Holomorphic Embedding of Complex Curves in Spaces of Constant Holomorphic Curvature (Wirtinger's Theorem/Kaehler Manifold/Riemann Surfaces) ISSAC CHAVEL and HARRY E

Total Page:16

File Type:pdf, Size:1020Kb

Holomorphic Embedding of Complex Curves in Spaces of Constant Holomorphic Curvature (Wirtinger's Theorem/Kaehler Manifold/Riemann Surfaces) ISSAC CHAVEL and HARRY E Proc. Nat. Acad. Sci. USA Vol. 69, No. 3, pp. 633-635, March 1972 Holomorphic Embedding of Complex Curves in Spaces of Constant Holomorphic Curvature (Wirtinger's theorem/Kaehler manifold/Riemann surfaces) ISSAC CHAVEL AND HARRY E. RAUCH* The City College of The City University of New York and * The Graduate Center of The City University of New York, 33 West 42nd St., New York, N.Y. 10036 Communicated by D. C. Spencer, December 21, 1971 ABSTRACT A special case of Wirtinger's theorem ever, the converse is not true in general: the complex curve asserts that a complex curve (two-dimensional) hob-o embedded as a real minimal surface is not necessarily holo- morphically embedded in a Kaehler manifold is a minimal are obstructions. With the by morphically embedded-there surface. The converse is not necessarily true. Guided that we view the considerations from the theory of moduli of Riemann moduli problem in mind, this fact suggests surfaces, we discover (among other results) sufficient embedding of our complex curve as a real minimal surface topological aind differential-geometric conditions for a in a Kaehler manifold as the solution to the differential-geo- minimal (Riemannian) immersion of a 2-manifold in for our present mapping problem metric metric extremal problem complex projective space with the Fubini-Study as our infinitesimal moduli, differential- to be holomorphic. and that we then seek, geometric invariants on the curve whose vanishing forms neces- sary and sufficient conditions for the minimal embedding to be INTRODUCTION AND MOTIVATION holomorphic. Going further, we observe that minimal surface It is known [1-5] how Riemann's conception of moduli for con- evokes the notion of second fundamental forms; while the formal mapping of homeomorphic, multiply connected Rie- moduli problem, again, suggests quadratic differentials. mann surfaces on one another led to the conception of moduli, Hence, as our differential-geometric invariants, we seek qua- or, better, infinitesimal moduli, as obstacles or obstructions dratic differentials on the curve generated by the second funda- to the realization of such a map between two given surfaces. mental forms of the embedding. In another, simpler, context The question arises quite naturally as to whether analogous Heinz Hopf [7] has done this. phenomena occur in other, in a certain sense naturally re- Adopting an experimental approach, we take the simplest lated, mapping problems. examples for our Kaehler manifold, namely, those with con- Certainly a related problem is that of attempting to map a stant holomorphic curvature. Anticipating the necessity for Riemann surface (complex curve) complex analytically into some topological restrictions, since no local differential geo- a higher-dimensional complex manifold. That there are some metric conditions could force some pieces of minimal surface sorts of obstructions arising in general is clear. The question to be holomorphically embedded, we consider as a principal that presents itself is whether the obstructions appear as example a compact curve. Also, in view of the minimal area infinitesimal moduli related to, or resembling those of, the character of the extremal problem, we then assume the image moduli problem of the first paragraph. is not homologous to zero, and we choose as the most inter- We recall that the infinitesimal moduli there are precisely esting case of the ambient manifold the complex projective the everywhere-finite complex analytic quadratic differentials space with the Fubini-Study metric. (real on any boundaries) on the Riemann surfaces. More Armed with these heuristic considerations, the reader is precisely: in attempting to construct the desired map of sur- better prepared for our main theorem below. See also Remark face one on surface two, we transform the problem into a dif- 2 at the end of that section. ferential-geometric extremal problem by putting a Riemannian metric, consistent with the complex structure, on surface MAIN THEOREM AND PROOF two; we then construct a map of one on two that is extremal for THEOREM. Let M"(x) be an n-(complex) dimensional some differential-geometric functional and find that the pull- Kaehlerian manifold of constant holomorphic curvature x, back to one of the metric on two generates a quadratic differ- M a connected orientable 2-(real) dimensional