Compatibility of the Large Quasar Groups with the Concordance Cosmological Model

Total Page:16

File Type:pdf, Size:1020Kb

Compatibility of the Large Quasar Groups with the Concordance Cosmological Model Article Compatibility of the large quasar groups with the concordance cosmological model Clowes, Roger G Available at http://clok.uclan.ac.uk/14991/ Clowes, Roger G ORCID: 0000-0001-8370-465X (2016) Compatibility of the large quasar groups with the concordance cosmological model. Monthly Notices of the Royal Astronomical Society, 461 (3). pp. 2267-2281. ISSN 0035- 8711 It is advisable to refer to the publisher’s version if you intend to cite from the work. http://dx.doi.org/10.1093/mnras/stw1513 For more information about UCLan’s research in this area go to http://www.uclan.ac.uk/researchgroups/ and search for <name of research Group>. For information about Research generally at UCLan please go to http://www.uclan.ac.uk/research/ All outputs in CLoK are protected by Intellectual Property Rights law, including Copyright law. Copyright, IPR and Moral Rights for the works on this site are retained by the individual authors and/or other copyright owners. Terms and conditions for use of this material are defined in the policies page. CLoK Central Lancashire online Knowledge www.clok.uclan.ac.uk MNRAS 461, 2267–2281 (2016) doi:10.1093/mnras/stw1513 Advance Access publication 2016 June 26 Compatibility of the large quasar groups with the concordance cosmological model Gabriel E. Marinello,1‹ Roger G. Clowes,1 Luis E. Campusano,2 Gerard M. Williger,1,3 Ilona K. Sochting¨ 4 and Matthew J. Graham5 1Jeremiah Horrocks Institute, University of Central Lancashire, Preston PR1 2HE, UK 2Observatorio Astronomico´ Cerro Calan,´ Departamento de Astronom´ıa, Universidad de Chile, Casilla 36-D, 7591245 Santiago, Chile 3Department of Physics and Astronomy, University Louisville, Louisville, KY 40292, USA 4Astrophysics, Denys Wilkinson Building, Keble Road, University of Oxford, Oxford OX1 3RH, UK 5California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA Accepted 2016 June 21. Received 2016 June 6; in original form 2016 February 19 Downloaded from ABSTRACT We study the compatibility of large quasar groups with the concordance cosmological model. Large quasar groups are very large spatial associations of quasars in the cosmic web, with sizes of 50–250 h−1 Mpc. In particular, the largest large quasar group known, named Huge-LQG, has a longest axis of ∼860 h−1 Mpc, larger than the scale of homogeneity (∼260 Mpc), which http://mnras.oxfordjournals.org/ has been noted as a possible violation of the cosmological principle. Using mock catalogues constructed from the Horizon Run 2 cosmological simulation, we found that large quasar groups size, quasar member number and mean overdensity distributions in the mocks agree with observations. The Huge-LQG is found to be a rare group with a probability of 0.3 per cent of finding a group as large or larger than the observed, but an extreme value analysis shows that it is an expected maximum in the sample volume with a probability of 19 per cent of observing a largest quasar group as large or larger than Huge-LQG. The Huge-LQG is expected to be the largest structure in a volume at least 5.3 ± 1 times larger than the one currently studied. at The Library on July 13, 2016 Key words: quasars: general – cosmology: observations – large-scale structure of Universe. high luminosities have allowed the construction of redshift surveys 1 INTRODUCTION at medium and high redshift, e.g. the 2dF QSO Redshift Survey The spatial distribution of galaxies is not homogeneous, but instead (Colless et al. 2001, 2003) and the Sloan Digital Sky Survey Data galaxies form a complex hierarchy of structures, forming clusters Quasar Catalogue (see Schneider et al. 2010). The larger volumes and groups, filaments and walls of galaxies that surround enormous and redshift ranges available in quasar redshift surveys have pro- underdense volumes called voids. Together, they are known as the duced new opportunities to test deviations from the standard cos- large-scale structure of the Universe (LSS, hereafter) or the cosmic mology (e.g. Sawangwit et al. 2012) or the cosmological principle. web. The LSS is one of the main subjects of study of observational One of the findings in the quasar LSS is the presence of very cosmology as it allows us to probe the underlying distribution of large groups or associations of quasars at large scales (hundreds of matter of the Universe (Peebles 1980), and it provides fundamental Mpc), that we call large quasar groups (LQGs). LQGs are very large constraints for the concordance cosmological model (Spergel et al. in comparison with low-redshift structures, with dimensions in the 2003). In particular, the LSS can provide important evidence about range of 50–250 Mpc, and they have been detected in the redshift