHADER_THREAD_SHUFFLE 17 3.4. GL_NV_SHADER_ATOMIC_FLOAT 18 3.5. GL_AMD_SHADER_ATOMIC_COUNTER_OPS 18 3.6. GL_ARB_COMPUTE_VARIABLE_GROUP_SIZE 18 3.7. MULTI COMPUTE DISPATCH 19 3.8. GL_NV_GPU_SHADER5 19 3.9. GL_AMD_GPU_SHADER_INT64 20 3.10. GL_AMD_GCN_SHADER 20 3.11. GL_NV_VERTEX_ATTRIB_INTEGER_64BIT 21 3.12. GL_AMD_ SHADER_TRINARY_MINMAX 21 4. FRAMEBUFFER 22 4.1. GL_AMD_SAMPLE_POSITIONS 22 4.2. GL_EXT_FRAMEBUFFER_MULTISAMPLE_BLIT_SCALED 22 4.3. GL_NV_MULTISAMPLE_COVERAGE AND GL_NV_FRAMEBUFFER_MULTISAMPLE_COVERAGE 22 4.4. GL_AMD_DEPTH_CLAMP_SEPARATE 22 5. BLENDING 23 5.1. GL_NV_TEXTURE_BARRIER 23 5.2. GL_EXT_SHADER_FRAMEBUFFER_FETCH (OPENGL ES) 23 5.3. GL_ARM_SHADER_FRAMEBUFFER_FETCH (OPENGL ES) 23 5.4. GL_ARM_SHADER_FRAMEBUFFER_FETCH_DEPTH_STENCIL (OPENGL ES) 23 5.5. GL_EXT_PIXEL_LOCAL_STORAGE (OPENGL ES) 24 5.6. TILE SHADING 25 5.7. GL_INTEL_FRAGMENT_SHADER_ORDERING 26 5.8. GL_KHR_BLEND_EQUATION_ADVANCED 26 5.9.
    [Show full text]
  • Gscale: Scaling up GPU Virtualization with Dynamic Sharing of Graphics
    gScale: Scaling up GPU Virtualization with Dynamic Sharing of Graphics Memory Space Mochi Xue, Shanghai Jiao Tong University and Intel Corporation; Kun Tian, Intel Corporation; Yaozu Dong, Shanghai Jiao Tong University and Intel Corporation; Jiacheng Ma, Jiajun Wang, and Zhengwei Qi, Shanghai Jiao Tong University; Bingsheng He, National University of Singapore; Haibing Guan, Shanghai Jiao Tong University https://www.usenix.org/conference/atc16/technical-sessions/presentation/xue This paper is included in the Proceedings of the 2016 USENIX Annual Technical Conference (USENIX ATC ’16). June 22–24, 2016 • Denver, CO, USA 978-1-931971-30-0 Open access to the Proceedings of the 2016 USENIX Annual Technical Conference (USENIX ATC ’16) is sponsored by USENIX. gScale: Scaling up GPU Virtualization with Dynamic Sharing of Graphics Memory Space Mochi Xue1,2, Kun Tian2, Yaozu Dong1,2, Jiacheng Ma1, Jiajun Wang1, Zhengwei Qi1, Bingsheng He3, Haibing Guan1 {xuemochi, mjc0608, jiajunwang, qizhenwei, hbguan}@sjtu.edu.cn {kevin.tian, eddie.dong}@intel.com [email protected] 1Shanghai Jiao Tong University, 2Intel Corporation, 3National University of Singapore Abstract As one of the key enabling technologies of GPU cloud, GPU virtualization is intended to provide flexible and With increasing GPU-intensive workloads deployed on scalable GPU resources for multiple instances with high cloud, the cloud service providers are seeking for practi- performance. To achieve such a challenging goal, sev- cal and efficient GPU virtualization solutions. However, eral GPU virtualization solutions were introduced, i.e., the cutting-edge GPU virtualization techniques such as GPUvm [28] and gVirt [30]. gVirt, also known as GVT- gVirt still suffer from the restriction of scalability, which g, is a full virtualization solution with mediated pass- constrains the number of guest virtual GPU instances.