Riemannian ential as described. The extremal map represents the attempt; manifold, and f:M M"(x) a minimal Riemannian immer- the success or failure is determined by whether the quadratic sion. If x = 0, then the second fundamental form of M in differential vanishes identically or not. M"(x) is formally holomorphic (compare definition below) In references [2-4], the extremal problem was suggested by relative to the complex structure on M induced by its Rie- Douglas's solution of the Plateau problem, so that the notion mannian metric. If x 0 then the second fundamental form of minimal surface is evoked. of M in Mi(x) is formally holomorphic if and only if: either The relevance of all this to our new mapping problem be- at every point p of M J [the complex structure of M"(x) I comes clearer when we recall Wirtinger's theorem [6], a special takes the tangent space to f(M) at f(p) into its orthogonal case of which asserts that a holomorphically embedded com- complement in the tangent space to M"(x) at f(p), or for plex curve in a Kaehler manifold is a minimal surface. How- every point p of M J leaves the tangent space to f(M) at f(p) 633 Downloaded by guest on September 28, 2021 634 Mathematics: Chavel and Rauch Proc. Nat. Acad. Sci. USA 69 (1972) invariant, i.e., f(M) is a complex submanifold of M"(x). In structure, we have particular, if M'(x) is complex projective space with its Fubini-Study metric, and M is compact, connected, ori- k-wlhklaea = (1/2){ReW2(hi a- h22a - 2i~h2a) + entable, f:M -- CP, minimal such that f(M) is not homol- owC(hiia + h22a)Jea. ogous to zero, then the formal holomorphicity of the second fundamental form implies f(M) is a complex submanifold We henceforth assume that the immersion is minimal, i.e., of CP,. hi,,a + h22, = 0; therefore, Our proof is suggested by S. S. proof of a Chern's [8, 9] Wk1lh41a = {Re w2(hila'- ih,2i) lea, theorem of F. J. Almgren [10] and E. Calabi [11] that states that a minimal immersion of the 2-sphere into the standard i.e., the second fundamental form is the real part of a vector- 3-sphere of constant curvature 1 is totally geodesic. In par- valued quadratic differential. We define the second funda- ticular, we follow Chern's notation and leave it to the reader mental form to be formally holomorphic if to fill in the necessary details by reference to [8]. Our indices A,B,C,D will range from 1 to 2n; j,k,l from 1 to 2; a,#,'y from 0 co A (Dhiia - Dh,2,a) a 3, ... ., 2n 3 to 2n; and we always sum repeated indices unless otherwise on M. One easily checks that the formula is invariant under indicated. We now turn to the formulas needed for subsequent change of adapted frame. We remark that if we know a calculation. priori that M is holomorphically embedded, then formally Let {eA } denote a local orthonormal frame field on M"(x) holomorphic is holomorphic. with dual basis of local 1-forms {coI}W. The complex structure on M"(x) will be given locally by JeA = JABeB, where J2 = LEMMA. Forf:M -- M'(x) minimal we have -1, and J is orthogonal (in particular, J is skew-symmetric). (3x/4) (Jia - J12W1 A CW2 = W A (Dhiia - The Levi-Civita connection of M"(x) is given locally by a iJ2a) iDhl2a). unique skew-symmetric matrix of local 1-forms (COAB) which Proof: Set a. = Cla + ?W2a, Ha = hila + ih,21. Then by satisfy the equations (4,2,5) we have d&A = WB A WBA. (1) dw= iW12 A co The curvature matrix R&B = (-1/2)RBCDc A WD (where &a= -iC12 A Q, + Qu A cvw - RABCD + RABDC = 0) is skew-symmetric and satisfies the (3x/4) (Jia + iJ2a)Ji2,w A C02 (7) equations and the minimality of the immersion implies 12a = CoH, d4'AB = WAC A WCB + UAB, (2) which implies the of and metric, being constant holomorphic curvature x, is dua = iW12 A a - c-0 A dHa. (8) characterized by By substracting (8) from (7), we obtain RABCD = (X/4) (6AC5BD - 6AD5BC + 0 = o A dHa - 2iW2 A Qa + A wpa- JACJBD - JADJBC + 2JABJCD) (3) Up (3x/4)(Jha + iU2a)Ji2Wi A W2 Now let f:M - Mn(x) be an immersion. We then use adapted frames el, ..., e2. along f(M), i.e., along f(M) we - X A (dHa + 2iWi2Ha + Hpwpa) - assume eie2 are tangent to f(M), and e3, ..., e2,, are normal to (3x/4) (Jia + iU2a)Jl2Wl A f(M). Then on M (we do not indicate f* since there is no con- W02. fusion) we have 0 = w3 = ... = W2U = 0, which implies by Hence, taking conjugates, we get (1) 0 = W A (dfla - 2icviiHa + Harm) - dk= Wj A Wik (4) (3x/4)(Jia - iJ2c,)Jiic2 A W2 0 = Wj A Wia - W A (Dhila - Dhl2a) - (3x/4)(Ja -iJU2)Ji21W A W2 Therefore, by E. Cartan's lemma, wja can be written as by (6), and the lemma is proven. Wja = WkhCja Proof of the Theorem: If x = 0 then the theorem follows hkja = hika directly from the lemma. If x z 0 then the second funda- if and and is the second fundamental form of M in Mn(x).