the existence of non-Gaussianities in the initial conditions or viola- range z ∼ 0.4–2.0. The first detection was done by Webster (1982), tions of hypothesized homogeneity and isotropy of the Universe, the but this first detection was done for a small sample and the redshifts so-called cosmological principle. However, the study of these ideas have larger errors in comparison with modern surveys. It was not requires very large volume surveys, due to the large scales studied. until the construction of sizeable quasar redshift surveys that it But, redshift surveys using normal galaxies are currently limited was possible to improve the confidence in the detection, increasing to redshifts too low for a good sampling of the very large scales the number of successful detections in the following years. The needed to test them. Instead, other kind of objects has been used Clowes–Campusano LQG (Clowes & Campusano 1991) was the to sample medium to high redshifts. Quasars, the brightest class largest LQG known in the literature with a size of ∼250 Mpc (now of active galactic nuclei (AGNs; see Antonucci 1993), with their the largest LQG is the Huge-LQG). The Clowes–Campusano LQG is also the most studied of these structures (Haines, Campusano & Clowes 2004; Haberzettl et al. 2009; Clowes et al. 2012, 2013b; E-mail: [email protected] Einasto et al. 2014). For further references about LQGs see Clowes C 2016 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society 2268 G. E. Marinello et al. et al. (2012) and references therein. LQGs provide a sample of large- the concordance model. This comparison is necessary as random scale overdensities at medium redshifts for which the galaxy LSS catalogues cannot give any insight into the relation between the LSS is not well mapped. Therefore, they could provide a way to study and the LQGs. the growth of the LSS, its connection to the galaxy formation, and In this paper, we performed an analysis of the LQG compati- possibly additional constraints on the concordance cosmological bility with the concordance cosmological model by comparing the model. observed LQGs with those from mock LQG catalogues obtained Using the Sloan Digital Sky Survey (SDSS) DR7QSO redshift from the Horizon Run 2 cosmological simulation (Kim et al. 2009). survey, Clowes et al. (2012, 2013a,b) performed a search for LQGs These LQG mock catalogues were constructed from a set of mock at medium redshifts, and produced a catalogue that represents an quasar catalogues using the same group finder and significance test order-of-magnitude increase in the number of known LQGs over the employed for the observational sample. We also perform an ex- pre-SDSS total. Clowes et al. (2012) corroborate the previous detec- treme value analysis of the probability of observing the Huge-LQG tion of the Clowes–Campusano LQG and found a similar detection in these mock catalogues. in the neighbourhood. Therefore, this kind of LQG is more common The paper is organized as follows. In Section 2, we describe the than previously expected. Clowes et al. (2013a) show the detection observational sample of LQGs used in the comparison and we dis- of the largest LQG known with an extension of 868 h−1 Mpc, which cuss its main properties. In Section 3, we describe the construction is known as the Huge-LQG. This structure has received additional of the intermediate mock quasar catalogues from the Horizon Run 2 corroboration using Mg II absorbers (Clowes et al. 2013a). Hut- cosmological simulation. In Section 4, we show the resulting mock semekers´ et al. (2014) found that the quasar polarization is partially LQG catalogues and their comparison against observations. In Sec- correlated with the direction of its main branches, which might be an tion 5, we show the extreme value analysis of the largest LQG in Downloaded from indication of the association of the LQG sub-structures with walls size and quasar number. Finally, in the last section we present the in the LSS (see Hahn et al. 2007). Other groups have recovered summary and discussion of our results. similar LQGs using slightly different definitions (e.g. Einasto et al. We adopt a fiducial cosmological model close to the best values 2014). of the concordance cosmological model, with T = 1, M, 0 = 0.27, −1 −1 The very large size of the Huge-LQG and other LQGs could ,0 = 0.73 and H0 = 70 km s Mpc . All distances shown are http://mnras.oxfordjournals.org/ represent a challenge for the accepted values of ‘the scale of ho- comoving distances. mogeneity’, the minimum scale at which the Universe looks sta- tistically homogeneous, a fundamental assumption of the standard cosmological model. Estimates for the scale of homogeneity are as 2 LARGE QUASAR GROUP SAMPLE small as 60–70 h−1 Mpc (Hogg et al. 2005; Yadav et al. 2005;Sarkar et al. 2009) or as large as 260 h−1 Mpc (Yadav, Bagla & Khandai The LQG catalogue in Clowes et al.
