Gscale: Scaling up GPU Virtualization with Dynamic Sharing of Graphics

Total Page:16

File Type:pdf, Size:1020Kb

Gscale: Scaling up GPU Virtualization with Dynamic Sharing of Graphics gScale: Scaling up GPU Virtualization with Dynamic Sharing of Graphics Memory Space Mochi Xue, Shanghai Jiao Tong University and Intel Corporation; Kun Tian, Intel Corporation; Yaozu Dong, Shanghai Jiao Tong University and Intel Corporation; Jiacheng Ma, Jiajun Wang, and Zhengwei Qi, Shanghai Jiao Tong University; Bingsheng He, National University of Singapore; Haibing Guan, Shanghai Jiao Tong University https://www.usenix.org/conference/atc16/technical-sessions/presentation/xue This paper is included in the Proceedings of the 2016 USENIX Annual Technical Conference (USENIX ATC ’16). June 22–24, 2016 • Denver, CO, USA 978-1-931971-30-0 Open access to the Proceedings of the 2016 USENIX Annual Technical Conference (USENIX ATC ’16) is sponsored by USENIX. gScale: Scaling up GPU Virtualization with Dynamic Sharing of Graphics Memory Space Mochi Xue1,2, Kun Tian2, Yaozu Dong1,2, Jiacheng Ma1, Jiajun Wang1, Zhengwei Qi1, Bingsheng He3, Haibing Guan1 {xuemochi, mjc0608, jiajunwang, qizhenwei, hbguan}@sjtu.edu.cn {kevin.tian, eddie.dong}@intel.com [email protected] 1Shanghai Jiao Tong University, 2Intel Corporation, 3National University of Singapore Abstract As one of the key enabling technologies of GPU cloud, GPU virtualization is intended to provide flexible and With increasing GPU-intensive workloads deployed on scalable GPU resources for multiple instances with high cloud, the cloud service providers are seeking for practi- performance. To achieve such a challenging goal, sev- cal and efficient GPU virtualization solutions. However, eral GPU virtualization solutions were introduced, i.e., the cutting-edge GPU virtualization techniques such as GPUvm [28] and gVirt [30]. gVirt, also known as GVT- gVirt still suffer from the restriction of scalability, which g, is a full virtualization solution with mediated pass- constrains the number of guest virtual GPU instances. through support for Intel Graphics processors. Benefited This paper introduces gScale, a scalable GPU virtu- by gVirt’s open-source distribution, we are able to in- alization solution. By taking advantage of the GPU vestigate its design and implementation throughly. In programming model, gScale presents a dynamic shar- each virtual machine (VM), running with native graphics ing mechanism which combines partition and sharing to- driver, a virtual GPU (vGPU) instance is maintained to gether to break the hardware limitation of global graph- provide performance-critical resources directly assigned, ics memory space. Particularly, we propose three ap- since there is no hypervisor intervention in performance proaches for gScale: (1) the private shadow graphics critical paths. Thus, it optimizes resources among the translation table, which enables global graphics memory performance, feature, and sharing capabilities [5]. space sharing among virtual GPU instances, (2) ladder For a virtualization solution, scalability is an indis- mapping and fence memory space pool, which allows pensable feature which ensures high resource utilization the CPU to access host physical memory space (serving by hosting dense VM instances on cloud servers. Al- the graphics memory) bypassing global graphics mem- though gVirt successfully puts GPU virtualization into ory space, (3) slot sharing, which improves the perfor- practice, it suffers from scaling up the number of vGPU mance of vGPU under a high density of instances. instances. The current release of gVirt only supports 3 The evaluation shows that gScale scales up to 15 guest guest vGPU instances on one physical Intel GPU1, which virtual GPU instances in Linux or 12 guest virtual GPU limits the number of guest VM instances down to 3. In instances in Windows, which is 5x and 4x scalability, re- contrast, CPU virtualization techniques (e.g., Xen 4.6 spectively, compared to gVirt. At the same time, gScale guest VM supports up to 256 vCPUs [11]) are maturely incurs a slight runtime overhead on the performance of achieved to exploit their potential. The mismatch be- gVirt when hosting multiple virtual GPU instances. tween the scalability of GPU and other resources like CPU will certainly diminish the number of VM in- 1 Introduction stances. Additionally, high scalability improves the con- solidation of resources. Recent studies (eg., VGRIS [26]) The Graphic Processing Unit (GPU) is playing an indis- have observed that GPU workloads can fluctuate sig- pensable role in cloud computing as GPU efficiently ac- nificantly on GPU utilization. Such low scalability of celerates the computation of certain workloads such as gVirt could result in severe GPU resource underutiliza- 2D and 3D rendering. With increasing GPU intensive tion. If more guest VMs can be consolidated to a sin- workloads deployed on cloud, cloud service providers in- gle host, cloud providers have more chances to multiplex troduce a new computing paradigm called GPU Cloud to the GPU power among VMs with different workload pat- meet the high demands of GPU resources (e.g., Amazon 1In