Pny-Nvidia-Quadro-P2200.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Pny-Nvidia-Quadro-P2200.Pdf UNMATCHED POWER. UNMATCHED CREATIVE FREEDOM. NVIDIA® QUADRO® P2200 Power and Performance in a Compact FEATURES Form Factor. > Four DisplayPort 1.4 1 The Quadro P2200 is the perfect balance of Connectors performance, compelling features, and compact > DisplayPort with Audio form factor delivering incredible creative > NVIDIA nView™ Desktop experience and productivity across a variety of Management Software professional 3D applications. It features a Pascal > HDCP 2.2 Support GPU with 1280 CUDA cores, large 5 GB GDDR5X > NVIDIA Mosaic2 on-board memory, and the power to drive up to four PNY PART NUMBER VCQP2200-SB > NVIDIA Iray and 5K (5120x2880 @ 60Hz) displays natively. Accelerate SPECIFICATIONS MentalRay Support product development and content creation GPU Memory 5 GB GDDR5X workflows with a GPU that delivers the fluid PACKAGE CONTENTS Memory Interface 160-bit interactivity you need to work with large scenes and > NVIDIA Quadro P2200 Memory Bandwidth Up to 200 GB/s models. Professional Graphics NVIDIA CUDA® Cores 1280 Quadro cards are certified with a broad range of board System Interface PCI Express 3.0 x16 sophisticated professional applications, tested by WARRANTY AND Max Power Consumption 75 W leading workstation manufacturers, and backed by SUPPORT a global team of support specialists. This gives you Thermal Solution Active > 3-Year Warranty the peace of mind to focus on doing your best work. Form Factor 4.4” H x 7.9” L, Single Slot Whether you’re developing revolutionary products > Pre- and Post-Sales or telling spectacularly vivid visual stories, Quadro Technical Support Display Connectors 4x DP 1.4 gives you the performance to do it brilliantly. > Dedicated Field Max Simultaneous 4 direct, 4 DP 1.4 Application engineers Displays Multi-Stream Display Resolution 4x 4096x2160 @ 120Hz > Direct Tech Support Hot 4x 5120x2880 @ 60Hz The PNY Advantage Lines Graphics APIs Shader Model 5.1, PNY provides unsurpassed service and commitment OpenGL 4.63, to its professorial graphics customer. FAE access DirectX 12.04, and technical support by phone or email are Vulkan 1.13 available free of charge as needed pre- or post- Compute APIs CUDA, DirectCompute, sales. For general inquiries about the Quadro P2200 OpenCL™ email [email protected]. 1 VGA/DVI/HDMI support via adapter/connector | 2 Windows 7, 8, 8.1, 10 | 3 Product is based on a published Khronos Specification and is expected to pass the Khronos Conformance Testing Process when available. Current conformance status can be found at www.khronos.org/conformance | 4 GPU supports DX 12 API Hardware Feature Level 12_1 © 2019 NVIDIA Corporation and PNY. All rights reserved. NVIDIA, the PNY Technologies, Inc. NVIDIA logo, Quadro, nView, CUDA, NVIDIA Pascal, and 3D Vision are 100 Jefferson Road, Parsippany, NJ 07054 trademarks and/ or registered trademarks of NVIDIA Corporation in the U.S. and other countries. The PNY logotype is a registered trademark Tel 408 567 5500 | Fax 408 855 0680 of PNY Technologies. OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc. All other trademarks and copyrights For more information visit: www.pny.com/quadro are the property of their respective owners. JUN19.
Recommended publications
  • GLSL 4.50 Spec
    The OpenGL® Shading Language Language Version: 4.50 Document Revision: 7 09-May-2017 Editor: John Kessenich, Google Version 1.1 Authors: John Kessenich, Dave Baldwin, Randi Rost Copyright (c) 2008-2017 The Khronos Group Inc. All Rights Reserved. This specification is protected by copyright laws and contains material proprietary to the Khronos Group, Inc. It or any components may not be reproduced, republished, distributed, transmitted, displayed, broadcast, or otherwise exploited in any manner without the express prior written permission of Khronos Group. You may use this specification for implementing the functionality therein, without altering or removing any trademark, copyright or other notice from the specification, but the receipt or possession of this specification does not convey any rights to reproduce, disclose, or distribute its contents, or to manufacture, use, or sell anything that it may describe, in whole or in part. Khronos Group grants express permission to any current Promoter, Contributor or Adopter member of Khronos to copy and redistribute UNMODIFIED versions of this specification in any fashion, provided that NO CHARGE is made for the specification and the latest available update of the specification for any version of the API is used whenever possible. Such distributed specification may be reformatted AS LONG AS the contents of the specification are not changed in any way. The specification may be incorporated into a product that is sold as long as such product includes significant independent work developed by the seller. A link to the current version of this specification on the Khronos Group website should be included whenever possible with specification distributions.