Recommended publications
  • On the Nature of Filaments of the Large-Scale Structure of the Universe Irina Rozgacheva, I Kuvshinova
    On the nature of filaments of the large-scale structure of the Universe Irina Rozgacheva, I Kuvshinova To cite this version: Irina Rozgacheva, I Kuvshinova. On the nature of filaments of the large-scale structure of the Universe. 2018. hal-01962100 HAL Id: hal-01962100 https://hal.archives-ouvertes.fr/hal-01962100 Preprint submitted on 20 Dec 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. On the nature of filaments of the large-scale structure of the Universe I. K. Rozgachevaa, I. B. Kuvshinovab All-Russian Institute for Scientific and Technical Information of Russian Academy of Sciences (VINITI RAS), Moscow, Russia e-mail: [email protected], [email protected] Abstract Observed properties of filaments which dominate in large-scale structure of the Universe are considered. A part from these properties isn’t described within the standard ΛCDM cosmological model. The “toy” model of forma- tion of primary filaments owing to the primary scalar and vector gravitational perturbations in the uniform and isotropic cosmological model which is filled with matter with negligible pressure, without use of a hypothesis of tidal interaction of dark matter halos is offered.
    [Show full text]
  • X-Ray Jets Aneta Siemiginowska
    Chandra News Issue 21 Spring 2014 Published by the Chandra X-ray Center (CXC) X-ray Jets Aneta Siemiginowska The Active Galaxy 4C+29.30 Credit: X-ray: NASA/CXC/SAO/A.Siemiginowska et al; Optical: NASA/STScI; Radio: NSF/NRAO/VLA Contents X-ray Jets HETG 3 Aneta Siemiginowska 18 David Huenemoerder (for the HETG team) 10 Project Scientist’s Report 20 LETG Martin Weisskopf Jeremy Drake 11 Project Manager’s Report 23 Chandra Calibration Roger Brissenden Larry David Message of Thanks to Useful Web Addresses 12 Harvey Tananbaum 23 The Chandra Team Belinda Wilkes Appointed as CIAO 4.6 13 Director of the CXC 24 Antonella Fruscione, for the CIAO Team Of Programs and Papers: Einstein Postdoctoral Fellowship 13 Making the Chandra Connection 29 Program Sherry Winkelman & Arnold Rots Andrea Prestwich Chandra Related Meetings Cycle 14 Peer Review Results 14 and Important Dates 30 Belinda Wilkes ACIS Chandra Users’ Committee 14 Paul Plucinsky, Royce Buehler, 34 Membership List Gregg Germain, & Richard Edgar HRC CXC 2013 Science Press 15 Ralph Kraft, Hans Moritz Guenther 35 Releases (SAO), and Wolfgang Pietsch (MPE) Megan Watzke The Chandra Newsletter appears once a year and is edited by Paul J. Green, with editorial assistance and layout by Evan Tingle. We welcome contributions from readers. Comments on the newsletter, or corrections and additions to the hardcopy mailing list should be sent to: [email protected]. Spring, 2014 3 X-ray Jets many unanswered questions, including the nature of relativistic jets, jet energetics, particle content, parti- Aneta Siemiginowska cle acceleration and emission processes. Both statis- tical studies of large samples of jets across the entire The first recorded observation of an extragalac- electromagnetic spectrum and deep broad-band imag- tic jet was made almost a century ago.
