X-Ray Jets Aneta Siemiginowska

Total Page:16

File Type:pdf, Size:1020Kb

X-Ray Jets Aneta Siemiginowska Chandra News Issue 21 Spring 2014 Published by the Chandra X-ray Center (CXC) X-ray Jets Aneta Siemiginowska The Active Galaxy 4C+29.30 Credit: X-ray: NASA/CXC/SAO/A.Siemiginowska et al; Optical: NASA/STScI; Radio: NSF/NRAO/VLA Contents X-ray Jets HETG 3 Aneta Siemiginowska 18 David Huenemoerder (for the HETG team) 10 Project Scientist’s Report 20 LETG Martin Weisskopf Jeremy Drake 11 Project Manager’s Report 23 Chandra Calibration Roger Brissenden Larry David Message of Thanks to Useful Web Addresses 12 Harvey Tananbaum 23 The Chandra Team Belinda Wilkes Appointed as CIAO 4.6 13 Director of the CXC 24 Antonella Fruscione, for the CIAO Team Of Programs and Papers: Einstein Postdoctoral Fellowship 13 Making the Chandra Connection 29 Program Sherry Winkelman & Arnold Rots Andrea Prestwich Chandra Related Meetings Cycle 14 Peer Review Results 14 and Important Dates 30 Belinda Wilkes ACIS Chandra Users’ Committee 14 Paul Plucinsky, Royce Buehler, 34 Membership List Gregg Germain, & Richard Edgar HRC CXC 2013 Science Press 15 Ralph Kraft, Hans Moritz Guenther 35 Releases (SAO), and Wolfgang Pietsch (MPE) Megan Watzke The Chandra Newsletter appears once a year and is edited by Paul J. Green, with editorial assistance and layout by Evan Tingle. We welcome contributions from readers. Comments on the newsletter, or corrections and additions to the hardcopy mailing list should be sent to: [email protected]. Spring, 2014 3 X-ray Jets many unanswered questions, including the nature of relativistic jets, jet energetics, particle content, parti- Aneta Siemiginowska cle acceleration and emission processes. Both statis- tical studies of large samples of jets across the entire The first recorded observation of an extragalac- electromagnetic spectrum and deep broad-band imag- tic jet was made almost a century ago. In 1918 He- es of individual jets are necessary to tackle some of ber Curtis, an astronomer in the Lick Observatory, these questions. published “Descriptions of 762 nebulae and clusters In the Chandra Newsletter #13 (2006) Schwartz photographed with the Crossley Reflector.” He wrote and Harris introduced the studies of X-ray jets which a note by the entry for NGC 4486 (M87): “A curious became possible with the high angular resolution X-ray straight ray lies in a gap in the nebulosity in p.a. 20 mirrors provided by Chandra. Most of the X-ray jets deg apparently connected with the nucleus by a thin remain unresolved in XMM-Newton or Suzaku obser- line of matter. The ray is brightest at its inner end, vations and Chandra is critical to all the high angular which is 11 arcsec from the nucleus.” resolution observations revealing the X-ray structures A few decades later Baade & Minkowski (1954) on sub-arcsec scales. In this letter I highlight some re- published an optical image of M87 showing 20 arcsec cent results of extragalactic jet studies with Chandra long and 2 arcsec wide jet with clear condensations and direct the readers to more detailed reviews of the along the jet. It is surprising to read their statement: field given by Harris & Krawczynski (2006), Worrall “No possibility exists at this time of forming any hy- (2009), and Pudritz et al. (2012). pothesis on the formation of the jet, the physical state of its material, and the mechanism which connects the Chandra Observations existence of the jet with the observed radio emission.” The many discoveries of X-ray jets thrilled sci- This was 1954, the era of pre-digital astrono- entists in the early days of Chandra. They included my, when image analysis was based on photographic the discovery of the PKS 0637-752 (Tavecchio et al. plates and performed by eye, with a ruler and a pen- 2000, Cellotti et al. 2001, Schwartz et al. 2000) jet cil. Only a few radio sources had been identified at in the first calibration observation designed to test the that time, quasars had yet to be discovered, and a few focus of the mirrors on orbit. The initial discoveries more decades had to lapse before the first X-ray obser- were followed by a few systematic surveys to find vations of jets. The Einstein High Resolution Imager X-ray jets and also by detailed studies of a few jets. (HRI) provided the first X-ray data of M87 jet (Fei- The X-ray jets are seen as diffuse linear and bend- gelson 1980; Schreier et al. 1982). The first jet dis- ing structures with enhancements due to knots or hot covered in X-rays was the jet of a radio galaxy Cen- spots. The jet is often located close to the strong core taurus A which was later studied in radio wavelengths emission, or embedded in the diffuse emission of a (Schreier et al. 