this paper, Intel GPU refers to the Intel HD Graphics embedded EC2 GPU instance [2], Aliyun GPU server [1]). in HASWELL CPU. 1 USENIX Association 2016 USENIX Annual Technical Conference 579 terns (e.g., scheduling VMs with GPU intensive or idle • Slot sharing, a mechanism to optimize the perfor- patterns) so that the physical resource usage of GPU can mance of vGPUs, reduces the overhead of private be improved. shadow GTT copying under a high instance density. This paper explores the design of gVirt, and presents gScale, a practical, efficient and scalable GPU virtualiza- • The evaluation shows that gScale can provide 15 tion solution. To increase the number of vGPU instances, guest vGPU instances for Linux VMs or 12 guest gScale targets at the bottleneck design of gVirt and in- vGPU instances for Windows VMs on one physi- troduces a dynamic sharing scheme for global graphics cal machine, which is 5x and 4x scalability respec- memory space. gScale provides each vGPU instance tively, compared to gVirt. It achieves up to 96% per- with a private shadow graphics translation table (GTT) formance of gVirt under a high density of instances. to break the limitation of global graphics memory space. The rest of paper is organized as follows. Section 2 de- gScale copies vGPU’s private shadow GTT to physical scribes the background of gScale, and Section 3 reveals GTT along with the context switch. The private shadow gVirt’s scalability issue and its bottleneck design. The GTT allows vGPUs to share an overlapped range of detailed design and implementation of gScale are pre- global graphics memory space, which is an essential de- sented in Section 4. We evaluate gScale’s performance in sign of gScale. However, it is non-trivial to make the Section 5 with the overhead analysis. We discuss the ap- global graphics memory space sharable, because global plicability of our work in Section 6 and the related work graphics memory space is both accessible to CPU and is in Section 7. Finally, in Section 8 we conclude our GPU. gScale implements a novel ladder mapping mech- work with a brief discussion of future work. anism and a fence memory space pool to let CPU access host physical memory space serving the graphics mem- ory, which bypasses the global graphics memory space. 2 Background and Preliminary At the same time, gScale proposes slot sharing to im- prove the performance of vGPUs under a high density of GPU Programming Model Driven by high level pro- instances. gramming APIs like OpenGL and DirectX, graphics This paper implements gScale based on gVirt, which driver produces GPU commands into primary buffer and is comprised of about 1000 LoCs. The source code is batch buffer while GPU consumes the commands ac- now available on Github2. In summary, this paper over- cordingly. The primary buffer is designed to deliver the comes various challenges, and makes the following con- primary commands with a ring structure, but the size of tributions: primary buffer is limited. To make up for the space short- age, batch buffer is linked to the primary buffer to deliver • A private shadow GTT for each vGPU, which most of the GPU commands. makes the global graphics memory space sharable. GPU commands are produced by CPU and transferred It keeps a specific copy of the physical GTT for the from CPU to GPU in batches. To ensure that GPU con- vGPU. When the vGPU becomes the render owner, sumes the commands after CPU produces them, a notifi- its private shadow graphics translation table will be cation mechanism is implemented in the primary buffer written on the physical graphics translation table by with two registers. The tail register is updated when CPU gScale to provide correct translations. finishes the placement of commands, and it informs GPU to get commands in the primary buffer. When GPU com- • The ladder mapping mechanism, which directly pletes processing all the commands, it writes the head maps guest physical address to host physical ad- register to notify CPU for incoming commands [30]. dress serving the guest graphic memory. With ladder mapping mechanism, the CPU can access Graphics Translation Table and Global Graphics the host physical memory space serving the guest Memory Space Graphics translation table (GTT), graphic memory, without referring to the global sometimes known as global graphics translation table, is graphics memory space. a memory-resident page table providing the translations from logical graphics memory address to physical mem- • Fence memory space pool, a dedicated memory space reserved in global graphics memory space ory address, as Figure 1 shows. It is worth noting that the with dynamic management. It guarantees that the physical memory space served by GTT is also assigned fence registers operate correctly when a certain to be the global graphics memory space, especially for range of global graphics memory space is unavail- GPUs without dedicated memory, such as Intel’s GPU. able for CPU. However, through the Aperture [6], a range defined in the graphics memory mapping input/output (MMIO), CPU 2https://github.com/inkpool/XenGT-Preview-kernel/tree/gScale could also access the global graphics memory space.
