Candidate Features for Future Opengl 5 / Direct3d 12 Hardware and Beyond 3 May 2014, Christophe Riccio
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Comparison of Technologies for General-Purpose Computing on Graphics Processing Units
Master of Science Thesis in Information Coding Department of Electrical Engineering, Linköping University, 2016 Comparison of Technologies for General-Purpose Computing on Graphics Processing Units Torbjörn Sörman Master of Science Thesis in Information Coding Comparison of Technologies for General-Purpose Computing on Graphics Processing Units Torbjörn Sörman LiTH-ISY-EX–16/4923–SE Supervisor: Robert Forchheimer isy, Linköpings universitet Åsa Detterfelt MindRoad AB Examiner: Ingemar Ragnemalm isy, Linköpings universitet Organisatorisk avdelning Department of Electrical Engineering Linköping University SE-581 83 Linköping, Sweden Copyright © 2016 Torbjörn Sörman Abstract The computational capacity of graphics cards for general-purpose computing have progressed fast over the last decade. A major reason is computational heavy computer games, where standard of performance and high quality graphics con- stantly rise. Another reason is better suitable technologies for programming the graphics cards. Combined, the product is high raw performance devices and means to access that performance. This thesis investigates some of the current technologies for general-purpose computing on graphics processing units. Tech- nologies are primarily compared by means of benchmarking performance and secondarily by factors concerning programming and implementation. The choice of technology can have a large impact on performance. The benchmark applica- tion found the difference in execution time of the fastest technology, CUDA, com- pared to the slowest, OpenCL, to be twice a factor of two. The benchmark applica- tion also found out that the older technologies, OpenGL and DirectX, are compet- itive with CUDA and OpenCL in terms of resulting raw performance. iii Acknowledgments I would like to thank Åsa Detterfelt for the opportunity to make this thesis work at MindRoad AB. -
AMD Codexl 1.7 GA Release Notes
AMD CodeXL 1.7 GA Release Notes Thank you for using CodeXL. We appreciate any feedback you have! Please use the CodeXL Forum to provide your feedback. You can also check out the Getting Started guide on the CodeXL Web Page and the latest CodeXL blog at AMD Developer Central - Blogs This version contains: For 64-bit Windows platforms o CodeXL Standalone application o CodeXL Microsoft® Visual Studio® 2010 extension o CodeXL Microsoft® Visual Studio® 2012 extension o CodeXL Microsoft® Visual Studio® 2013 extension o CodeXL Remote Agent For 64-bit Linux platforms o CodeXL Standalone application o CodeXL Remote Agent Note about installing CodeAnalyst after installing CodeXL for Windows AMD CodeAnalyst has reached End-of-Life status and has been replaced by AMD CodeXL. CodeXL installer will refuse to install on a Windows station where AMD CodeAnalyst is already installed. Nevertheless, if you would like to install CodeAnalyst, do not install it on a Windows station already installed with CodeXL. Uninstall CodeXL first, and then install CodeAnalyst. System Requirements CodeXL contains a host of development features with varying system requirements: GPU Profiling and OpenCL Kernel Debugging o An AMD GPU (Radeon HD 5000 series or newer, desktop or mobile version) or APU is required. o The AMD Catalyst Driver must be installed, release 13.11 or later. Catalyst 14.12 (driver 14.501) is the recommended version. See "Getting the latest Catalyst release" section below. For GPU API-Level Debugging, a working OpenCL/OpenGL configuration is required (AMD or other). CPU Profiling o Time-Based Profiling can be performed on any x86 or AMD64 (x86-64) CPU/APU. -
Club 3D Radeon R9 380 Royalqueen 4096MB GDDR5 256BIT | PCI EXPRESS 3.0
Club 3D Radeon R9 380 royalQueen 4096MB GDDR5 256BIT | PCI EXPRESS 3.0 Product Name Club 3D Radeon R9 380 4GB royalQueen 4096MB GDDR5 256 BIT | PCI Express 3.0 Product Series Club 3D Radeon R9 300 Series codename ‘Antigua’ Itemcode CGAX-R93858 EAN code 8717249401469 UPC code 854365005428 Description: OS Support: The new Club 3D Radeon™ R9 380 4GB royalQueen was conceived to OS Support: Windows 7, Windows 8.1, Windows 10 play hte most demanding games at 1080p, 1440p, all the way up to 4K 3D API Support: DirextX 11.2, DirectX 12, Vulkan, AMD Mantle. resolution. Get quality that rivals 4K, even on 1080p displays thanks to VSR (Virtual Super Resolution). Loaded with the latest advancements in GCN architecture including AMD FreeSync™, AMD Eyefinity and AMD In the box: LiquidVR™ technologies plus support for the nex gen APIs DirectX® 12, • Club 3D R9 380 royalQueen Graphics card Vulkan™ and AMD mantle, the Club 3D R9 380 royalQueen is for the • Club 3D Driver & E-manual CD serious PC Gamer. • Club 3D gaming Door hanger • Quick install guide Features: Outputs: Other info: • Club 3D Radeon R9 380 royalQueen 4GB • DisplayPort 1.2a • Box size: 293 x 195 x 69 mm • 1792 Stream Processors • HDMI 1.4a • Card size: 207 x 111 x 38 mm • Clock speed up to 980 MHz • Dual Link DVI-I • Weight: 0.6 Kg • 4096 MB GDDR5 Memory at 5900MHz • Dual Link DVI-D • Profile: Standard profile • 256 BIT Memory Bus • Slot width: 2 Slots • High performance Dual Fan CoolStream cooler • Requires min 700w PSU with • PCI Express 3.0 two 6pin PCIe connectors • AMD Eyefinity 6 capable (with Club 3D MST Hub) with PLP support Outputs: • AMD Graphics core Next architecture • AMD PowerTune • AMD ZeroCore Power • AMD FreeSync support • AMD Bridgeless CrossFire • Custom backplate Quick install guide: PRODUCT LINK CLICK HERE Disclaimer: While we endeavor to provide the most accurate, up-to-date information available, the content on this document may be out of date or include omissions, inaccuracies or other errors. -
SAPPHIRE R9 285 2GB GDDR5 ITX COMPACT OC Edition (UEFI)
Specification Display Support 4 x Maximum Display Monitor(s) support 1 x HDMI (with 3D) Output 2 x Mini-DisplayPort 1 x Dual-Link DVI-I 928 MHz Core Clock GPU 28 nm Chip 1792 x Stream Processors 2048 MB Size Video Memory 256 -bit GDDR5 5500 MHz Effective 171(L)X110(W)X35(H) mm Size. Dimension 2 x slot Driver CD Software SAPPHIRE TriXX Utility DVI to VGA Adapter Mini-DP to DP Cable Accessory HDMI 1.4a high speed 1.8 meter cable(Full Retail SKU only) 1 x 8 Pin to 6 Pin x2 Power adaptor Overview HDMI (with 3D) Support for Deep Color, 7.1 High Bitrate Audio, and 3D Stereoscopic, ensuring the highest quality Blu-ray and video experience possible from your PC. Mini-DisplayPort Enjoy the benefits of the latest generation display interface, DisplayPort. With the ultra high HD resolution, the graphics card ensures that you are able to support the latest generation of LCD monitors. Dual-Link DVI-I Equipped with the most popular Dual Link DVI (Digital Visual Interface), this card is able to display ultra high resolutions of up to 2560 x 1600 at 60Hz. Advanced GDDR5 Memory Technology GDDR5 memory provides twice the bandwidth per pin of GDDR3 memory, delivering more speed and higher bandwidth. Advanced GDDR5 Memory Technology GDDR5 memory provides twice the bandwidth per pin of GDDR3 memory, delivering more speed and higher bandwidth. AMD Stream Technology Accelerate the most demanding applications with AMD Stream technology and do more with your PC. AMD Stream Technology allows you to use the teraflops of compute power locked up in your graphics processer on tasks other than traditional graphics such as video encoding, at which the graphics processor is many, many times faster than using the CPU alone. -
Porting Source to Linux
Porting Source to Linux Valve’s Lessons Learned Overview . Who is this talk for? . Why port? . Windows->Linux . Linux Tools . Direct3D->OpenGL Why port? 100% Why port? Nov Dec Jan Feb . Linux is open 10% . Linux (for gaming) is growing, and quickly 1% . Stepping stone to mobile . Performance 0% . Steam for Linux Linux Mac Windows % December January February Windows 94.79 94.56 94.09 Mac 3.71 3.56 3.07 Linux 0.79 1.12 2.01 Why port? – cont’d . GL exposes functionality by hardware capability—not OS. China tends to have equivalent GPUs, but overwhelmingly still runs XP — OpenGL can allow DX10/DX11 (and beyond) features for all of those users Why port? – cont’d . Specifications are public. GL is owned by committee, membership is available to anyone with interest (and some, but not a lot, of $). GL can be extended quickly, starting with a single vendor. GL is extremely powerful Windows->Linux Windowing issues . Consider SDL! . Handles all cross-platform windowing issues, including on mobile OSes. Tight C implementation—everything you need, nothing you don’t. Used for all Valve ports, and Linux Steam http://www.libsdl.org/ Filesystem issues . Linux filesystems are case-sensitive . Windows is not . Not a big issue for deployment (because everyone ships packs of some sort) . But an issue during development, with loose files . Solution 1: Slam all assets to lower case, including directories, then tolower all file lookups (only adjust below root) . Solution 2: Build file cache, look for similarly named files Other issues . Bad Defines — E.g. Assuming that LINUX meant DEDICATED_SERVER . -
AMD Codexl 1.8 GA Release Notes
AMD CodeXL 1.8 GA Release Notes Contents AMD CodeXL 1.8 GA Release Notes ......................................................................................................... 1 New in this version .............................................................................................................................. 2 System Requirements .......................................................................................................................... 2 Getting the latest Catalyst release ....................................................................................................... 4 Note about installing CodeAnalyst after installing CodeXL for Windows ............................................... 4 Fixed Issues ......................................................................................................................................... 4 Known Issues ....................................................................................................................................... 5 Support ............................................................................................................................................... 6 Thank you for using CodeXL. We appreciate any feedback you have! Please use the CodeXL Forum to provide your feedback. You can also check out the Getting Started guide on the CodeXL Web Page and the latest CodeXL blog at AMD Developer Central - Blogs This version contains: For 64-bit Windows platforms o CodeXL Standalone application o CodeXL Microsoft® Visual Studio® -