Recommended publications
  • Riemann Surfaces
    RIEMANN SURFACES AARON LANDESMAN CONTENTS 1. Introduction 2 2. Maps of Riemann Surfaces 4 2.1. Defining the maps 4 2.2. The multiplicity of a map 4 2.3. Ramification Loci of maps 6 2.4. Applications 6 3. Properness 9 3.1. Definition of properness 9 3.2. Basic properties of proper morphisms 9 3.3. Constancy of degree of a map 10 4. Examples of Proper Maps of Riemann Surfaces 13 5. Riemann-Hurwitz 15 5.1. Statement of Riemann-Hurwitz 15 5.2. Applications 15 6. Automorphisms of Riemann Surfaces of genus ≥ 2 18 6.1. Statement of the bound 18 6.2. Proving the bound 18 6.3. We rule out g(Y) > 1 20 6.4. We rule out g(Y) = 1 20 6.5. We rule out g(Y) = 0, n ≥ 5 20 6.6. We rule out g(Y) = 0, n = 4 20 6.7. We rule out g(C0) = 0, n = 3 20 6.8. 21 7. Automorphisms in low genus 0 and 1 22 7.1. Genus 0 22 7.2. Genus 1 22 7.3. Example in Genus 3 23 Appendix A. Proof of Riemann Hurwitz 25 Appendix B. Quotients of Riemann surfaces by automorphisms 29 References 31 1 2 AARON LANDESMAN 1. INTRODUCTION In this course, we’ll discuss the theory of Riemann surfaces. Rie- mann surfaces are a beautiful breeding ground for ideas from many areas of math. In this way they connect seemingly disjoint fields, and also allow one to use tools from different areas of math to study them.
    [Show full text]
  • Complex Manifolds
    Complex Manifolds Lecture notes based on the course by Lambertus van Geemen A.A. 2012/2013 Author: Michele Ferrari. For any improvement suggestion, please email me at: [email protected] Contents n 1 Some preliminaries about C 3 2 Basic theory of complex manifolds 6 2.1 Complex charts and atlases . 6 2.2 Holomorphic functions . 8 2.3 The complex tangent space and cotangent space . 10 2.4 Differential forms . 12 2.5 Complex submanifolds . 14 n 2.6 Submanifolds of P ............................... 16 2.6.1 Complete intersections . 18 2 3 The Weierstrass }-function; complex tori and cubics in P 21 3.1 Complex tori . 21 3.2 Elliptic functions . 22 3.3 The Weierstrass }-function . 24 3.4 Tori and cubic curves . 26 3.4.1 Addition law on cubic curves . 28 3.4.2 Isomorphisms between tori . 30 2 Chapter 1 n Some preliminaries about C We assume that the reader has some familiarity with the notion of a holomorphic function in one complex variable. We extend that notion with the following n n Definition 1.1. Let f : C ! C, U ⊆ C open with a 2 U, and let z = (z1; : : : ; zn) be n the coordinates in C . f is holomorphic in a = (a1; : : : ; an) 2 U if f has a convergent power series expansion: +1 X k1 kn f(z) = ak1;:::;kn (z1 − a1) ··· (zn − an) k1;:::;kn=0 This means, in particular, that f is holomorphic in each variable. Moreover, we define OCn (U) := ff : U ! C j f is holomorphicg m A map F = (F1;:::;Fm): U ! C is holomorphic if each Fj is holomorphic.