Recommended publications
  • Overview: Graphics Processing Units
    Overview: Graphics Processing Units l advent of GPUs l GPU architecture n the NVIDIA Fermi processor l the CUDA programming model n simple example, threads organization, memory model n case study: matrix multiply using shared memory n memories, thread synchronization, scheduling n case study: reductions n performance considerations: bandwidth, scheduling, resource conflicts, instruction mix u host-device data transfer: multiple GPUs, NVLink, Unified Memory, APUs l the OpenCL programming model l directive-based programming models refs: Lin & Snyder Ch 10, CUDA Toolkit Documentation, An Even Easier Introduction to CUDA (tutorial); NCI NF GPU page, Programming Massively Parallel Processors, Kirk & Hwu, Morgan-Kaufman, 2010; Cuda By Example, by Sanders and Kandrot; OpenCL web page, OpenCL in Action, by Matthew Scarpino COMP4300/8300 L18,19: Graphics Processing Units 2021 JJJ • III × 1 Advent of General-purpose Graphics Processing Units l many applications have massive amounts of mostly independent calculations n e.g. ray tracing, image rendering, matrix computations, molecular simulations, HDTV n can be largely expressed in terms of SIMD operations u implementable with minimal control logic & caches, simple instruction sets l design point: maximize number of ALUs & FPUs and memory bandwidth to take advantage of Moore’s’ Law (shown here) n put this on a co-processor (GPU); have a normal CPU to co-ordinate, run the operating system, launch applications, etc l architecture/infrastructure development requires a massive economic base for its development (the gaming industry!) n pre 2006: only specialized graphics operations (integer & float data) n 2006: ‘General Purpose’ (GPGPU): general computations but only through a graphics library (e.g.
    [Show full text]
  • GPU Virtualization on Vmware's Hosted I/O Architecture
    GPU Virtualization on VMware’s Hosted I/O Architecture Micah Dowty, Jeremy Sugerman VMware, Inc. 3401 Hillview Ave, Palo Alto, CA 94304 [email protected], [email protected] Abstract more computational performance than CPUs. At the Modern graphics co-processors (GPUs) can produce same time, GPU acceleration has extended beyond en- high fidelity images several orders of magnitude faster tertainment (e.g., games and video) into the basic win- than general purpose CPUs, and this performance expec- dowing systems of recent operating systems and is start- tation is rapidly becoming ubiquitous in personal com- ing to be applied to non-graphical high-performance ap- puters. Despite this, GPU virtualization is a nascent field plications including protein folding, financial modeling, of research. This paper introduces a taxonomy of strate- and medical image processing. The rise in applications gies for GPU virtualization and describes in detail the that exploit, or even assume, GPU acceleration makes specific GPU virtualization architecture developed for it increasingly important to expose the physical graph- VMware’s hosted products (VMware Workstation and ics hardware in virtualized environments. Additionally, VMware Fusion). virtual desktop infrastructure (VDI) initiatives have led We analyze the performance of our GPU virtualiza- many enterprises to try to simplify their desktop man- tion with a combination of applications and microbench- agement by delivering VMs to their users. Graphics vir- marks. We also compare against software rendering, the tualization is extremely important to a user whose pri- GPU virtualization in Parallels Desktop 3.0, and the na- mary desktop runs inside a VM. tive GPU. We find that taking advantage of hardware GPUs pose a unique challenge in the field of virtu- acceleration significantly closes the gap between pure alization.