1979). The Einstein HRI image of the host galaxy with a total length rarely exceeding ∼ 30′′. famous quasar 3C273 needed careful analyses to dis- Most X-ray jets are rather faint and their emission is cern X-rays emitted by the relativistic jet (Willingale only a small (< 3%) fraction of a strong core, the main 1981). Later on ROSAT provided a few more detec- reason why only a few jets were detected in earlier tions of jets, but only with Chandra did X-ray studies X-ray missions. Chandra opened a new window to the of large scale jets become routine. studies of relativistic extragalactic jets. During the past 15 years the Chandra X-ray Ob- Several surveys of X-ray jets have been complet- servatory has performed many observations of jets in ed to date. They differ in their selection criteria, but a variety of objects, from stellar types in our galaxy to all originated from samples of known radio jets. Sam- quasars in the high redshift universe. Understanding bruna et al. (2004) selected 17 radio jets from a list of jets might bring us closer to understanding the phys- known AGN jets. These radio jets were longer than −2 ics of accreting systems across many different scales. 3′′ and bright (S1.4GHz > 5mJy arcsec ), with at least While the observational data gathered over these past one knot located at a large distance from the nucleus. years underlined the significance of jets in the evolu- The sample of Marshall et al. (2011) contained 56 flat tion of galaxies and clusters of galaxies, there are still spectrum radio quasars compiled from VLA and ATCA 4 CXC Newsletter imaging radio surveys and selected targets based on resulting in the X-ray emission. The source of the the flux density in the extended emission and the ra- photon field could be internal to the jet (synchro- dio jet morphology. This sample was divided into two tron-self-Compton, SSC) or external to the jet. In the sub-classes: A – purely jet flux limited and B – based large scale jets associated with quasars, the Cosmic on radio morphology and biased toward one-sided and Microwave Background was considered as the likely linear structure. In both surveys the Chandra observa- primary source of the photon field (IC/CMB). tions were short (< 10 ksec), but about 60% of these Current observations indicate that synchrotron radio jets were detected in X-rays. A higher fraction emission is the primary process producing X- rays in of resolved X-ray jets, 78%, in similar Chandra ex- jets associated with low power radio galaxies classi- posures was found by Hogan et al. (2011) in a sample fied as FRI. M87 and Centaurus A are examples of of 13 blazars selected from the flux-limited MOJAVE nearby FRI galaxies where the jets were studied in sample of relativistic jets associated with quasars and great detail. Both jets exhibit a correlated morphology FR II radio galaxies. (see M87 Fig. 1). The simple “one-zone” model where Most of the survey studies focused on under- the radio and X-ray emission are produced by the same standing the X-ray emission process in large scale population of relativistic particles is supported by the extragalactic jets. The possible mechanisms include observations. However, some evolution of the electron synchrotron emission from highly relativistic particles energy spectrum along the jet is required for these two in the jet or the emission resulting from the inverse cases. Recent studies of the archival Chandra data of Compton process where such particles transfer ener- FRI jets by Harwood & Hardcastle (2012) indicate no gy to lower frequency photons (radio-IR-optical-UV) statistically significant correlations between the prop- erties of the host galaxy and the jet, but show that the luminosity of X-ray jets scales linearly with the jet radio luminosity and that the X-ray spectral slope is relat- ed to both X-ray and radio lumi- nosity of the jet. Since the X-ray emission in these jets is due to synchrotron processes, the par- ticle acceleration mechanisms could be tested, but the sample of the suitable FRI jets is still limited. Harris, Massaro and Cheung compiled a list of all X-ray jets detected with Chan- dra and made the radio and X-ray data available on the web page: http://hea-www.harvard. edu/XJET/. They (Massaro et al. 2011) used these data to de- scribe statistical properties of Fig. 1 — M87 jet in three bands, rotated to be horizontal (from Marshall et al. all the detected X-ray jet fea- (2002)). Top: VLA image at 14.435 GHz with spatial resolution ~ 0.2′′. Second tures, knots, hot spots, diffuse panel: The HST Planetary Camera image in the F814W filter from Perlman et al. (2001). Third panel: Adaptively smoothed Chandra X-ray image. Lower panel: jet emission.