    [Show full text]
  • Implementing FPGA Design with the Opencl Standard
    Implementing FPGA Design with the OpenCL Standard WP-01173-3.0 White Paper Utilizing the Khronos Group’s OpenCL™ standard on an FPGA may offer significantly higher performance and at much lower power than is available today from hardware architectures such as CPUs, graphics processing units (GPUs), and digital signal processing (DSP) units. In addition, an FPGA-based heterogeneous system (CPU + FPGA) using the OpenCL standard has a significant time-to-market advantage compared to traditional FPGA development using lower level hardware description languages (HDLs) such as Verilog or VHDL. 1 OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos. Introduction The initial era of programmable technologies contained two different extremes of programmability. As illustrated in Figure 1, one extreme was represented by single core CPU and digital signal processing (DSP) units. These devices were programmable using software consisting of a list of instructions to be executed. These instructions were created in a manner that was conceptually sequential to the programmer, although an advanced processor could reorder instructions to extract instruction-level parallelism from these sequential programs at run time. In contrast, the other extreme of programmable technology was represented by the FPGA. These devices are programmed by creating configurable hardware circuits, which execute completely in parallel. A designer using an FPGA is essentially creating a massively- fine-grained parallel application. For many years, these extremes coexisted with each type of programmability being applied to different application domains. However, recent trends in technology scaling have favored technologies that are both programmable and parallel. Figure 1.
    [Show full text]
  • Comparison of Technologies for General-Purpose Computing on Graphics Processing Units
    Master of Science Thesis in Information Coding Department of Electrical Engineering, Linköping University, 2016 Comparison of Technologies for General-Purpose Computing on Graphics Processing Units Torbjörn Sörman Master of Science Thesis in Information Coding Comparison of Technologies for General-Purpose Computing on Graphics Processing Units Torbjörn Sörman LiTH-ISY-EX–16/4923–SE Supervisor: Robert Forchheimer isy, Linköpings universitet Åsa Detterfelt MindRoad AB Examiner: Ingemar Ragnemalm isy, Linköpings universitet Organisatorisk avdelning Department of Electrical Engineering Linköping University SE-581 83 Linköping, Sweden Copyright © 2016 Torbjörn Sörman Abstract The computational capacity of graphics cards for general-purpose computing have progressed fast over the last decade. A major reason is computational heavy computer games, where standard of performance and high quality graphics con- stantly rise. Another reason is better suitable technologies for programming the graphics cards. Combined, the product is high raw performance devices and means to access that performance. This thesis investigates some of the current technologies for general-purpose computing on graphics processing units. Tech- nologies are primarily compared by means of benchmarking performance and secondarily by factors concerning programming and implementation. The choice of technology can have a large impact on performance. The benchmark applica- tion found the difference in execution time of the fastest technology, CUDA, com- pared to the slowest, OpenCL, to be twice a factor of two. The benchmark applica- tion also found out that the older technologies, OpenGL and DirectX, are compet- itive with CUDA and OpenCL in terms of resulting raw performance. iii Acknowledgments I would like to thank Åsa Detterfelt for the opportunity to make this thesis work at MindRoad AB.