    [Show full text]
  • Nd AAS Meeting Abstracts
    nd AAS Meeting Abstracts 101 – Kavli Foundation Lectureship: The Outreach Kepler Mission: Exoplanets and Astrophysics Search for Habitable Worlds 200 – SPD Harvey Prize Lecture: Modeling 301 – Bridging Laboratory and Astrophysics: 102 – Bridging Laboratory and Astrophysics: Solar Eruptions: Where Do We Stand? Planetary Atoms 201 – Astronomy Education & Public 302 – Extrasolar Planets & Tools 103 – Cosmology and Associated Topics Outreach 303 – Outer Limits of the Milky Way III: 104 – University of Arizona Astronomy Club 202 – Bridging Laboratory and Astrophysics: Mapping Galactic Structure in Stars and Dust 105 – WIYN Observatory - Building on the Dust and Ices 304 – Stars, Cool Dwarfs, and Brown Dwarfs Past, Looking to the Future: Groundbreaking 203 – Outer Limits of the Milky Way I: 305 – Recent Advances in Our Understanding Science and Education Overview and Theories of Galactic Structure of Star Formation 106 – SPD Hale Prize Lecture: Twisting and 204 – WIYN Observatory - Building on the 308 – Bridging Laboratory and Astrophysics: Writhing with George Ellery Hale Past, Looking to the Future: Partnerships Nuclear 108 – Astronomy Education: Where Are We 205 – The Atacama Large 309 – Galaxies and AGN II Now and Where Are We Going? Millimeter/submillimeter Array: A New 310 – Young Stellar Objects, Star Formation 109 – Bridging Laboratory and Astrophysics: Window on the Universe and Star Clusters Molecules 208 – Galaxies and AGN I 311 – Curiosity on Mars: The Latest Results 110 – Interstellar Medium, Dust, Etc. 209 – Supernovae and Neutron
    [Show full text]
  • Observational Cosmology - 30H Course 218.163.109.230 Et Al
    Observational cosmology - 30h course 218.163.109.230 et al. (2004–2014) PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Thu, 31 Oct 2013 03:42:03 UTC Contents Articles Observational cosmology 1 Observations: expansion, nucleosynthesis, CMB 5 Redshift 5 Hubble's law 19 Metric expansion of space 29 Big Bang nucleosynthesis 41 Cosmic microwave background 47 Hot big bang model 58 Friedmann equations 58 Friedmann–Lemaître–Robertson–Walker metric 62 Distance measures (cosmology) 68 Observations: up to 10 Gpc/h 71 Observable universe 71 Structure formation 82 Galaxy formation and evolution 88 Quasar 93 Active galactic nucleus 99 Galaxy filament 106 Phenomenological model: LambdaCDM + MOND 111 Lambda-CDM model 111 Inflation (cosmology) 116 Modified Newtonian dynamics 129 Towards a physical model 137 Shape of the universe 137 Inhomogeneous cosmology 143 Back-reaction 144 References Article Sources and Contributors 145 Image Sources, Licenses and Contributors 148 Article Licenses License 150 Observational cosmology 1 Observational cosmology Observational cosmology is the study of the structure, the evolution and the origin of the universe through observation, using instruments such as telescopes and cosmic ray detectors. Early observations The science of physical cosmology as it is practiced today had its subject material defined in the years following the Shapley-Curtis debate when it was determined that the universe had a larger scale than the Milky Way galaxy. This was precipitated by observations that established the size and the dynamics of the cosmos that could be explained by Einstein's General Theory of Relativity.