    [Show full text]
  • 3D Graphics on the ADS512101 Board Using Opengl ES By: Francisco Sandoval Zazueta Infotainment Multimedia and Telematics (IMT)
    Freescale Semiconductor Document Number: AN3793 Application Note Rev. 0, 12/2008 3D Graphics on the ADS512101 Board Using OpenGL ES by: Francisco Sandoval Zazueta Infotainment Multimedia and Telematics (IMT) 1 Introduction Contents 1 Introduction . 1 OpenGL is one of the most widely used graphic standard 2 Preparing the Environment . 2 2.1 Assumptions on the Environment . 2 specifications available. OpenGL ES is a reduced 2.2 Linux Target Image Builder (LTIB) . 2 adaptation of OpenGL that offers a powerful yet limited 2.3 Installing PowerVR Software Development Kit . 4 3 The PowerVR SDK . 5 version for embedded systems. 3.1 Introduction to SDK . 5 3.2 PVRShell . 5 One of the main features of the MPC5121e is its graphics 3.3 PVRtools . 6 co-processor, the MBX core. It is a wide spread standard 4 Developing Example Application . 6 of mobile 3D graphics acceleration for mobile solutions. 4.1 3D Model Loader. 6 5 Conclusion. 9 Together with Imagination Technologies OpenGL ES 1.1 6 References . 9 SDK, the ADS512101 board can be used to produce 7 Glossary . 10 Appendix A eye-catching graphics. This document is an introduction, Applying DIU Patches to the Kernel . 11 after the development environment is ready, it is up to the A.1 Applying the MBXpatch2.patch . 11 developer’s skills to exploit the board’s graphics A.2 byte_flip Application. 11 Appendix B capabilities. Brief Introduction to OpenGL ES . 12 B.1 OpenGL ES . 12 B.2 Main Differences Between OGLES 1.1 and . 12 B.3 Obtaining Frustum Numbers . 13 B.4 glFrustum.
    [Show full text]
  • A Qualitative Comparison Study Between Common GPGPU Frameworks
    A Qualitative Comparison Study Between Common GPGPU Frameworks. Adam Söderström Department of Computer and Information Science Linköping University This dissertation is submitted for the degree of M. Sc. in Media Technology and Engineering June 2018 Acknowledgements I would like to acknowledge MindRoad AB and Åsa Detterfelt for making this work possible. I would also like to thank Ingemar Ragnemalm and August Ernstsson at Linköping University. Abstract The development of graphic processing units have during the last decade improved signif- icantly in performance while at the same time becoming cheaper. This has developed a new type of usage of the device where the massive parallelism available in modern GPU’s are used for more general purpose computing, also known as GPGPU. Frameworks have been developed just for this purpose and some of the most popular are CUDA, OpenCL and DirectX Compute Shaders, also known as DirectCompute. The choice of what framework to use may depend on factors such as features, portability and framework complexity. This paper aims to evaluate these concepts, while also comparing the speedup of a parallel imple- mentation of the N-Body problem with Barnes-hut optimization, compared to a sequential implementation. Table of contents List of figures xi List of tables xiii Nomenclature xv 1 Introduction1 1.1 Motivation . .1 1.2 Aim . .3 1.3 Research questions . .3 1.4 Delimitations . .4 1.5 Related work . .4 1.5.1 Framework comparison . .4 1.5.2 N-Body with Barnes-Hut . .5 2 Theory9 2.1 Background . .9 2.1.1 GPGPU History . 10 2.2 GPU Architecture .