    [Show full text]
  • Khronos Template 2015
    Ecosystem Overview Neil Trevett | Khronos President NVIDIA Vice President Developer Ecosystem [email protected] | @neilt3d © Copyright Khronos Group 2016 - Page 1 Khronos Mission Software Silicon Khronos is an Industry Consortium of over 100 companies creating royalty-free, open standard APIs to enable software to access hardware acceleration for graphics, parallel compute and vision © Copyright Khronos Group 2016 - Page 2 http://accelerateyourworld.org/ © Copyright Khronos Group 2016 - Page 3 Vision Pipeline Challenges and Opportunities Growing Camera Diversity Diverse Vision Processors Sensor Proliferation 22 Flexible sensor and camera Use efficient acceleration to Combine vision output control to GENERATE PROCESS with other sensor data an image stream the image stream on device © Copyright Khronos Group 2016 - Page 4 OpenVX – Low Power Vision Acceleration • Higher level abstraction API - Targeted at real-time mobile and embedded platforms • Performance portability across diverse architectures - Multi-core CPUs, GPUs, DSPs and DSP arrays, ISPs, Dedicated hardware… • Extends portable vision acceleration to very low power domains - Doesn’t require high-power CPU/GPU Complex - Lower precision requirements than OpenCL - Low-power host can setup and manage frame-rate graph Vision Engine Middleware Application X100 Dedicated Vision Processing Hardware Efficiency Vision DSPs X10 GPU Compute Accelerator Multi-core Accelerator Power Efficiency Power X1 CPU Accelerator Computation Flexibility © Copyright Khronos Group 2016 - Page 5 OpenVX Graphs
    [Show full text]
  • A Qualitative Comparison Study Between Common GPGPU Frameworks
    A Qualitative Comparison Study Between Common GPGPU Frameworks. Adam Söderström Department of Computer and Information Science Linköping University This dissertation is submitted for the degree of M. Sc. in Media Technology and Engineering June 2018 Acknowledgements I would like to acknowledge MindRoad AB and Åsa Detterfelt for making this work possible. I would also like to thank Ingemar Ragnemalm and August Ernstsson at Linköping University. Abstract The development of graphic processing units have during the last decade improved signif- icantly in performance while at the same time becoming cheaper. This has developed a new type of usage of the device where the massive parallelism available in modern GPU’s are used for more general purpose computing, also known as GPGPU. Frameworks have been developed just for this purpose and some of the most popular are CUDA, OpenCL and DirectX Compute Shaders, also known as DirectCompute. The choice of what framework to use may depend on factors such as features, portability and framework complexity. This paper aims to evaluate these concepts, while also comparing the speedup of a parallel imple- mentation of the N-Body problem with Barnes-hut optimization, compared to a sequential implementation. Table of contents List of figures xi List of tables xiii Nomenclature xv 1 Introduction1 1.1 Motivation . .1 1.2 Aim . .3 1.3 Research questions . .3 1.4 Delimitations . .4 1.5 Related work . .4 1.5.1 Framework comparison . .4 1.5.2 N-Body with Barnes-Hut . .5 2 Theory9 2.1 Background . .9 2.1.1 GPGPU History . 10 2.2 GPU Architecture .
    [Show full text]
  • Khronos Native Platform Graphics Interface (EGL Version 1.4 - April 6, 2011)
    Khronos Native Platform Graphics Interface (EGL Version 1.4 - April 6, 2011) Editor: Jon Leech 2 Copyright (c) 2002-2011 The Khronos Group Inc. All Rights Reserved. This specification is protected by copyright laws and contains material proprietary to the Khronos Group, Inc. It or any components may not be reproduced, repub- lished, distributed, transmitted, displayed, broadcast or otherwise exploited in any manner without the express prior written permission of Khronos Group. You may use this specification for implementing the functionality therein, without altering or removing any trademark, copyright or other notice from the specification, but the receipt or possession of this specification does not convey any rights to reproduce, disclose, or distribute its contents, or to manufacture, use, or sell anything that it may describe, in whole or in part. Khronos Group grants express permission to any current Promoter, Contributor or Adopter member of Khronos to copy and redistribute UNMODIFIED versions of this specification in any fashion, provided that NO CHARGE is made for the specification and the latest available update of the specification for any version of the API is used whenever possible. Such distributed specification may be re- formatted AS LONG AS the contents of the specification are not changed in any way. The specification may be incorporated into a product that is sold as long as such product includes significant independent work developed by the seller. A link to the current version of this specification on the Khronos Group web-site should be included whenever possible with specification distributions. Khronos Group makes no, and expressly disclaims any, representations or war- ranties, express or implied, regarding this specification, including, without limita- tion, any implied warranties of merchantability or fitness for a particular purpose or non-infringement of any intellectual property.
    [Show full text]
  • Gpgpu Processing in Cuda Architecture
    Advanced Computing: An International Journal ( ACIJ ), Vol.3, No.1, January 2012 GPGPU PROCESSING IN CUDA ARCHITECTURE Jayshree Ghorpade 1, Jitendra Parande 2, Madhura Kulkarni 3, Amit Bawaskar 4 1Departmentof Computer Engineering, MITCOE, Pune University, India [email protected] 2 SunGard Global Technologies, India [email protected] 3 Department of Computer Engineering, MITCOE, Pune University, India [email protected] 4Departmentof Computer Engineering, MITCOE, Pune University, India [email protected] ABSTRACT The future of computation is the Graphical Processing Unit, i.e. the GPU. The promise that the graphics cards have shown in the field of image processing and accelerated rendering of 3D scenes, and the computational capability that these GPUs possess, they are developing into great parallel computing units. It is quite simple to program a graphics processor to perform general parallel tasks. But after understanding the various architectural aspects of the graphics processor, it can be used to perform other taxing tasks as well. In this paper, we will show how CUDA can fully utilize the tremendous power of these GPUs. CUDA is NVIDIA’s parallel computing architecture. It enables dramatic increases in computing performance, by harnessing the power of the GPU. This paper talks about CUDA and its architecture. It takes us through a comparison of CUDA C/C++ with other parallel programming languages like OpenCL and DirectCompute. The paper also lists out the common myths about CUDA and how the future seems to be promising for CUDA. KEYWORDS GPU, GPGPU, thread, block, grid, GFLOPS, CUDA, OpenCL, DirectCompute, data parallelism, ALU 1. INTRODUCTION GPU computation has provided a huge edge over the CPU with respect to computation speed.