    [Show full text]
  • Orders of Magnitude (Length) - Wikipedia
    03/08/2018 Orders of magnitude (length) - Wikipedia Orders of magnitude (length) The following are examples of orders of magnitude for different lengths. Contents Overview Detailed list Subatomic Atomic to cellular Cellular to human scale Human to astronomical scale Astronomical less than 10 yoctometres 10 yoctometres 100 yoctometres 1 zeptometre 10 zeptometres 100 zeptometres 1 attometre 10 attometres 100 attometres 1 femtometre 10 femtometres 100 femtometres 1 picometre 10 picometres 100 picometres 1 nanometre 10 nanometres 100 nanometres 1 micrometre 10 micrometres 100 micrometres 1 millimetre 1 centimetre 1 decimetre Conversions Wavelengths Human-defined scales and structures Nature Astronomical 1 metre Conversions https://en.wikipedia.org/wiki/Orders_of_magnitude_(length) 1/44 03/08/2018 Orders of magnitude (length) - Wikipedia Human-defined scales and structures Sports Nature Astronomical 1 decametre Conversions Human-defined scales and structures Sports Nature Astronomical 1 hectometre Conversions Human-defined scales and structures Sports Nature Astronomical 1 kilometre Conversions Human-defined scales and structures Geographical Astronomical 10 kilometres Conversions Sports Human-defined scales and structures Geographical Astronomical 100 kilometres Conversions Human-defined scales and structures Geographical Astronomical 1 megametre Conversions Human-defined scales and structures Sports Geographical Astronomical 10 megametres Conversions Human-defined scales and structures Geographical Astronomical 100 megametres 1 gigametre
    [Show full text]
  • Arxiv:2007.04414V1 [Astro-Ph.CO] 8 Jul 2020 Bution of Matter on Large Scales Is Inferred from Tion)
    Key words: large scale structure of universe | galaxies: distances and redshifts Draft version July 10, 2020 Typeset using LATEX preprint2 style in AASTeX62 Cosmicflows-3: The South Pole Wall Daniel Pomarede,` 1 R. Brent Tully,2 Romain Graziani,3 Hel´ ene` M. Courtois,4 Yehuda Hoffman,5 and Jer´ emy´ Lezmy4 1Institut de Recherche sur les Lois Fondamentales de l'Univers, CEA Universit´eParis-Saclay, 91191 Gif-sur-Yvette, France 2Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822, USA 3Laboratoire de Physique de Clermont, Universit Clermont Auvergne, Aubire, France 4University of Lyon, UCB Lyon 1, CNRS/IN2P3, IUF, IP2I Lyon, France 5Racah Institute of Physics, Hebrew University, Jerusalem, 91904 Israel ABSTRACT Velocity and density field reconstructions of the volume of the universe within 0:05c derived from the Cosmicflows-3 catalog of galaxy distances has revealed the presence of a filamentary structure extending across ∼ 0:11c. The structure, at a characteristic redshift of 12,000 km s−1, has a density peak coincident with the celestial South Pole. This structure, the largest contiguous feature in the local volume and comparable to the Sloan Great Wall at half the distance, is given the name the South Pole Wall. 1. INTRODUCTION ble of measurements: to a first approximation The South Pole Wall rivals the Sloan Great Vpec = Vobs − H0d. Although uncertainties with Wall in extent, at a distance a factor two individual galaxies are large, the analysis bene- closer. The iconic structures that have trans- fits from the long range correlated nature of the formed our understanding of large scale struc- cosmic flow, allowing the reconstruction of the ture have come from the observed distribution 3D velocity field from noisy, finite and incom- of galaxies assembled from redshift surveys: the plete data (Zaroubi et al.
    [Show full text]
  • Map of the Huge-LQG Noted by Black Circles, Adjacent to the ClowesCampusan O LQG in Red Crosses
    Huge-LQG From Wikipedia, the free encyclopedia Map of Huge-LQG Quasar 3C 273 Above: Map of the Huge-LQG noted by black circles, adjacent to the ClowesCampusan o LQG in red crosses. Map is by Roger Clowes of University of Central Lancashire . Bottom: Image of the bright quasar 3C 273. Each black circle and red cross on the map is a quasar similar to this one. The Huge Large Quasar Group, (Huge-LQG, also called U1.27) is a possible structu re or pseudo-structure of 73 quasars, referred to as a large quasar group, that measures about 4 billion light-years across. At its discovery, it was identified as the largest and the most massive known structure in the observable universe, [1][2][3] though it has been superseded by the Hercules-Corona Borealis Great Wa ll at 10 billion light-years. There are also issues about its structure (see Dis pute section below). Contents 1 Discovery 2 Characteristics 3 Cosmological principle 4 Dispute 5 See also 6 References 7 Further reading 8 External links Discovery[edit] Roger G. Clowes, together with colleagues from the University of Central Lancash ire in Preston, United Kingdom, has reported on January 11, 2013 a grouping of q uasars within the vicinity of the constellation Leo. They used data from the DR7 QSO catalogue of the comprehensive Sloan Digital Sky Survey, a major multi-imagi ng and spectroscopic redshift survey of the sky. They reported that the grouping was, as they announced, the largest known structure in the observable universe. The structure was initially discovered in November 2012 and took two months of verification before its announcement.