    [Show full text]
  • Gpgpu Processing in Cuda Architecture
    Advanced Computing: An International Journal ( ACIJ ), Vol.3, No.1, January 2012 GPGPU PROCESSING IN CUDA ARCHITECTURE Jayshree Ghorpade 1, Jitendra Parande 2, Madhura Kulkarni 3, Amit Bawaskar 4 1Departmentof Computer Engineering, MITCOE, Pune University, India [email protected] 2 SunGard Global Technologies, India [email protected] 3 Department of Computer Engineering, MITCOE, Pune University, India [email protected] 4Departmentof Computer Engineering, MITCOE, Pune University, India [email protected] ABSTRACT The future of computation is the Graphical Processing Unit, i.e. the GPU. The promise that the graphics cards have shown in the field of image processing and accelerated rendering of 3D scenes, and the computational capability that these GPUs possess, they are developing into great parallel computing units. It is quite simple to program a graphics processor to perform general parallel tasks. But after understanding the various architectural aspects of the graphics processor, it can be used to perform other taxing tasks as well. In this paper, we will show how CUDA can fully utilize the tremendous power of these GPUs. CUDA is NVIDIA’s parallel computing architecture. It enables dramatic increases in computing performance, by harnessing the power of the GPU. This paper talks about CUDA and its architecture. It takes us through a comparison of CUDA C/C++ with other parallel programming languages like OpenCL and DirectCompute. The paper also lists out the common myths about CUDA and how the future seems to be promising for CUDA. KEYWORDS GPU, GPGPU, thread, block, grid, GFLOPS, CUDA, OpenCL, DirectCompute, data parallelism, ALU 1. INTRODUCTION GPU computation has provided a huge edge over the CPU with respect to computation speed.
    [Show full text]
  • Club 3D Radeon R9 380 Royalqueen 4096MB GDDR5 256BIT | PCI EXPRESS 3.0
    Club 3D Radeon R9 380 royalQueen 4096MB GDDR5 256BIT | PCI EXPRESS 3.0 Product Name Club 3D Radeon R9 380 4GB royalQueen 4096MB GDDR5 256 BIT | PCI Express 3.0 Product Series Club 3D Radeon R9 300 Series codename ‘Antigua’ Itemcode CGAX-R93858 EAN code 8717249401469 UPC code 854365005428 Description: OS Support: The new Club 3D Radeon™ R9 380 4GB royalQueen was conceived to OS Support: Windows 7, Windows 8.1, Windows 10 play hte most demanding games at 1080p, 1440p, all the way up to 4K 3D API Support: DirextX 11.2, DirectX 12, Vulkan, AMD Mantle. resolution. Get quality that rivals 4K, even on 1080p displays thanks to VSR (Virtual Super Resolution). Loaded with the latest advancements in GCN architecture including AMD FreeSync™, AMD Eyefinity and AMD In the box: LiquidVR™ technologies plus support for the nex gen APIs DirectX® 12, • Club 3D R9 380 royalQueen Graphics card Vulkan™ and AMD mantle, the Club 3D R9 380 royalQueen is for the • Club 3D Driver & E-manual CD serious PC Gamer. • Club 3D gaming Door hanger • Quick install guide Features: Outputs: Other info: • Club 3D Radeon R9 380 royalQueen 4GB • DisplayPort 1.2a • Box size: 293 x 195 x 69 mm • 1792 Stream Processors • HDMI 1.4a • Card size: 207 x 111 x 38 mm • Clock speed up to 980 MHz • Dual Link DVI-I • Weight: 0.6 Kg • 4096 MB GDDR5 Memory at 5900MHz • Dual Link DVI-D • Profile: Standard profile • 256 BIT Memory Bus • Slot width: 2 Slots • High performance Dual Fan CoolStream cooler • Requires min 700w PSU with • PCI Express 3.0 two 6pin PCIe connectors • AMD Eyefinity 6 capable (with Club 3D MST Hub) with PLP support Outputs: • AMD Graphics core Next architecture • AMD PowerTune • AMD ZeroCore Power • AMD FreeSync support • AMD Bridgeless CrossFire • Custom backplate Quick install guide: PRODUCT LINK CLICK HERE Disclaimer: While we endeavor to provide the most accurate, up-to-date information available, the content on this document may be out of date or include omissions, inaccuracies or other errors.