    [Show full text]
  • The Openvx™ Specification
    The OpenVX™ Specification Version 1.0.1 Document Revision: r31169 Generated on Wed May 13 2015 08:41:43 Khronos Vision Working Group Editor: Susheel Gautam Editor: Erik Rainey Copyright ©2014 The Khronos Group Inc. i Copyright ©2014 The Khronos Group Inc. All Rights Reserved. This specification is protected by copyright laws and contains material proprietary to the Khronos Group, Inc. It or any components may not be reproduced, republished, distributed, transmitted, displayed, broadcast or otherwise exploited in any manner without the express prior written permission of Khronos Group. You may use this specifica- tion for implementing the functionality therein, without altering or removing any trademark, copyright or other notice from the specification, but the receipt or possession of this specification does not convey any rights to reproduce, disclose, or distribute its contents, or to manufacture, use, or sell anything that it may describe, in whole or in part. Khronos Group grants express permission to any current Promoter, Contributor or Adopter member of Khronos to copy and redistribute UNMODIFIED versions of this specification in any fashion, provided that NO CHARGE is made for the specification and the latest available update of the specification for any version of the API is used whenever possible. Such distributed specification may be re-formatted AS LONG AS the contents of the specifi- cation are not changed in any way. The specification may be incorporated into a product that is sold as long as such product includes significant independent work developed by the seller. A link to the current version of this specification on the Khronos Group web-site should be included whenever possible with specification distributions.
    [Show full text]
  • SYCL – Introduction and Hands-On
    SYCL – Introduction and Hands-on Thomas Applencourt + people on next slide - [email protected] Argonne Leadership Computing Facility Argonne National Laboratory 9700 S. Cass Ave Argonne, IL 60349 Book Keeping Get the example and the presentation: 1 git clone https://github.com/alcf-perfengr/sycltrain 2 cd sycltrain/presentation/2020_07_30_ATPESC People who are here to help: • Collen Bertoni - [email protected] • Brian Homerding - [email protected] • Nevin ”:)” Liber [email protected] • Ben Odom - [email protected] • Dan Petre - [email protected]) 1/17 Table of contents 1. Introduction 2. Theory 3. Hands-on 4. Conclusion 2/17 Introduction What programming model to use to target GPU? • OpenMP (pragma based) • Cuda (proprietary) • Hip (low level) • OpenCL (low level) • Kokkos, RAJA, OCCA (high level, abstraction layer, academic projects) 3/17 What is SYCL™?1 1. Target C++ programmers (template, lambda) 1.1 No language extension 1.2 No pragmas 1.3 No attribute 2. Borrow lot of concept from battle tested OpenCL (platform, device, work-group, range) 3. Single Source (two compilations passes) 4. High level data-transfer 5. SYCL is a Specification developed by the Khronos Group (OpenCL, SPIR, Vulkan, OpenGL) 1SYCL Doesn’t mean ”Someone You Couldn’t Love”. Sadly. 4/17 SYCL Implementations 2 2Credit: Khronos groups (https://www.khronos.org/sycl/) 5/17 Goal of this presentation 1. Give you a feel of SYCL 2. Go through code examples (and make you do some homework) 3. Teach you enough so that can search for the rest if you interested 4. Question are welcomed! 3 3Please just talk, or use slack 6/17 Theory A picture is worth a thousand words4 4and this is a UML diagram so maybe more! 7/17 Memory management: SYCL innovation 1.