Masterarbeit / Master's Thesis
MASTERARBEIT / MASTER'S THESIS Titel der Masterarbeit / Title of the Master`s Thesis "Reducing CPU overhead for increased real time rendering performance" verfasst von / submitted by Daniel Martinek BSc angestrebter Akademischer Grad / in partial fulfilment of the requirements for the degree of Diplom-Ingenieur (Dipl.-Ing.) Wien, 2016 / Vienna 2016 Studienkennzahl lt. Studienblatt / A 066 935 degree programme code as it appears on the student record sheet: Studienrichtung lt. Studienblatt / Masterstudium Medieninformatik UG2002 degree programme as it appears on the student record sheet: Betreut von / Supervisor: Univ.-Prof. Dipl.-Ing. Dr. Helmut Hlavacs Contents 1 Introduction 1 1.1 Motivation . .1 1.2 Outline . .2 2 Introduction to real-time rendering 3 2.1 Using a graphics API . .3 2.2 API future . .6 3 Related Work 9 3.1 nVidia Bindless OpenGL Extensions . .9 3.2 Introducing the Programmable Vertex Pulling Rendering Pipeline . 10 3.3 Improving Performance by Reducing Calls to the Driver . 11 4 Libraries and Utilities 13 4.1 SDL . 13 4.2 glm . 13 4.3 ImGui . 14 4.4 STB . 15 4.5 Assimp . 16 4.6 RapidJSON . 16 4.7 DirectXTex . 16 5 Engine Architecture 17 5.1 breach . 17 5.2 graphics . 19 5.3 profiling . 19 5.4 input . 20 5.5 filesystem . 21 5.6 gui . 21 5.7 resources . 21 5.8 world . 22 5.9 rendering . 23 5.10 rendering2d . 23 6 Resource Conditioning 25 6.1 Materials . 26 i 6.2 Geometry . 27 6.3 World Data . 28 6.4 Textures . 29 7 Resource Management 31 7.1 Meshes . -
Getting Started with Codexl the Analysis Tab
AMD CodeXL Quick Start Guide AMD Developer Tools Team Advanced Micro Devices, Inc. Version 1.5 Revision 1 Table of Contents INTRODUCTION .................................................................................................................... 3 LATEST VERSION OF THIS DOCUMENT .......................................................................... 3 PREREQUISITES ................................................................................................................... 3 DOWNLOAD AND INSTALL CODEXL ................................................................................ 4 Validate Installation .......................................................................................................................... 5 Installing the VC++ Redistributable Package...................................................................................... 7 CODEXL HELP ........................................................................................................................ 7 SYSTEM INFORMATION ...................................................................................................... 8 TEAPOT SAMPLE PROJECT .............................................................................................. 10 Debug the Teapot Sample Application ............................................................................................ 11 Basic Debugging .............................................................................................................................. 12 Source Code View -
Quickspecs AMD Firepro W5100 4GB Graphics
QuickSpecs AMD FirePro W5100 4GB Graphics Overview AMD FirePro W5100 4GB Graphics AMD FirePro W5100 4GB Graphics J3G92AA INTRODUCTION The AMD FirePro™ W5100 workstation graphics card delivers impressive performance, superb visual quality, and outstanding multi-display capabilities all in a single-slot, <75W solution. It is an excellent mid-range solution for professionals who work with CAD & Engineering and Media & Entertainment applications. The AMD FirePro W5100 features four display outputs and AMD Eyefinity technology support, as well as support up to six simultaneous and independent monitors from a single graphics card via DisplayPort Multi-Streaming (see Note 1). Also, the AMD FirePro W5100 is backed by 4GB of ultra-fast GDDR5 memory. PERFORMANCE AND FEATURES AMD Graphics Core Next (GCN) architecture designed to effortlessly balance GPU compute and 3D workloads efficiently Segment leading compute architecture yielding up to 1.43 TFLOPS peak single precision Optimized and certified for leading workstation ISV applications. The AMD FirePro™ professional graphics family is certified on more than 100 different applications for reliable performance. GeometryBoost technology with dual primitive engines Four (4) native display DisplayPort 1.2a (with Adaptive-Sync) outputs with 4K resolution support Up to six display outputs using DisplayPort 1.2a and MST compliant displays, HBR2 support AMD Eyefinity technology (see Note 1) support managing up to 6 displays seamlessly as though they were one display c04513037 — DA - 15147 Worldwide -