Recommended publications
  • The Morphology of Minor Axis Gaseous Outflows in Edge-On Seyfert Galaxies
    A&A 464, 541–552 (2007) Astronomy DOI: 10.1051/0004-6361:20065454 & c ESO 2007 Astrophysics The morphology of minor axis gaseous outflows in edge-on Seyfert galaxies, T. P. Robitaille1,, J. Rossa2,3,D.J.Bomans4,andR.P.vanderMarel2 1 SUPA, School of Physics and Astronomy, University of St. Andrews, North Haugh, KY16 9SS St. Andrews, UK e-mail: [email protected] 2 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA e-mail: [email protected] 3 Department of Astronomy, University of Florida, 211 Bryant Space Science Center, PO Box 112055, Gainesville, FL 32611, USA e-mail: [email protected] 4 Astronomisches Institut, Ruhr-Universität Bochum, Universitätsstrasse 150/NA7, 44780 Bochum, Germany e-mail: [email protected] Received 18 April 2006 / Accepted 20 December 2006 ABSTRACT Context. Spiral galaxies often have extended outflows that permeate beyond the region of the disk. Such outflows have been seen both in starburst galaxies, actively star forming galaxies and galaxies with an AGN. In the latter galaxies it is unknown whether the large-scale outflows are driven by star formation activity or purely by the active nucleus. Aims. The aim of our investigation is to study the frequency of extended minor-axis outflows in edge-on Seyfert galaxies to investigate the role of the AGN, the circumnuclear environment and star formation activity within the disk regions, and their importance for IGM enrichment on large scales. Methods. We obtained optical narrowband imaging observations of a distance limited, northern hemisphere sample of 14 edge-on Seyfert spiral galaxies.
    [Show full text]
  • On the Nature of Filaments of the Large-Scale Structure of the Universe Irina Rozgacheva, I Kuvshinova
    On the nature of filaments of the large-scale structure of the Universe Irina Rozgacheva, I Kuvshinova To cite this version: Irina Rozgacheva, I Kuvshinova. On the nature of filaments of the large-scale structure of the Universe. 2018. hal-01962100 HAL Id: hal-01962100 https://hal.archives-ouvertes.fr/hal-01962100 Preprint submitted on 20 Dec 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. On the nature of filaments of the large-scale structure of the Universe I. K. Rozgachevaa, I. B. Kuvshinovab All-Russian Institute for Scientific and Technical Information of Russian Academy of Sciences (VINITI RAS), Moscow, Russia e-mail: [email protected], [email protected] Abstract Observed properties of filaments which dominate in large-scale structure of the Universe are considered. A part from these properties isn’t described within the standard ΛCDM cosmological model. The “toy” model of forma- tion of primary filaments owing to the primary scalar and vector gravitational perturbations in the uniform and isotropic cosmological model which is filled with matter with negligible pressure, without use of a hypothesis of tidal interaction of dark matter halos is offered.
    [Show full text]
  • INTEGRAL View Of
    INTEGRAL view of AGN Angela Maliziaa,∗, Sergey Sazonovb, Loredana Bassania, Elena Piana, Volker Beckmannc, Manuela Molinaa, Ilya Mereminskiyb, Guillaume Belangerd aOAS-INAF, Via P. Gobetti 101, 40129 Bologna, Italy bSpace Research Institute, Russian Academy of Sciences, Profsoyuznaya 84/32, 117997 Moscow, Russia cInstitut National de Physique Nuclaire et de Physique des Particules (IN2P3) CNRS, Paris, France dESA/ESAC, Camino Bajo del Castillo, 28692 Villanueva de la Canada, Madrid, Spain Abstract AGN are among the most energetic phenomena in the Universe and in the last two decades INTEGRAL’s contribution in their study has had a significant impact. Thanks to the INTEGRAL extragalactic sky surveys, all classes of soft X-ray detected (in the 2-10 keV band) AGN have been observed at higher energies as well. Up to now, around 450 AGN have been catalogued and a conspicuous part of them are either objects observed at high-energies for the first time or newly discovered AGN. The high-energy domain (20-200 keV) represents an important window for spectral studies of AGN and it is also the most appropriate for AGN population studies, since it is almost unbiased against obscuration and therefore free of the limitations which affect surveys at other frequencies. Over the years, INTEGRAL data have allowed to characterise AGN spectra at high energies, to investigate their absorption properties, to test the AGN unification scheme and to perform population studies. In this review the main results are reported and INTEGRAL’s contribution to AGN science is highlighted for each class of AGN. Finally, new perspectives are provided, connecting INTEGRAL’s science with that at other wavelengths and in particular to the GeV/TeV regime which is still poorly explored.
