Consistent Young Earth Relativistic Cosmology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Inhomogeneous Cosmology with Numerical Relativity
PHYSICAL REVIEW D 95, 064028 (2017) Inhomogeneous cosmology with numerical relativity Hayley J. Macpherson,* Paul D. Lasky, and Daniel J. Price Monash Centre for Astrophysics and School of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia (Received 16 November 2016; published 17 March 2017) We perform three-dimensional numerical relativity simulations of homogeneous and inhomogeneous expanding spacetimes, with a view toward quantifying nonlinear effects from cosmological inhomoge- neities. We demonstrate fourth-order convergence with errors less than one part in 106 in evolving a flat, dust Friedmann-Lemaître-Roberston-Walker spacetime using the Einstein Toolkit within the Cactus framework. We also demonstrate agreement to within one part in 103 between the numerical relativity solution and the linear solution for density, velocity and metric perturbations in the Hubble flow over a factor of ∼350 change in scale factor (redshift). We simulate the growth of linear perturbations into the nonlinear regime, where effects such as gravitational slip and tensor perturbations appear. We therefore show that numerical relativity is a viable tool for investigating nonlinear effects in cosmology. DOI: 10.1103/PhysRevD.95.064028 I. INTRODUCTION spacetimes [41], the propagation and collision of gravita- tional wave perturbations [42,43] and linearized perturba- Modern cosmology relies on the cosmological principle— tions to a homogeneous spacetime [44,45]. More recent that the Universe is sufficiently homogeneous and isotropic work has continued to include symmetries to simplify the on large scales to be described by a Friedmann-Lemaître- numerical calculations, e.g. Refs. [46,47]. Robertson-Walker (FLRW) model. Cosmological N-body Simulations free of these symmetries have only emerged simulations, e.g. -
Spectral Distortion in a Radially Inhomogeneous Cosmology
Dartmouth College Dartmouth Digital Commons Dartmouth Scholarship Faculty Work 11-5-2013 Spectral Distortion in a Radially Inhomogeneous Cosmology R. R. Caldwell Dartmouth College N. A. Maksimova Dartmouth College Follow this and additional works at: https://digitalcommons.dartmouth.edu/facoa Part of the Cosmology, Relativity, and Gravity Commons Dartmouth Digital Commons Citation Caldwell, R. R. and Maksimova, N. A., "Spectral Distortion in a Radially Inhomogeneous Cosmology" (2013). Dartmouth Scholarship. 1962. https://digitalcommons.dartmouth.edu/facoa/1962 This Article is brought to you for free and open access by the Faculty Work at Dartmouth Digital Commons. It has been accepted for inclusion in Dartmouth Scholarship by an authorized administrator of Dartmouth Digital Commons. For more information, please contact [email protected]. Spectral Distortion in a Radially Inhomogeneous Cosmology R. R. Caldwell1 and N. A. Maksimova1 1Department of Physics & Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, NH 03755 USA (Dated: October 16, 2013) The spectral distortion of the cosmic microwave background blackbody spectrum in a radially inhomogeneous spacetime, designed to exactly reproduce a ΛCDM expansion history along the past light cone, is shown to exceed the upper bound established by COBE-FIRAS by a factor of approximately 3700. This simple observational test helps uncover a slew of pathological features that lie hidden inside the past light cone, including a radially contracting phase at decoupling and, if followed to its logical extreme, a naked singularity at the radially inhomogeneous Big Bang. I. INTRODUCTION Is the Universe playing fair with us? Are the laws of physics and the structure of space-time the same everywhere? It is a fundamental tenet of the Standard Cosmological Model that the answer is yes. -
The Local Value of H0 in an Inhomogeneous Universe
Prepared for submission to JCAP The local value of H0 in an inhomogeneous universe I. Odderskov,a S. M. Koksbang,a S. Hannestad,a aDepartment of Physics and Astronomy University of Aarhus, Ny Munkegade, Aarhus C, Denmark E-mail: [email protected], [email protected], [email protected] Abstract. The effects of local inhomogeneities on low redshift H0 determinations are studied by estimating the redshift-distance relation of mock sources in N-body simulations. The results are compared to those obtained using the standard approach based on Hubble's law. The comparison shows a clear tendency for the standard approach to yield lower values of H0 than the approach based on the scheme using light rays. The difference is, however, small. More precisely, it is found that the overall effect of inhomogeneities on the determination of H0 is a small increase in the local estimates of about 0:3% compared to the results obtained with