    [Show full text]
  • Evidence for the Alignment of Quasar Radio Polarizations with Large Quasar Group Axes V
    Astronomy & Astrophysics manuscript no. aa26979-15 c ESO 2016 April 13, 2016 Evidence for the alignment of quasar radio polarizations with large quasar group axes V. Pelgrims1 and D. Hutsemékers1,2 1 IFPA, AGO Dept., University of Liège, B4000 Liège, Belgium e-mail: [email protected] 2 AEOS, AGO Dept., University of Liège, B4000 Liège, Belgium e-mail: [email protected] Received 16 July 2015 / Accepted April 2016 ABSTRACT Recently, evidence has been presented for the polarization vectors from quasars to preferentially align with the axes of the large quasar groups (LQG) to which they belong. This report was based on observations made at optical wavelengths for two large quasar groups at redshift ∼ 1:3. The correlation suggests that the spin axes of quasars preferentially align with their surrounding large-scale structure that is assumed to be traced by the LQGs. Here, we consider a large sample of LQGs built from the Sloan Digital Sky Survey DR7 quasar catalogue in the redshift range 1:0 − 1:8. For quasars embedded in this sample, we collected radio polarization measurements with the goal to study possible correlations between quasar polarization vectors and the major axis of their host LQGs. Assuming the radio polarization vector is perpendicular to the quasar spin axis, we found that the quasar spin axis is preferentially parallel to the LQG major axis inside LQGs that have at least 20 members. This result independently supports the observations at optical wavelengths. We additionally found that when the richness of an LQG decreases, the quasar spin axis becomes preferentially perpendicular to the LQG major axis and that no correlation is detected for quasar groups with fewer than 10 members.
    [Show full text]
  • Consistent Young Earth Relativistic Cosmology
    The Proceedings of the International Conference on Creationism Volume 8 Print Reference: Pages 14-35 Article 23 2018 Consistent Young Earth Relativistic Cosmology Phillip W. Dennis Unaffiliated Follow this and additional works at: https://digitalcommons.cedarville.edu/icc_proceedings Part of the Cosmology, Relativity, and Gravity Commons DigitalCommons@Cedarville provides a publication platform for fully open access journals, which means that all articles are available on the Internet to all users immediately upon publication. However, the opinions and sentiments expressed by the authors of articles published in our journals do not necessarily indicate the endorsement or reflect the views of DigitalCommons@Cedarville, the Centennial Library, or Cedarville University and its employees. The authors are solely responsible for the content of their work. Please address questions to [email protected]. Browse the contents of this volume of The Proceedings of the International Conference on Creationism. Recommended Citation Dennis, P.W. 2018. Consistent young earth relativistic cosmology. In Proceedings of the Eighth International Conference on Creationism, ed. J.H. Whitmore, pp. 14–35. Pittsburgh, Pennsylvania: Creation Science Fellowship. Dennis, P.W. 2018. Consistent young earth relativistic cosmology. In Proceedings of the Eighth International Conference on Creationism, ed. J.H. Whitmore, pp. 14–35. Pittsburgh, Pennsylvania: Creation Science Fellowship. CONSISTENT YOUNG EARTH RELATIVISTIC COSMOLOGY Phillip W. Dennis, 1655 Campbell Avenue,
    [Show full text]
  • The Galaxy Environment of Quasars in the Clowes-Campusano Large Quasar Group
    The Galaxy Environment of Quasars in the Clowes-Campusano Large Quasar Group Christopher Paul Haines A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy. Centre for Astrophysics Department of Physics, Astronomy and Mathematics University of Central Lancashire June 2001 Declaration The work presented in this thesis was carried out in the Department of Physics, Astromony and Mathematics, University of Central Lancashire. Unless otherwise stated it is the original work of the author. While registered for the degree of Doctor of Philosophy, the author has not been a registered candidate for another award of the University. This thesis has not been submitted in whole, or in part, for any other degree. Christopher Haines June 2001 Abstract Quasars have been used as efficient probes of high-redshift galaxy clustering as they are known to favour overdense environments. Quasars may also trace the large- scale structure of the early universe (0.4 1< z 1< 2) in the form of Large Quasar Groups (LQGs), which have comparable sizes (r.J 100-200hMpc) to the largest structures seen at the present epoch. This thesis describes an ultra-deep, wide-field optical study of a region containing three quasars from the largest known LJQG, the Clowes-Campusano LQG of at least 18 quasars at z 1.3, to examine their galaxy environments and to find indications of any associated large-scale structure in the form of galaxies. The optical data were obtained using the Big Throughput Camera (BTC) on the 4-m Blanco telescope at the Cerro Tololo Interamerican Observatory (CTIO) over two nights in April 1998, resulting in ultra-deep V, I imaging of a 40.6 x 34.9 arcmin 2 field centred at l0L47m30s, +05 0 30'00" containing three quasars from the LQG as well as four quasars at higher redshifts.