    [Show full text]
  • Comparison of Technologies for General-Purpose Computing on Graphics Processing Units
    Master of Science Thesis in Information Coding Department of Electrical Engineering, Linköping University, 2016 Comparison of Technologies for General-Purpose Computing on Graphics Processing Units Torbjörn Sörman Master of Science Thesis in Information Coding Comparison of Technologies for General-Purpose Computing on Graphics Processing Units Torbjörn Sörman LiTH-ISY-EX–16/4923–SE Supervisor: Robert Forchheimer isy, Linköpings universitet Åsa Detterfelt MindRoad AB Examiner: Ingemar Ragnemalm isy, Linköpings universitet Organisatorisk avdelning Department of Electrical Engineering Linköping University SE-581 83 Linköping, Sweden Copyright © 2016 Torbjörn Sörman Abstract The computational capacity of graphics cards for general-purpose computing have progressed fast over the last decade. A major reason is computational heavy computer games, where standard of performance and high quality graphics con- stantly rise. Another reason is better suitable technologies for programming the graphics cards. Combined, the product is high raw performance devices and means to access that performance. This thesis investigates some of the current technologies for general-purpose computing on graphics processing units. Tech- nologies are primarily compared by means of benchmarking performance and secondarily by factors concerning programming and implementation. The choice of technology can have a large impact on performance. The benchmark applica- tion found the difference in execution time of the fastest technology, CUDA, com- pared to the slowest, OpenCL, to be twice a factor of two. The benchmark applica- tion also found out that the older technologies, OpenGL and DirectX, are compet- itive with CUDA and OpenCL in terms of resulting raw performance. iii Acknowledgments I would like to thank Åsa Detterfelt for the opportunity to make this thesis work at MindRoad AB.
    [Show full text]
  • Crane: Fast and Migratable GPU Passthrough for Opencl Applications
    Crane: Fast and Migratable GPU Passthrough for OpenCL Applications James Gleeson, Daniel Kats, Charlie Mei, Eyal de Lara University of Toronto Toronto, Canada {jgleeson,dbkats,cmei,delara}@cs.toronto.edu ABSTRACT (IaaS) providers now have virtualization offerings with ded- General purpose GPU (GPGPU) computing in virtualized icated GPUs that customers can leverage in their guest vir- environments leverages PCI passthrough to achieve GPU tual machines (VMs). For example, Amazon Web Services performance comparable to bare-metal execution. However, allows VMs to take advantage of NVIDIA’s high-end GPUs GPU passthrough prevents service administrators from per- in EC2 [6]. Microsoft and Google recently introduced simi- forming virtual machine migration between physical hosts. lar offerings on Azure and GCP platforms respectively [34, Crane is a new technique for virtualizing OpenCL-based 21]. GPGPU computing that achieves within 5:25% of pass- Virtualized GPGPU computing leverages modern through GPU performance while supporting VM migra- IOMMU features to give the VM direct use of the GPU tion. Crane interposes a virtualization-aware OpenCL li- through DMA and interrupt remapping – a technique which brary that makes it possible to reclaim and subsequently is usually called PCI passthrough [17, 50]. By running reassign physical GPUs to a VM without terminating the the GPU driver in the context of the guest operating guest or its applications. Crane also enables continued GPU system, PCI passthrough bypasses the hypervisor and operation while the VM is undergoing live migration by achieves performance that is comparable to bare-metal OS transparently switching between GPU passthrough opera- execution [47]. tion and API remoting.