    [Show full text]
  • Galaxies: Outstanding Problems and Instrumental Prospects for the Coming Decade (A Review)* T (Cosmology/History of Astronomy/Quasars/Space) JEREMIAH P
    Proc. Natl. Acad. Sci. USA Vol. 74, No. 5, pp. 1767-1774, May 1977 Astronomy Galaxies: Outstanding problems and instrumental prospects for the coming decade (A Review)* t (cosmology/history of astronomy/quasars/space) JEREMIAH P. OSTRIKER Princeton University Observatory, Peyton Hall, Princeton, New Jersey 08540 Contributed by Jeremiah P. Ostriker, February 3, 1977 ABSTRACT After a review of the discovery of external It is more than a little astonishing that in the early part of this galaxies and the early classification of these enormous aggre- century it was the prevailing scientific view that man lived in gates of stars into visually recognizable types, a new classifi- a universe centered about himself; by 1920 the sun's newly cation scheme is suggested based on a measurable physical quantity, the luminosity of the spheroidal component. It is ar- discovered, slightly off-center position was still controversial. gued that the new one-parameter scheme may correlate well The discovery was, ironically, due to Shapley. both with existing descriptive labels and with underlying A little background to this debate may be useful. The Island physical reality. Universe hypothesis was not new, having been proposed 170 Two particular problems in extragalactic research are isolated years previously by the English astronomer, Thomas Wright as currently most fundamental. (i) A significant fraction of the (2), and developed with remarkably prescience by Emmanuel energy emitted by active galaxies (approximately 1% of all galaxies) is emitted by very small central regions largely in parts Kant, who wrote (see refs. 10 and 23 in ref. 3) in 1755 (in a of the spectrum (microwave, infrared, ultraviolet and x-ray translation from Edwin Hubble).
    [Show full text]
  • Monthly Newsletter of the Durban Centre - March 2018
    Page 1 Monthly Newsletter of the Durban Centre - March 2018 Page 2 Table of Contents Chairman’s Chatter …...…………………….……….………..….…… 3 Andrew Gray …………………………………………...………………. 5 The Hyades Star Cluster …...………………………….…….……….. 6 At the Eye Piece …………………………………………….….…….... 9 The Cover Image - Antennae Nebula …….……………………….. 11 Galaxy - Part 2 ….………………………………..………………….... 13 Self-Taught Astronomer …………………………………..………… 21 The Month Ahead …..…………………...….…….……………..…… 24 Minutes of the Previous Meeting …………………………….……. 25 Public Viewing Roster …………………………….……….…..……. 26 Pre-loved Telescope Equipment …………………………...……… 28 ASSA Symposium 2018 ………………………...……….…......…… 29 Member Submissions Disclaimer: The views expressed in ‘nDaba are solely those of the writer and are not necessarily the views of the Durban Centre, nor the Editor. All images and content is the work of the respective copyright owner Page 3 Chairman’s Chatter By Mike Hadlow Dear Members, The third month of the year is upon us and already the viewing conditions have been more favourable over the last few nights. Let’s hope it continues and we have clear skies and good viewing for the next five or six months. Our February meeting was well attended, with our main speaker being Dr Matt Hilton from the Astrophysics and Cosmology Research Unit at UKZN who gave us an excellent presentation on gravity waves. We really have to be thankful to Dr Hilton from ACRU UKZN for giving us his time to give us presentations and hope that we can maintain our relationship with ACRU and that we can draw other speakers from his colleagues and other research students! Thanks must also go to Debbie Abel and Piet Strauss for their monthly presentations on NASA and the sky for the following month, respectively.