    [Show full text]
  • SAPPHIRE R9 285 2GB GDDR5 ITX COMPACT OC Edition (UEFI)
    Specification Display Support 4 x Maximum Display Monitor(s) support 1 x HDMI (with 3D) Output 2 x Mini-DisplayPort 1 x Dual-Link DVI-I 928 MHz Core Clock GPU 28 nm Chip 1792 x Stream Processors 2048 MB Size Video Memory 256 -bit GDDR5 5500 MHz Effective 171(L)X110(W)X35(H) mm Size. Dimension 2 x slot Driver CD Software SAPPHIRE TriXX Utility DVI to VGA Adapter Mini-DP to DP Cable Accessory HDMI 1.4a high speed 1.8 meter cable(Full Retail SKU only) 1 x 8 Pin to 6 Pin x2 Power adaptor Overview HDMI (with 3D) Support for Deep Color, 7.1 High Bitrate Audio, and 3D Stereoscopic, ensuring the highest quality Blu-ray and video experience possible from your PC. Mini-DisplayPort Enjoy the benefits of the latest generation display interface, DisplayPort. With the ultra high HD resolution, the graphics card ensures that you are able to support the latest generation of LCD monitors. Dual-Link DVI-I Equipped with the most popular Dual Link DVI (Digital Visual Interface), this card is able to display ultra high resolutions of up to 2560 x 1600 at 60Hz. Advanced GDDR5 Memory Technology GDDR5 memory provides twice the bandwidth per pin of GDDR3 memory, delivering more speed and higher bandwidth. Advanced GDDR5 Memory Technology GDDR5 memory provides twice the bandwidth per pin of GDDR3 memory, delivering more speed and higher bandwidth. AMD Stream Technology Accelerate the most demanding applications with AMD Stream technology and do more with your PC. AMD Stream Technology allows you to use the teraflops of compute power locked up in your graphics processer on tasks other than traditional graphics such as video encoding, at which the graphics processor is many, many times faster than using the CPU alone.
    [Show full text]
  • 3D Animation
    Contents Zoom In Zoom Out For navigation instructions please click here Search Issue Next Page ComputerINNOVATIONS IN VISUAL COMPUTING FOR THE GLOBAL DCC COMMUNITY June 2007 www.cgw.com WORLD Making Waves Digital artists create ‘pretend spontaneity’ in the documentary-style animation Surf’s Up $4.95 USA $6.50 Canada Contents Zoom In Zoom Out For navigation instructions please click here Search Issue Next Page A CW Previous Page Contents Zoom In Zoom Out Front Cover Search Issue Next Page BEF MaGS _____________________________________________________ A CW Previous Page Contents Zoom In Zoom Out Front Cover Search Issue Next Page BEF MaGS A CW Previous Page Contents Zoom In Zoom Out Front Cover Search Issue Next Page BEF MaGS June 2007 • Volume 30 • Number 6 INNOVATIONS IN VISUAL COMPUTING FOR THE GLOBAL DCC COMMUNITY Also see www.cgw.com for computer graphics news, special surveys and reports, and the online gallery. ____________ » Director Luc Besson discusses Computer WORLD his black-and-white fi lm, WORLD Post Angel-A. » Trends in broadcast design. » Getting the most out of canned music and sound. See it in www.postmagazine.com Features Cover story Radical, Dude 12 3D ANIMATION | In one of the most unusual animated features to hit the Departments screen, Surf’s Up incorporates a documentary fi lming style into the Editor’s Note 2 CG medium. Triple the Fun Summer blockbusters are making their By Barbara Robertson debut at theaters, and this year, it is Wrangling Waves 18 apparent that three’s a charm, as ani- 3D ANIMATION | The visual effects mators upped the graphics ante in 12 supervisor on Surf’s Up takes us on an Spider-Man 3, Shrek 3, and At World’s incredible behind-the-scenes journey End.