    [Show full text]
  • A Full GPU Virtualization Solution with Mediated Pass-Through
    A Full GPU Virtualization Solution with Mediated Pass-Through Kun Tian, Yaozu Dong, David Cowperthwaite Intel Corporation Abstract shows the spectrum of GPU virtualization solutions Graphics Processing Unit (GPU) virtualization is an (with hardware acceleration increasing from left to enabling technology in emerging virtualization right). Device emulation [7] has great complexity and scenarios. Unfortunately, existing GPU virtualization extremely low performance, so it does not meet today’s approaches are still suboptimal in performance and full needs. API forwarding [3][9][22][31] employs a feature support. frontend driver, to forward the high level API calls inside a VM, to the host for acceleration. However, API This paper introduces gVirt, a product level GPU forwarding faces the challenge of supporting full virtualization implementation with: 1) full GPU features, due to the complexity of intrusive virtualization running native graphics driver in guest, modification in the guest graphics software stack, and and 2) mediated pass-through that achieves both good incompatibility between the guest and host graphics performance and scalability, and also secure isolation software stacks. Direct pass-through [5][37] dedicates among guests. gVirt presents a virtual full-fledged GPU the GPU to a single VM, providing full features and the to each VM. VMs can directly access best performance, but at the cost of device sharing performance-critical resources, without intervention capability among VMs. Mediated pass-through [19], from the hypervisor in most cases, while privileged passes through performance-critical resources, while operations from guest are trap-and-emulated at minimal mediating privileged operations on the device, with cost. Experiments demonstrate that gVirt can achieve good performance, full features, and sharing capability.
    [Show full text]
  • Download Original Super Mario for Windows 10 Download Mario Forever for Windows 10 and Windows 7
    download original super mario for windows 10 Download Mario Forever for Windows 10 and Windows 7. Download failed. Sorry for the inconvenience, we will fix the error as soon as possible. Thank you for your confidence. Success to download. Wait a few seconds until the download begins. Versión : Mario Forever 7.02 File Name : super-mario-forever-v702e.exe File Size : 29.87 MiB. You're downloading Mario Forever . File super-mario-forever-v702e.exe is compatible with: Windows 10 Windows 8.1 Windows 8 Windows 7. Mario Forever is one re lecture of the classic Nintendo game, Super Mario Bros 3 in which the main theme relates of a plumber that should rescue the princess of the "claws" of Koopa, a malicious dragon that will try. View More. Windows 10 was released on July 2015, and it's an evolution of Windows 8 operating system. Windows 10 fix many of the problems of the previous operating system developed by Miscrosoft. And now, it return the desktop as a fundamental element of this brand new Windows version. Windows 10 received many good reviews and critics. Thank you for downloading Mario Forever. Your download will start immediately. If the download did not start please click here: Download Mario Forever for Windows 10 and Windows 7. Clean File 0/54 Virus Total Report. Other programs in Games. Pioneers. Pioneers is a free board game based on The Settlers of Catan board game. Pioneers can be played online against other players, or locally, directly against the computer. In Pioneers settlers will find themselves in virgin places that man has.
    [Show full text]
  • GPU Virtualization on Vmware's Hosted I/O Architecture
    GPU Virtualization on VMware's Hosted I/O Architecture Micah Dowty Jeremy Sugerman VMware, Inc. VMware, Inc. 3401 Hillview Ave, Palo Alto, CA 94304 3401 Hillview Ave, Palo Alto, CA 94304 [email protected] [email protected] ABSTRACT 1. INTRODUCTION Modern graphics co-processors (GPUs) can produce high fi- Over the past decade, virtual machines (VMs) have be- delity images several orders of magnitude faster than general come increasingly popular as a technology for multiplexing purpose CPUs, and this performance expectation is rapidly both desktop and server commodity x86 computers. Over becoming ubiquitous in personal computers. Despite this, that time, several critical challenges in CPU virtualization GPU virtualization is a nascent field of research. This paper have been overcome, and there are now both software and introduces a taxonomy of strategies for GPU virtualization hardware techniques for virtualizing CPUs with very low and describes in detail the specific GPU virtualization archi- overheads [2]. I/O virtualization, however, is still very tecture developed for VMware’s hosted products (VMware much an open problem and a wide variety of strategies are Workstation and VMware Fusion). used. Graphics co-processors (GPUs) in particular present a challenging mixture of broad complexity, high performance, We analyze the performance of our GPU virtualization with rapid change, and limited documentation. a combination of applications and microbenchmarks. We also compare against software rendering, the GPU virtual- Modern high-end GPUs have more transistors, draw more ization in Parallels Desktop 3.0, and the native GPU. We power, and offer at least an order of magnitude more com- find that taking advantage of hardware acceleration signif- putational performance than CPUs.