    [Show full text]
  • 16Th HEAD Meeting Session Table of Contents
    16th HEAD Meeting Sun Valley, Idaho – August, 2017 Meeting Abstracts Session Table of Contents 99 – Public Talk - Revealing the Hidden, High Energy Sun, 204 – Mid-Career Prize Talk - X-ray Winds from Black Rachel Osten Holes, Jon Miller 100 – Solar/Stellar Compact I 205 – ISM & Galaxies 101 – AGN in Dwarf Galaxies 206 – First Results from NICER: X-ray Astrophysics from 102 – High-Energy and Multiwavelength Polarimetry: the International Space Station Current Status and New Frontiers 300 – Black Holes Across the Mass Spectrum 103 – Missions & Instruments Poster Session 301 – The Future of Spectral-Timing of Compact Objects 104 – First Results from NICER: X-ray Astrophysics from 302 – Synergies with the Millihertz Gravitational Wave the International Space Station Poster Session Universe 105 – Galaxy Clusters and Cosmology Poster Session 303 – Dissertation Prize Talk - Stellar Death by Black 106 – AGN Poster Session Hole: How Tidal Disruption Events Unveil the High 107 – ISM & Galaxies Poster Session Energy Universe, Eric Coughlin 108 – Stellar Compact Poster Session 304 – Missions & Instruments 109 – Black Holes, Neutron Stars and ULX Sources Poster 305 – SNR/GRB/Gravitational Waves Session 306 – Cosmic Ray Feedback: From Supernova Remnants 110 – Supernovae and Particle Acceleration Poster Session to Galaxy Clusters 111 – Electromagnetic & Gravitational Transients Poster 307 – Diagnosing Astrophysics of Collisional Plasmas - A Session Joint HEAD/LAD Session 112 – Physics of Hot Plasmas Poster Session 400 – Solar/Stellar Compact II 113
    [Show full text]
  • Nd AAS Meeting Abstracts
    nd AAS Meeting Abstracts 101 – Kavli Foundation Lectureship: The Outreach Kepler Mission: Exoplanets and Astrophysics Search for Habitable Worlds 200 – SPD Harvey Prize Lecture: Modeling 301 – Bridging Laboratory and Astrophysics: 102 – Bridging Laboratory and Astrophysics: Solar Eruptions: Where Do We Stand? Planetary Atoms 201 – Astronomy Education & Public 302 – Extrasolar Planets & Tools 103 – Cosmology and Associated Topics Outreach 303 – Outer Limits of the Milky Way III: 104 – University of Arizona Astronomy Club 202 – Bridging Laboratory and Astrophysics: Mapping Galactic Structure in Stars and Dust 105 – WIYN Observatory - Building on the Dust and Ices 304 – Stars, Cool Dwarfs, and Brown Dwarfs Past, Looking to the Future: Groundbreaking 203 – Outer Limits of the Milky Way I: 305 – Recent Advances in Our Understanding Science and Education Overview and Theories of Galactic Structure of Star Formation 106 – SPD Hale Prize Lecture: Twisting and 204 – WIYN Observatory - Building on the 308 – Bridging Laboratory and Astrophysics: Writhing with George Ellery Hale Past, Looking to the Future: Partnerships Nuclear 108 – Astronomy Education: Where Are We 205 – The Atacama Large 309 – Galaxies and AGN II Now and Where Are We Going? Millimeter/submillimeter Array: A New 310 – Young Stellar Objects, Star Formation 109 – Bridging Laboratory and Astrophysics: Window on the Universe and Star Clusters Molecules 208 – Galaxies and AGN I 311 – Curiosity on Mars: The Latest Results 110 – Interstellar Medium, Dust, Etc. 209 – Supernovae and Neutron
    [Show full text]
  • Active Galactic Nuclei - Suzy Collin, Bożena Czerny