    [Show full text]
  • Masterarbeit / Master's Thesis
    MASTERARBEIT / MASTER'S THESIS Titel der Masterarbeit / Title of the Master`s Thesis "Reducing CPU overhead for increased real time rendering performance" verfasst von / submitted by Daniel Martinek BSc angestrebter Akademischer Grad / in partial fulfilment of the requirements for the degree of Diplom-Ingenieur (Dipl.-Ing.) Wien, 2016 / Vienna 2016 Studienkennzahl lt. Studienblatt / A 066 935 degree programme code as it appears on the student record sheet: Studienrichtung lt. Studienblatt / Masterstudium Medieninformatik UG2002 degree programme as it appears on the student record sheet: Betreut von / Supervisor: Univ.-Prof. Dipl.-Ing. Dr. Helmut Hlavacs Contents 1 Introduction 1 1.1 Motivation . .1 1.2 Outline . .2 2 Introduction to real-time rendering 3 2.1 Using a graphics API . .3 2.2 API future . .6 3 Related Work 9 3.1 nVidia Bindless OpenGL Extensions . .9 3.2 Introducing the Programmable Vertex Pulling Rendering Pipeline . 10 3.3 Improving Performance by Reducing Calls to the Driver . 11 4 Libraries and Utilities 13 4.1 SDL . 13 4.2 glm . 13 4.3 ImGui . 14 4.4 STB . 15 4.5 Assimp . 16 4.6 RapidJSON . 16 4.7 DirectXTex . 16 5 Engine Architecture 17 5.1 breach . 17 5.2 graphics . 19 5.3 profiling . 19 5.4 input . 20 5.5 filesystem . 21 5.6 gui . 21 5.7 resources . 21 5.8 world . 22 5.9 rendering . 23 5.10 rendering2d . 23 6 Resource Conditioning 25 6.1 Materials . 26 i 6.2 Geometry . 27 6.3 World Data . 28 6.4 Textures . 29 7 Resource Management 31 7.1 Meshes .
    [Show full text]
  • Quickspecs AMD Firepro W5100 4GB Graphics
    QuickSpecs AMD FirePro W5100 4GB Graphics Overview AMD FirePro W5100 4GB Graphics AMD FirePro W5100 4GB Graphics J3G92AA INTRODUCTION The AMD FirePro™ W5100 workstation graphics card delivers impressive performance, superb visual quality, and outstanding multi-display capabilities all in a single-slot, <75W solution. It is an excellent mid-range solution for professionals who work with CAD & Engineering and Media & Entertainment applications. The AMD FirePro W5100 features four display outputs and AMD Eyefinity technology support, as well as support up to six simultaneous and independent monitors from a single graphics card via DisplayPort Multi-Streaming (see Note 1). Also, the AMD FirePro W5100 is backed by 4GB of ultra-fast GDDR5 memory. PERFORMANCE AND FEATURES AMD Graphics Core Next (GCN) architecture designed to effortlessly balance GPU compute and 3D workloads efficiently Segment leading compute architecture yielding up to 1.43 TFLOPS peak single precision Optimized and certified for leading workstation ISV applications. The AMD FirePro™ professional graphics family is certified on more than 100 different applications for reliable performance. GeometryBoost technology with dual primitive engines Four (4) native display DisplayPort 1.2a (with Adaptive-Sync) outputs with 4K resolution support Up to six display outputs using DisplayPort 1.2a and MST compliant displays, HBR2 support AMD Eyefinity technology (see Note 1) support managing up to 6 displays seamlessly as though they were one display c04513037 — DA - 15147 Worldwide
    [Show full text]