    [Show full text]
  • 3D Graphics on the ADS512101 Board Using Opengl ES By: Francisco Sandoval Zazueta Infotainment Multimedia and Telematics (IMT)
    Freescale Semiconductor Document Number: AN3793 Application Note Rev. 0, 12/2008 3D Graphics on the ADS512101 Board Using OpenGL ES by: Francisco Sandoval Zazueta Infotainment Multimedia and Telematics (IMT) 1 Introduction Contents 1 Introduction . 1 OpenGL is one of the most widely used graphic standard 2 Preparing the Environment . 2 2.1 Assumptions on the Environment . 2 specifications available. OpenGL ES is a reduced 2.2 Linux Target Image Builder (LTIB) . 2 adaptation of OpenGL that offers a powerful yet limited 2.3 Installing PowerVR Software Development Kit . 4 3 The PowerVR SDK . 5 version for embedded systems. 3.1 Introduction to SDK . 5 3.2 PVRShell . 5 One of the main features of the MPC5121e is its graphics 3.3 PVRtools . 6 co-processor, the MBX core. It is a wide spread standard 4 Developing Example Application . 6 of mobile 3D graphics acceleration for mobile solutions. 4.1 3D Model Loader. 6 5 Conclusion. 9 Together with Imagination Technologies OpenGL ES 1.1 6 References . 9 SDK, the ADS512101 board can be used to produce 7 Glossary . 10 Appendix A eye-catching graphics. This document is an introduction, Applying DIU Patches to the Kernel . 11 after the development environment is ready, it is up to the A.1 Applying the MBXpatch2.patch . 11 developer’s skills to exploit the board’s graphics A.2 byte_flip Application. 11 Appendix B capabilities. Brief Introduction to OpenGL ES . 12 B.1 OpenGL ES . 12 B.2 Main Differences Between OGLES 1.1 and . 12 B.3 Obtaining Frustum Numbers . 13 B.4 glFrustum.
    [Show full text]
  • Enabling VDI for Engineers and Designers Positioning Information
    Enabling VDI for Engineers and Designers Positioning Information The ability to work remotely has been a critical business need for many years. But with the recent pandemic, the focus has shifted from supporting the occasional business trip or conference attendee, to supporting all non-essential employees. Virtual Desktop Infrastructure (VDI) provides a robust solution for businesses, allowing their employees to access business data on any mobile device – be it a laptop, tablet, or smartphone – without risk of losing that business data if the device is lost or stolen. With VDI the data resides in the data center, behind company firewalls. VDI allows companies to implement flexible work schedules, where employees have the freedom to pick up the kids from school and log on later in the evening to finish up. VDI also provides for centralized management of security fixes and application upgrades, ensuring all workers are using the latest version of applications. Although a great solution for your typical office workers, the benefits of VDI have largely been unavailable to another set of employees. Power users – engineers and designers using 3D or other graphics visualization applications – have generally been left out of these flexible arrangements. The graphics visualization applications they use are processor intensive, and the files they create and modify can be very large. The workstations that run the applications and the high-resolution monitors that display the designs are heavy and thus difficult to move. In order to have decent response times, power users have needed to be connected to a high-speed local area network. Work has been underway for several years to expand the benefits of VDI to the power user, and today solutions exist to support the majority of visualization applications.