    ASTRONOMY AND ASTROPHYSICS - Active Galactic Nuclei - Suzy Collin, Bożena Czerny ACTIVE GALACTIC NUCLEI Suzy Collin LUTH, Observatoire de Paris, CNRS, Université Paris Diderot; 5 Place Jules Janssen, 92190 Meudon, France Bożena Czerny N. Copernicus Astronomical Centre, Bartycka 18, 00-716 Warsaw, Poland Keywords: quasars, Active Galactic Nuclei, Black holes, galaxies, evolution Content 1. Historical aspects 1.1. Prehistory 1.2. After the Discovery of Quasars 1.3. Accretion Onto Supermassive Black Holes: Why It Works So Well? 2. The emission properties of radio-quiet quasars and AGN 2.1. The Broad Band Spectrum: The “Accretion Emission" 2.2. Optical, Ultraviolet, and X-Ray Emission Lines 2.3. Ultraviolet and X-Ray Absorption Lines: The Wind 2.4. Variability 3. Related objects and Unification Scheme 3.1. The “zoo" of AGN 3.2. The “Line of View" Unification: Radio Galaxies and Radio-Loud Quasars, Blazars, Seyfert 1 and 2 3.2.1. Radio Loud Quasars and AGN: The Jet and the Gamma Ray Emission 3.3. Towards Unification of Radio-Loud and Radio-Quiet Objects? 3.4. The “Accretion Rate" Unification: Low and High Luminosity AGN 4. Evolution of black holes 4.1. Supermassive Black Holes in Quasars and AGN 4.2. Supermassive Black Holes in Quiescent Galaxies 5. Linking the growth of black holes to galaxy evolution 6. Conclusions Acknowledgements GlossaryUNESCO – EOLSS Bibliography Biographical Sketches SAMPLE CHAPTERS Summary We recall the discovery of quasars and the long time it took (about 15 years) to build a theoretical framework for these objects, as well as for their local less luminous counterparts, Active Galactic Nuclei (AGN).
    [Show full text]
  • Observational Cosmology - 30H Course 218.163.109.230 Et Al
    Observational cosmology - 30h course 218.163.109.230 et al. (2004–2014) PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Thu, 31 Oct 2013 03:42:03 UTC Contents Articles Observational cosmology 1 Observations: expansion, nucleosynthesis, CMB 5 Redshift 5 Hubble's law 19 Metric expansion of space 29 Big Bang nucleosynthesis 41 Cosmic microwave background 47 Hot big bang model 58 Friedmann equations 58 Friedmann–Lemaître–Robertson–Walker metric 62 Distance measures (cosmology) 68 Observations: up to 10 Gpc/h 71 Observable universe 71 Structure formation 82 Galaxy formation and evolution 88 Quasar 93 Active galactic nucleus 99 Galaxy filament 106 Phenomenological model: LambdaCDM + MOND 111 Lambda-CDM model 111 Inflation (cosmology) 116 Modified Newtonian dynamics 129 Towards a physical model 137 Shape of the universe 137 Inhomogeneous cosmology 143 Back-reaction 144 References Article Sources and Contributors 145 Image Sources, Licenses and Contributors 148 Article Licenses License 150 Observational cosmology 1 Observational cosmology Observational cosmology is the study of the structure, the evolution and the origin of the universe through observation, using instruments such as telescopes and cosmic ray detectors. Early observations The science of physical cosmology as it is practiced today had its subject material defined in the years following the Shapley-Curtis debate when it was determined that the universe had a larger scale than the Milky Way galaxy. This was precipitated by observations that established the size and the dynamics of the cosmos that could be explained by Einstein's General Theory of Relativity.