    [Show full text]
  • Opencl on The
    Introduction to OpenCL Cliff Woolley, NVIDIA Developer Technology Group Welcome to the OpenCL Tutorial! . OpenCL Platform Model . OpenCL Execution Model . Mapping the Execution Model onto the Platform Model . Introduction to OpenCL Programming . Additional Information and Resources OpenCL is a trademark of Apple, Inc. Design Goals of OpenCL . Use all computational resources in the system — CPUs, GPUs and other processors as peers . Efficient parallel programming model — Based on C99 — Data- and task- parallel computational model — Abstract the specifics of underlying hardware — Specify accuracy of floating-point computations . Desktop and Handheld Profiles © Copyright Khronos Group, 2010 OPENCL PLATFORM MODEL It’s a Heterogeneous World . A modern platform includes: – One or more CPUs CPU – One or more GPUs CPU – Optional accelerators (e.g., DSPs) GPU GMCH DRAM ICH GMCH = graphics memory control hub ICH = Input/output control hub © Copyright Khronos Group, 2010 OpenCL Platform Model Computational Resources … … … … … …… Host … Processing …… Element … … Compute Device Compute Unit OpenCL Platform Model Computational Resources … … … … … …… Host … Processing …… Element … … Compute Device Compute Unit OpenCL Platform Model on CUDA Compute Architecture … CUDA CPU … Streaming … Processor … … …… Host … Processing …… Element … … Compute Device Compute Unit CUDA CUDA-Enabled Streaming GPU Multiprocessor Anatomy of an OpenCL Application OpenCL Application Host Code Device Code • Written in C/C++ • Written in OpenCL C • Executes on the host • Executes on the device … … … … … …… Host … Compute …… Devices … … Host code sends commands to the Devices: … to transfer data between host memory and device memories … to execute device code Anatomy of an OpenCL Application . Serial code executes in a Host (CPU) thread . Parallel code executes in many Device (GPU) threads across multiple processing elements OpenCL Application Host = CPU Serial code Device = GPU Parallel code … Host = CPU Serial code Device = GPU Parallel code ..
    [Show full text]
  • Openxr 1.0 Reference Guide Page 1
    OpenXR 1.0 Reference Guide Page 1 OpenXR™ is a cross-platform API that enables a continuum of real-and-virtual combined environments generated by computers through human-machine interaction and is inclusive of the technologies associated with virtual reality, augmented reality, and mixed reality. It is the interface between an application and an in-process or out-of-process XR runtime that may handle frame composition, peripheral management, and more. Color-coded names as follows: function names and structure names. [n.n.n] Indicates sections and text in the OpenXR 1.0 specification. Specification and additional resources at khronos.org/openxr £ Indicates content that pertains to an extension. OpenXR API Overview A high level overview of a typical OpenXR application including the order of function calls, creation of objects, session state changes, and the rendering loop. OpenXR Action System Concepts [11.1] Create action and action spaces Set up interaction profile bindings Sync and get action states xrCreateActionSet xrSetInteractionProfileSuggestedBindings xrSyncActions name = "gameplay" /interaction_profiles/oculus/touch_controller session activeActionSets = { "gameplay", ...} xrCreateAction "teleport": /user/hand/right/input/a/click actionSet="gameplay" "teleport_ray": /user/hand/right/input/aim/pose xrGetActionStateBoolean ("teleport_ray") name = “teleport” if (state.currentState) // button is pressed /interaction_profiles/htc/vive_controller type = XR_INPUT_ACTION_TYPE_BOOLEAN { actionSet="gameplay" "teleport": /user/hand/right/input/trackpad/click
    [Show full text]
  • The Opengl ES Shading Language
    The OpenGL ES® Shading Language Language Version: 3.20 Document Revision: 12 246 JuneAugust 2015 Editor: Robert J. Simpson, Qualcomm OpenGL GLSL editor: John Kessenich, LunarG GLSL version 1.1 Authors: John Kessenich, Dave Baldwin, Randi Rost 1 Copyright (c) 2013-2015 The Khronos Group Inc. All Rights Reserved. This specification is protected by copyright laws and contains material proprietary to the Khronos Group, Inc. It or any components may not be reproduced, republished, distributed, transmitted, displayed, broadcast, or otherwise exploited in any manner without the express prior written permission of Khronos Group. You may use this specification for implementing the functionality therein, without altering or removing any trademark, copyright or other notice from the specification, but the receipt or possession of this specification does not convey any rights to reproduce, disclose, or distribute its contents, or to manufacture, use, or sell anything that it may describe, in whole or in part. Khronos Group grants express permission to any current Promoter, Contributor or Adopter member of Khronos to copy and redistribute UNMODIFIED versions of this specification in any fashion, provided that NO CHARGE is made for the specification and the latest available update of the specification for any version of the API is used whenever possible. Such distributed specification may be reformatted AS LONG AS the contents of the specification are not changed in any way. The specification may be incorporated into a product that is sold as long as such product includes significant independent work developed by the seller. A link to the current version of this specification on the Khronos Group website should be included whenever possible with specification distributions.
    [Show full text]