    [Show full text]
  • Complex Cobordism and Almost Complex Fillings of Contact Manifolds
    MSci Project in Mathematics COMPLEX COBORDISM AND ALMOST COMPLEX FILLINGS OF CONTACT MANIFOLDS November 2, 2016 Naomi L. Kraushar supervised by Dr C Wendl University College London Abstract An important problem in contact and symplectic topology is the question of which contact manifolds are symplectically fillable, in other words, which contact manifolds are the boundaries of symplectic manifolds, such that the symplectic structure is consistent, in some sense, with the given contact struc- ture on the boundary. The homotopy data on the tangent bundles involved in this question is finding an almost complex filling of almost contact manifolds. It is known that such fillings exist, so that there are no obstructions on the tangent bundles to the existence of symplectic fillings of contact manifolds; however, so far a formal proof of this fact has not been written down. In this paper, we prove this statement. We use cobordism theory to deal with the stable part of the homotopy obstruction, and then use obstruction theory, and a variant on surgery theory known as contact surgery, to deal with the unstable part of the obstruction. Contents 1 Introduction 2 2 Vector spaces and vector bundles 4 2.1 Complex vector spaces . .4 2.2 Symplectic vector spaces . .7 2.3 Vector bundles . 13 3 Contact manifolds 19 3.1 Contact manifolds . 19 3.2 Submanifolds of contact manifolds . 23 3.3 Complex, almost complex, and stably complex manifolds . 25 4 Universal bundles and classifying spaces 30 4.1 Universal bundles . 30 4.2 Universal bundles for O(n) and U(n).............. 33 4.3 Stable vector bundles .
    [Show full text]
  • Cohomology of the Complex Grassmannian
    COHOMOLOGY OF THE COMPLEX GRASSMANNIAN JONAH BLASIAK Abstract. The Grassmannian is a generalization of projective spaces–instead of looking at the set of lines of some vector space, we look at the set of all n-planes. It can be given a manifold structure, and we study the cohomology ring of the Grassmannian manifold in the case that the vector space is complex. The mul- tiplicative structure of the ring is rather complicated and can be computed using the fact that for smooth oriented manifolds, cup product is Poincar´edual to intersection. There is some nice com- binatorial machinery for describing the intersection numbers. This includes the symmetric Schur polynomials, Young tableaux, and the Littlewood-Richardson rule. Sections 1, 2, and 3 introduce no- tation and the necessary topological tools. Section 4 uses linear algebra to prove Pieri’s formula, which describes the cup product of the cohomology ring in a special case. Section 5 describes the combinatorics and algebra that allow us to deduce all the multi- plicative structure of the cohomology ring from Pieri’s formula. 1. Basic properties of the Grassmannian The Grassmannian can be defined for a vector space over any field; the cohomology of the Grassmannian is the best understood for the complex case, and this is our focus. Following [MS], the complex Grass- m+n mannian Gn(C ) is the set of n-dimensional complex linear spaces, or n-planes for brevity, in the complex vector space Cm+n topologized n+m as follows: Let Vn(C ) denote the subspace of the n-fold direct sum Cm+n ⊕ ..