Gen Vulkan API
Faculty of Science and Technology Department of Computer Science A closer look at problems related to the next- gen Vulkan API — Håvard Mathisen INF-3981 Master’s Thesis in Computer Science June 2017 Abstract Vulkan is a significantly lower-level graphics API than OpenGL and require more effort from application developers to do memory management, synchronization, and other low-level tasks that are spe- cific to this API. The API is closer to the hardware and offer features that is not exposed in older APIs. For this thesis we will extend an existing game engine with a Vulkan back-end. This allows us to eval- uate the API and compare with OpenGL. We find ways to efficiently solve some challenges encountered when using Vulkan. i Contents 1 Introduction 1 1.1 Goals . .2 2 Background 3 2.1 GPU Architecture . .3 2.2 GPU Drivers . .3 2.3 Graphics APIs . .5 2.3.1 What is Vulkan . .6 2.3.2 Why Vulkan . .7 3 Vulkan Overview 8 3.1 Vulkan Architecture . .8 3.2 Vulkan Execution Model . .8 3.3 Vulkan Tools . .9 4 Vulkan Objects 10 4.1 Instances, Physical Devices, Devices . 10 4.1.1 Lost Device . 12 4.2 Command buffers . 12 4.3 Queues . 13 4.4 Memory Management . 13 4.4.1 Memory Heaps . 13 4.4.2 Memory Types . 14 4.4.3 Host visible memory . 14 4.4.4 Memory Alignment, Aliasing and Allocation Limitations 15 4.5 Synchronization . 15 4.5.1 Execution dependencies . 16 4.5.2 Memory dependencies . 16 4.5.3 Image Layout Transitions . -
Codexl 2.6 GA Release Notes
CodeXL 2.6 GA Release Notes Contents CodeXL 2.6 GA Release Notes ....................................................................................................................... 1 New in this version .................................................................................................................................... 2 System Requirements ............................................................................................................................... 2 Getting the latest Radeon™ Software release .......................................................................................... 3 Radeon software packages can be found here: .................................................................................... 3 Fixed Issues ............................................................................................................................................... 3 Known Issues ............................................................................................................................................. 4 Support ..................................................................................................................................................... 5 Thank you for using CodeXL. We appreciate any feedback you have! Please use the CodeXL Issues Page to provide your feedback. You can also check out the Getting Started guide and the latest CodeXL blog at GPUOpen.com This version contains: • For 64-bit Windows® platforms o CodeXL Standalone application o CodeXL Remote Agent -
Heterogeneous System Architecture Pdf
Heterogeneous system architecture pdf Continue The Heterogeneous System Architecture (HSA) is a cross-supplier set of specifications that allow for the integration of central processing processors and GPUs on the same bus, with shared memory and tasks. HSA is developed by the HSA Foundation, which includes (among many others) AMD and ARM. The stated goal of the platform is to reduce the delay in communication between processors, GPUs, and other computing devices and to make these different devices more compatible from the programmer's point of view, freeing the programmer from the task of scheduling the movement of data between disparate device memories (as should be done now with OpenCL or CUDA). CUDA and OpenCL, as well as most other fairly advanced programming languages, can use HSA to improve performance. Heterogeneous computing is widely used in chip system devices such as tablets, smartphones, other mobile devices, and game consoles. HSA allows programs to use a GPU to calculate floating currents without separate memory or planning. The rationale behind the HSA is to ease the burden on programmers when unloading calculations in the GPU. Originally driven exclusively by AMD and called the FSA, the idea has been expanded to cover processors other than GPUs such as other manufacturers' DSPs as well. Steps performed when unloading calculations in THED on non-HSA system steps performed when unloading calculations in the GPU on the HSA system, using HSA functionality, Modern GPUs are very well suited to one instruction, multiple data (SIMD) and one manual, multiple threads (SIMT), while modern processors are still optimized for branching.