Hubble's law, when based on a typical distribution of supernovae in the redshift range 0:01 < z < 0:1. The overall conclusion of the study is a verification of the results that have earlier been obtained by using Hubble's law: The effects of inhomogeneities on local H0 estimates are not significant enough to make it plausible that differences in high- and low-redshift estimates of H0 are due to small inhomogeneities within the setting of standard cosmology. arXiv:1601.07356v2 [astro-ph.CO] 28 Jan 2016 Contents 1 Introduction1 2 Method for computing redshift-distance relations in N-body simulations at low redshift2 3 Mock observations4 3.1 Redshift distribution of sources4 3.2 Observers5 3.3 Lightcone snapshots6 3.4 Summary6 4 Results and discussion7 5 Summary 10 6 Acknowledgments 10 1 Introduction Overall, the ΛCDM model is consistent with observations at a remarkable level considering the model's simplicity compared to the real, inhomogeneous universe. -
Inhomogeneous Cosmological Models and Averaging in Cosmology: Overview
Home Search Collections Journals About Contact us My IOPscience Inhomogeneous cosmological models and averaging in cosmology: overview This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2011 Class. Quantum Grav. 28 160301 (http://iopscience.iop.org/0264-9381/28/16/160301) View the table of contents for this issue, or go to the journal homepage for more Download details: IP Address: 194.94.224.254 The article was downloaded on 11/01/2012 at 09:53 Please note that terms and conditions apply. IOP PUBLISHING CLASSICAL AND QUANTUM GRAVITY Class. Quantum Grav. 28 (2011) 160301 (7pp) doi:10.1088/0264-9381/28/16/160301 EDITORIAL Inhomogeneous cosmological models and averaging in cosmology: overview 1. Introduction Cosmological observational data [1]1, when fitted using models based on the assumption of a spatially homogeneous and isotropic Friedmann–Lemaˆıtre–Robertson–Walker (FLRW) model plus small perturbations, are usually interpreted as implying that the spatial geometry is flat, there is currently an accelerated expansion and the majority of the matter in the Universe is dark, non-baryonic and cold, giving rise to the so-called CDM-concordance model (where the dark energy is interpreted as a positive cosmological constant ). The concordance model of cosmology is now operating on a well-established and tightly constrained empirical basis. However, although the concordance CDM model is remarkably successful, there does exist significant tensions between the data and the model [2]. Furthermore, if our Universe is not a perturbation of an exact flat FLRW solution, the conventional data analyses and their interpretation are not necessarily valid [3]. -
Observational Cosmology - 30H Course 218.163.109.230 Et Al
Observational cosmology - 30h course 218.163.109.230 et al. (2004–2014) PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Thu, 31 Oct 2013 03:42:03 UTC Contents Articles Observational cosmology 1 Observations: expansion, nucleosynthesis, CMB 5 Redshift 5 Hubble's law 19 Metric expansion of space 29 Big Bang nucleosynthesis 41 Cosmic microwave background 47 Hot big bang model 58 Friedmann equations 58 Friedmann–Lemaître–Robertson–Walker metric 62 Distance measures (cosmology) 68 Observations: up to 10 Gpc/h 71 Observable universe 71 Structure formation 82 Galaxy formation and evolution 88 Quasar 93 Active galactic nucleus 99 Galaxy filament 106 Phenomenological model: LambdaCDM + MOND 111 Lambda-CDM model 111 Inflation (cosmology) 116 Modified Newtonian dynamics 129 Towards a physical model 137 Shape of the universe 137 Inhomogeneous cosmology 143 Back-reaction 144 References Article Sources and Contributors 145 Image Sources, Licenses and Contributors 148 Article Licenses License 150 Observational cosmology 1 Observational cosmology Observational cosmology is the study of the structure, the evolution and the origin of the universe through observation, using instruments such as telescopes and cosmic ray detectors. Early observations The science of physical cosmology as it is practiced today had its subject material defined in the years following the Shapley-Curtis debate when it was determined that the universe had a larger scale than the Milky Way galaxy. This was precipitated by observations that established the size and the dynamics of the cosmos that could be explained by Einstein's General Theory of Relativity. -
Orders of Magnitude (Length) - Wikipedia