    [Show full text]
  • Two Emission Line Objects with Z > 0.2 in the Optical Filament Apparently
    Astronomy & Astrophysics manuscript no. (will be inserted by hand later) Two emission line objects with z > 0.2 in the optical filament apparently connecting the Seyfert galaxy NGC 7603 to its companion M. L´opez-Corredoira1,2 and Carlos M. Guti´errez1 1 Instituto de Astrof´ısica de Canarias, E-38200 La Laguna, Tenerife, Spain 2 Astronomisches Institut der Universit¨at Basel, Venusstrasse 7, CH-4102 Binningen, Switzerland Received xxxx / Accepted xxxx Abstract. We present new spectroscopic observations of an old case of anomalous redshift—NGC 7603 and its companion. The redshifts of the two galaxies which are apparently connected by a luminous filament are z = 0.029 and z = 0.057 respectively. We show that in the luminous filament there are two compact emission line objects with z = 0.243 and z = 0.391. They lie exactly on the line traced by the filament connecting the galaxies. As far as we are aware, this is the most impressive case of a system of anomalous redshifts discovered so far. Key words. Galaxies: individual: NGC 7603 — quasars: general — Galaxies: statistics — Galaxies: peculiar — distance scale 1. Introduction mine the redshifts of the two observed knots (Arp 1971) (objects 2 and 3) in the filament. For some time after the Thirty years ago it was shown that NGC 7603 (Mrk 530, discovery of the system, attempts were made to obtain Arp 92) is a remarkable example of an anomalous redshift spectra of the objects in the bridge, but because of limi- association (Arp 1971). NGC 7603 is a Seyfert 1 galaxy tations of the equipment available in the 1970s, none was with strong spectral variability (Kollatschny et al.
    [Show full text]
  • Map of the Huge-LQG Noted by Black Circles, Adjacent to the ClowesCampusan O LQG in Red Crosses
    Huge-LQG From Wikipedia, the free encyclopedia Map of Huge-LQG Quasar 3C 273 Above: Map of the Huge-LQG noted by black circles, adjacent to the ClowesCampusan o LQG in red crosses. Map is by Roger Clowes of University of Central Lancashire . Bottom: Image of the bright quasar 3C 273. Each black circle and red cross on the map is a quasar similar to this one. The Huge Large Quasar Group, (Huge-LQG, also called U1.27) is a possible structu re or pseudo-structure of 73 quasars, referred to as a large quasar group, that measures about 4 billion light-years across. At its discovery, it was identified as the largest and the most massive known structure in the observable universe, [1][2][3] though it has been superseded by the Hercules-Corona Borealis Great Wa ll at 10 billion light-years. There are also issues about its structure (see Dis pute section below). Contents 1 Discovery 2 Characteristics 3 Cosmological principle 4 Dispute 5 See also 6 References 7 Further reading 8 External links Discovery[edit] Roger G. Clowes, together with colleagues from the University of Central Lancash ire in Preston, United Kingdom, has reported on January 11, 2013 a grouping of q uasars within the vicinity of the constellation Leo. They used data from the DR7 QSO catalogue of the comprehensive Sloan Digital Sky Survey, a major multi-imagi ng and spectroscopic redshift survey of the sky. They reported that the grouping was, as they announced, the largest known structure in the observable universe. The structure was initially discovered in November 2012 and took two months of verification before its announcement.
    [Show full text]
  • Evidence for the Alignment of Quasar Radio Polarizations with Large Quasar Group Axes V
    Astronomy & Astrophysics manuscript no. aa26979-15 c ESO 2016 April 13, 2016 Evidence for the alignment of quasar radio polarizations with large quasar group axes V. Pelgrims1 and D. Hutsemékers1,2 1 IFPA, AGO Dept., University of Liège, B4000 Liège, Belgium e-mail: [email protected] 2 AEOS, AGO Dept., University of Liège, B4000 Liège, Belgium e-mail: [email protected] Received 16 July 2015 / Accepted April 2016 ABSTRACT Recently, evidence has been presented for the polarization vectors from quasars to preferentially align with the axes of the large quasar groups (LQG) to which they belong. This report was based on observations made at optical wavelengths for two large quasar groups at redshift ∼ 1:3. The correlation suggests that the spin axes of quasars preferentially align with their surrounding large-scale structure that is assumed to be traced by the LQGs. Here, we consider a large sample of LQGs built from the Sloan Digital Sky Survey DR7 quasar catalogue in the redshift range 1:0 − 1:8. For quasars embedded in this sample, we collected radio polarization measurements with the goal to study possible correlations between quasar polarization vectors and the major axis of their host LQGs. Assuming the radio polarization vector is perpendicular to the quasar spin axis, we found that the quasar spin axis is preferentially parallel to the LQG major axis inside LQGs that have at least 20 members. This result independently supports the observations at optical wavelengths. We additionally found that when the richness of an LQG decreases, the quasar spin axis becomes preferentially perpendicular to the LQG major axis and that no correlation is detected for quasar groups with fewer than 10 members.
    [Show full text]