    [Show full text]
  • Notes on Riemann Surfaces
    NOTES ON RIEMANN SURFACES DRAGAN MILICIˇ C´ 1. Riemann surfaces 1.1. Riemann surfaces as complex manifolds. Let M be a topological space. A chart on M is a triple c = (U, ϕ) consisting of an open subset U M and a homeomorphism ϕ of U onto an open set in the complex plane C. The⊂ open set U is called the domain of the chart c. The charts c = (U, ϕ) and c′ = (U ′, ϕ′) on M are compatible if either U U ′ = or U U ′ = and ϕ′ ϕ−1 : ϕ(U U ′) ϕ′(U U ′) is a bijective holomorphic∩ ∅ function∩ (hence ∅ the inverse◦ map is∩ also holomorphic).−→ ∩ A family of charts on M is an atlas of M if the domains of charts form a covering of MA and any two charts in are compatible. Atlases and of M are compatibleA if their union is an atlas on M. This is obviously anA equivalenceB relation on the set of all atlases on M. Each equivalence class of atlases contains the largest element which is equal to the union of all atlases in this class. Such atlas is called saturated. An one-dimensional complex manifold M is a hausdorff topological space with a saturated atlas. If M is connected we also call it a Riemann surface. Let M be an Riemann surface. A chart c = (U, ϕ) is a chart around z M if z U. We say that it is centered at z if ϕ(z) = 0. ∈ ∈Let M and N be two Riemann surfaces. A continuous map F : M N is a holomorphic map if for any two pairs of charts c = (U, ϕ) on M and d =−→ (V, ψ) on N such that F (U) V , the mapping ⊂ ψ F ϕ−1 : ϕ(U) ϕ(V ) ◦ ◦ −→ is a holomorphic function.
    [Show full text]
  • Daniel Huybrechts
    Universitext Daniel Huybrechts Complex Geometry An Introduction 4u Springer Daniel Huybrechts Universite Paris VII Denis Diderot Institut de Mathematiques 2, place Jussieu 75251 Paris Cedex 05 France e-mail: [email protected] Mathematics Subject Classification (2000): 14J32,14J60,14J81,32Q15,32Q20,32Q25 Cover figure is taken from page 120. Library of Congress Control Number: 2004108312 ISBN 3-540-21290-6 Springer Berlin Heidelberg New York This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable for prosecution under the German Copyright Law. Springer is a part of Springer Science+Business Media springeronline.com © Springer-Verlag Berlin Heidelberg 2005 Printed in Germany The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design: Erich Kirchner, Heidelberg Typesetting by the author using a Springer KTjiX macro package Production: LE-TgX Jelonek, Schmidt & Vockler GbR, Leipzig Printed on acid-free paper 46/3142YL -543210 Preface Complex geometry is a highly attractive branch of modern mathematics that has witnessed many years of active and successful research and that has re- cently obtained new impetus from physicists' interest in questions related to mirror symmetry.
    [Show full text]
  • Complex Manifolds and Kähler Geometry
    Exterior forms on real and complex manifolds Exterior forms on complex manifolds The @ and @¯ operators K¨ahlermetrics Exterior forms on almost complex manifolds (p; q)-forms in terms of representation theory Complex manifolds and K¨ahlerGeometry Lecture 3 of 16: Exterior forms on complex manifolds Dominic Joyce, Oxford University September 2019 2019 Nairobi Workshop in Algebraic Geometry These slides available at http://people.maths.ox.ac.uk/∼joyce/ 1 / 44 Dominic Joyce, Oxford University Lecture 3: Exterior forms on complex manifolds Exterior forms on real and complex manifolds Exterior forms on complex manifolds The @ and @¯ operators K¨ahlermetrics Exterior forms on almost complex manifolds (p; q)-forms in terms of representation theory Plan of talk: 3 Exterior forms on complex manifolds 3.1 Exterior forms on real and complex manifolds 3.2 The @ and @¯ operators 3.3 Exterior forms on almost complex manifolds 3.4 (p; q)-forms in terms of representation theory 2 / 44 Dominic Joyce, Oxford University Lecture 3: Exterior forms on complex manifolds Exterior forms on real and complex manifolds Exterior forms on complex manifolds The @ and @¯ operators K¨ahlermetrics Exterior forms on almost complex manifolds (p; q)-forms in terms of representation theory 3.1. Exterior forms on real and complex manifolds Let X be a real manifold of dimension n. It has cotangent bundle T ∗X and vector bundles of k-forms Λk T ∗X for k = 0; 1;:::; n, with vector space of sections C 1(Λk T ∗X ). A k-form α in 1 k ∗ C (Λ T X ) may be written αa1···ak in index notation.