03/08/2018 Orders of magnitude (length) - Wikipedia Orders of magnitude (length) The following are examples of orders of magnitude for different lengths. Contents Overview Detailed list Subatomic Atomic to cellular Cellular to human scale Human to astronomical scale Astronomical less than 10 yoctometres 10 yoctometres 100 yoctometres 1 zeptometre 10 zeptometres 100 zeptometres 1 attometre 10 attometres 100 attometres 1 femtometre 10 femtometres 100 femtometres 1 picometre 10 picometres 100 picometres 1 nanometre 10 nanometres 100 nanometres 1 micrometre 10 micrometres 100 micrometres 1 millimetre 1 centimetre 1 decimetre Conversions Wavelengths Human-defined scales and structures Nature Astronomical 1 metre Conversions https://en.wikipedia.org/wiki/Orders_of_magnitude_(length) 1/44 03/08/2018 Orders of magnitude (length) - Wikipedia Human-defined scales and structures Sports Nature Astronomical 1 decametre Conversions Human-defined scales and structures Sports Nature Astronomical 1 hectometre Conversions Human-defined scales and structures Sports Nature Astronomical 1 kilometre Conversions Human-defined scales and structures Geographical Astronomical 10 kilometres Conversions Sports Human-defined scales and structures Geographical Astronomical 100 kilometres Conversions Human-defined scales and structures Geographical Astronomical 1 megametre Conversions Human-defined scales and structures Sports Geographical Astronomical 10 megametres Conversions Human-defined scales and structures Geographical Astronomical 100 megametres 1 gigametre -
Observational Tests of Backreaction with Recent Data
Journal of Cosmology and Astroparticle Physics Related content - Tension in the void: cosmic rulers strain Observational tests of backreaction with recent inhomogeneous cosmologies Miguel Zumalacárregui, Juan García- data Bellido and Pilar Ruiz-Lapuente - The cosmic microwave background in an inhomogeneous universe To cite this article: Matteo Chiesa et al JCAP12(2014)049 Chris Clarkson and Marco Regis - Testing the void against cosmological data: fitting CMB, BAO, SN and H0 Tirthabir Biswas, Alessio Notari and Wessel Valkenburg View the article online for updates and enhancements. Recent citations - The background Friedmannian Hubble constant in relativistic inhomogeneous cosmology and the age of the Universe Boudewijn F. Roukema et al - Averaged Lemaître–Tolman–Bondi dynamics Eddy G Chirinos Isidro et al - Angular distribution of cosmological parameters as a probe of space-time inhomogeneities C. Sofia Carvalho and Katrine Marques This content was downloaded from IP address 131.169.4.70 on 28/11/2017 at 11:25 ournal of Cosmology and Astroparticle Physics JAn IOP and SISSA journal Observational tests of backreaction with recent data JCAP12(2014)049 Matteo Chiesa,a,b Davide Mainoa and Elisabetta Majerottoc,b aUniversity of Milan, Physics Department, via Giovanni Celoria 16, Milan, Italy bINAF-Osservatorio Astronomico di Brera, via Emilio Bianchi 46, Merate, Italy cDepartamento de F´ısica Te´orica and Instituto de F´ısica Te´orica, Universidad Aut´onoma de Madrid IFT-UAM/CSIC, 28049 Cantoblanco, Madrid, Spain E-mail: [email protected], [email protected], [email protected] Received June 3, 2014 Revised November 7, 2014 Accepted November 28, 2014 Published December 22, 2014 Abstract. -
Arxiv:2007.04414V1 [Astro-Ph.CO] 8 Jul 2020 Bution of Matter on Large Scales Is Inferred from Tion)
Key words: large scale structure of universe | galaxies: distances and redshifts Draft version July 10, 2020 Typeset using LATEX preprint2 style in AASTeX62 Cosmicflows-3: The South Pole Wall Daniel Pomarede,` 1 R. Brent Tully,2 Romain Graziani,3 Hel´ ene` M. Courtois,4 Yehuda Hoffman,5 and Jer´ emy´ Lezmy4 1Institut de Recherche sur les Lois Fondamentales de l'Univers, CEA Universit´eParis-Saclay, 91191 Gif-sur-Yvette, France 2Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822, USA 3Laboratoire de Physique de Clermont, Universit Clermont Auvergne, Aubire, France 4University of Lyon, UCB Lyon 1, CNRS/IN2P3, IUF, IP2I Lyon, France 5Racah Institute of Physics, Hebrew University, Jerusalem, 91904 Israel ABSTRACT Velocity and density field reconstructions of the volume of the universe within 0:05c derived from the Cosmicflows-3 catalog of galaxy distances has revealed the presence of a filamentary structure extending across ∼ 0:11c. The structure, at a characteristic redshift of 12,000 km s−1, has a density peak coincident with the celestial South Pole. This structure, the largest contiguous feature in the local volume and comparable to the Sloan Great Wall at half the distance, is given the name the South Pole Wall. 1. INTRODUCTION ble of measurements: to a first approximation The South Pole Wall rivals the Sloan Great Vpec = Vobs − H0d. Although uncertainties with Wall in extent, at a distance a factor two individual galaxies are large, the analysis bene- closer. The iconic structures that have trans- fits from the long range correlated nature of the formed our understanding of large scale struc- cosmic flow, allowing the reconstruction of the ture have come from the observed distribution 3D velocity field from noisy, finite and incom- of galaxies assembled from redshift surveys: the plete data (Zaroubi et al. -