    [Show full text]
  • The Excess Density of Field Galaxies Near Z ∼ 0.56 Around the Gamma
    The Excess Density of Field Galaxies near z ∼ 0.56 around the Gamma-Ray Burst GRB 021004 Position I. V. Sokolov,1, * A. J. Castro-Tirado,2 O. P. Zhelenkova,3, 4 I. A. Solovyev,5 O. V. Verkhodanov,3 and V. V. Sokolov3 1Institute of Astronomy, Russian Academy of Sciences, Moscow, 119017 Russia 2Stellar Physics Department, Institute for Astrophysics of Andalucia (IAA-CSIC), Granada, 18008 Spain 3Special Astrophysical Observatory, Russian Academy of Sciences, Nizhnii Arkhyz, 369167 Russia 4ITMO University, St. Petersburg, 197101 Russia 5Astronomical Department, St. Petersburg State University, St. Petersburg, 199034 Russia We test for reliability any signatures of field galaxies clustering in the GRB 021004 line of sight. The first signature is the GRB 021004 field photometric redshifts distribution based on the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences observations with a peak near z ∼ 0.56 estimated from multicolor photometry in the GRB direction. The second signature is the Mg IIλλ2796, 2803A˚A˚ absorption doublet at z ≈ 0.56 in VLT/UVES spectra obtained for the GRB 021004 afterglow. The third signature is the galaxy clustering in a larger (of about 3◦ × 3◦) area around GRB021004 with an effective peak near z ∼ 0.56 for both the spectral and photometric redshifts from a few catalogs of clusters based on the Sloan Digital Sky Survey (SDSS) and Baryon Oscillation Spectroscopic Survey (BOSS) as a part of SDSS-III. From catalog data the size of the whole inhomogeneity in distribution of the galaxy clusters with the peak near z ≈ 0.56 is also estimated as about 6◦–8◦ or 140–190 Mpc.
    [Show full text]
  • Sloan Great Wall By: Eric Parker What Is the Sloan Great Wall?
    Sloan Great Wall By: Eric Parker What is the Sloan Great Wall? - The Sloan Great Wall is group of superclusters connected by filaments of galaxies in deep space 1.4 billion light years long - The wall is the third largest object in our universe - The wall stretches for about 5% of the observable universe - Composed of: - Superclusters - Filaments - Voids What is a Supercluster? - A supercluster is a group of about 3-10 clusters - It can range up to 100 light years wide Clusters - Clusters are bunches of galaxies - They are anywhere from 50 to 2000 galaxies big - They can range from 6.17x10^19 km to 3x10^20km Filaments - Thread like structures that connect clusters together - They contain single galaxies and groups Voids -Cloud of dust and gas that absorbs all light from background stars -Likely place for new stars to form -Possible to see through it with infrared - Space with nothing in it Dark Matter in the wall - Thought to have been born from dark matter - The Sloan Great Wall could be a resting place for dark matter - Dark matter is matter in space that we can’t see - Thought to be composed of WIMPS (weak interacting massive particles) - When lots of them are together their mass creates lots of gravity - Dark matter attracts normal matter - All the galaxies were then attached to it Picture of Dark Matter Force of Gravity m1= Mass of the WIMPS m2= Mass of a visible mass r= distance between m1 and m2 Fg= Force of gravity G= gravitational constant How do we know this? - A process called gravitational lensing is able to prove the existence
    [Show full text]