    [Show full text]
  • Virtual GPU Software User Guide Is Organized As Follows: ‣ This Chapter Introduces the Capabilities and Features of NVIDIA Vgpu Software
    Virtual GPU Software User Guide DU-06920-001 _v13.0 Revision 02 | August 2021 Table of Contents Chapter 1. Introduction to NVIDIA vGPU Software..............................................................1 1.1. How NVIDIA vGPU Software Is Used....................................................................................... 1 1.1.2. GPU Pass-Through.............................................................................................................1 1.1.3. Bare-Metal Deployment.....................................................................................................1 1.2. Primary Display Adapter Requirements for NVIDIA vGPU Software Deployments................2 1.3. NVIDIA vGPU Software Features............................................................................................. 3 1.3.1. GPU Instance Support on NVIDIA vGPU Software............................................................3 1.3.2. API Support on NVIDIA vGPU............................................................................................ 5 1.3.3. NVIDIA CUDA Toolkit and OpenCL Support on NVIDIA vGPU Software...........................5 1.3.4. Additional vWS Features....................................................................................................8 1.3.5. NVIDIA GPU Cloud (NGC) Containers Support on NVIDIA vGPU Software...................... 9 1.3.6. NVIDIA GPU Operator Support.......................................................................................... 9 1.4. How this Guide Is Organized..................................................................................................10
    [Show full text]
  • With NVIDIA Virtual GPU
    Virtualizing AI/DL platform: NVIDIA Virtual GPU Solution Doyoung Kim, Sr. Solution Architect NVIDIA Virtual GPU Solution Support, Updates & Maintenance NVIDIA Virtual GPU Software Tesla Datacenter GPUs How it works? CPU Only VDI With NVIDIA Virtual GPU Apps and VMs NVIDIA Graphics Drivers Apps and VMs NVIDIA Virtual GPU Hypervisor NVIDIA virtualization software Hypervisor Server NVIDIA Tesla GPU Server Evolution of Virtual GPU Live Migration Ultra High End Simulation, NGC Support Photo Realism, 3D Rendering, AL/DL Business Designers, User Architects, Engineers 2013 2016 2017 Today GPU Compute on Virtual GPU Optimized DL Container from NGC Virtual Machine Virtual Quadro GPU CUDA & OpenCL enabled NVIDIA Virtualization Software Hypervisor NVIDIA Tesla GPU Server Virtual GPU can…. ✓ Run GPU compute workload - Any CUDA / OpenCL applications - Requires NVIDIA Virtual GPU 5.0 or higher - Requires Pascal or later GPU ✓ Be fully integrated with Virtualization solution - Live migration support from Virtual GPU 6.0 or higher - Support Cluster / Host / VM / Application level performance monitoring - Enabled for all major solutions such as vSphere / XenServer / KVM ✓ Provide every level of AI / DL Platforms - From desktop level to multi-GPU server - Fully support NVIDIA GPU Cloud (NGC) - Support up to 4 multi-vGPU per Virtual Machine* * Requires Virtual GPU 7.0 or higher / RHEL KVM only Why Virtualization? Which is best for AI/DL research system? PC with Consumer GPU GPU Server w/o Virtualization NVIDIA GPU Virtualization Manageability Require MGMT
    [Show full text]
  • Global Offensive Short-Cut Their Way Onto Linux Like the Next-Generation of What Was Originally Just a Mod
    GAMING ON LINUX GAMING ON LINUX The tastiest brain candy to relax those tired neurons GNAEUS JULIUS AGRICOLA Star Conflict Like being a real space pilot, without the risk of death. ig news space fans! Star Conflict, a free-to- The action takes place in play spaceship combat B Sector 1337 of MMO has officially launched its the galaxy… Linux version as promised. This is one of our first major free-to- play titles that’s been released Liam Dawe is our Games Editor and the founder of gamingonlinux.com, from outside Valve. the home of Tux gaming on the web. The graphics are simply fantastic, which is surprising ine enables us Linux users for a free game. It also doesn’t to run Windows shove anything into your applications under Linux W face about paying for in-app without the need for a Windows licence. It sounds great, but it does purchases – it’s all perfectly The game starts you off This is the first Linux game come with its own set of drawbacks, optional, which is again very slowly to not overwhelm you from Star Gem Inc, and we such as poor performance in certain surprising. You can buy extra with a few tutorials showing hope it will only be the start for games; and some games may refuse credits for ships and paint jobs you basic flight and combat, them. See you in space! to work without a lot of tinkering. or buy downloadable content which it makes really painless http://store.steampowered. A problem has arisen now that Linux is gaining a foot-hold in the (DLC) packs from Steam.
    [Show full text]