    [Show full text]
  • Ali-Manifolds.Pdf
    Basic notions of Differential Geometry Md. Showkat Ali 7th November 2002 Manifold Manifold is a multi dimensional space. Riemann proposed the concept of ”multiply extended quantities” which was refined for the next fifty years and is given today by the notion of a manifold. Definition. A Hausdorff topological space M is called an n-dimensional (topological) manifold (denoted by M n) if every point in M has an open neighbourhood which is homeomorphic to an open set in Rn. Example 1. A surface R2 is a two-dimensional manifold, since φ : R2 R2 is homeomorphic. −→ Charts, Ck-class and Atlas Definition. A pair (U, φ) of a topological manifold M is an open subset U of M called the domain of the chart together with a homeomorphism φ : U V of U onto an open set V in Rn. Roughly−→ speaking, a chart of M is an open subset U in M with each point in U labelled by n-numbers. Definition. A map f : U Rm is said to be of class Ck if every func- tion f i(x1, ..., xn), i = 1, ...,−→ m is differentiable upto k-th order. The map m f : U R is called smooth if it is of C∞-class. −→ Definition. An atlas of class Ck on a topological manifold M is a set (Uα, φα), α I of each charts, such that { ∈ } (i) the domain Uα covers M, i.e. M = αUα, ∪ (ii) the homeomorphism φα satisfy the following compativility condition : 1 the map 1 φα φ− : φβ(Uα Uβ) φα(Uα Uβ) ◦ β ∩ −→ ∩ must be of class Ck.
    [Show full text]
  • Torsion Algebraic Cycles and Complex Cobordism
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY Volume 10, Number 2, April 1997, Pages 467{493 S 0894-0347(97)00232-4 TORSION ALGEBRAIC CYCLES AND COMPLEX COBORDISM BURT TOTARO Introduction Atiyah and Hirzebruch gave the first counterexamples to the Hodge conjecture with integral coefficients [3]. That conjecture predicted that every integral coho- mology class of Hodge type (p; p) on a smooth projective variety should be the class of an algebraic cycle, but Atiyah and Hirzebruch found additional topological properties which must be satisfied by the integral cohomology class of an algebraic cycle. Here we provide a more systematic explanation for their results by showing that the classical cycle map, from algebraic cycles modulo algebraic equivalence to integral cohomology, factors naturally through a topologically defined ring which is richer than integral cohomology. The new ring is based on complex cobordism, a well-developed topological theory which has been used only rarely in algebraic geometry since Hirzebruch used it to prove the Riemann-Roch theorem [17]. This factorization of the classical cycle map implies the topological restrictions on algebraic cycles found by Atiyah and Hirzebruch. It goes beyond their work by giving a topological method to show that the classical cycle map can be noninjective, as well as nonsurjective. The kernel of the classical cycle map is called the Griffiths group, and the topological proof here that the Griffiths group can be nonzero is the first proof of this fact which does not use Hodge theory. (The proof here gives nonzero torsion elements in the Griffiths group, whereas Griffiths’s Hodge-theoretic proof gives nontorsion elements [13].) This topological argument also gives examples of algebraic cycles in the kernel of various related cycle maps where few or no examples were known before, thus an- swering some questions posed by Colliot-Th´el`ene and Schoen ([8], p.
    [Show full text]
  • Complex Projective Space the Complex Projective Space Cpn Is the Most Important Compact Complex Manifold
    Complex projective space The complex projective space CPn is the most important compact complex manifold. By definition, CPn is the set of lines in Cn+1 or, equivalently, CPn := (Cn+1 0 )/C∗, \{ } ∗ n+1 n where C acts by multiplication on C . The points of CP are written as (z0, z1, ..., zn). ∗ Here, the notation intends to indicate that for λ C the two points (λz0, λz1, ..., λzn) and n ∈ (z0, z1, ..., zn) define the same point in CP . We denote the equivalent class by [z0 : z1 : ... : n zn]. Only the origin (0, 0, ..., 0) does not define a point in CP . n We take the standard open covering of CP . Let Ui be the open set n Ui := [z : ... : zn] zi =0 CP . { 0 | } ⊂ Consider the bijective maps n τi : Ui C → z0 zi−1 zi+1 zn [z0 : ... : zn] , ..., , , ..., → zi zi zi zi For the transition maps −1 τij = τi τ : τj(Ui Uj) τi(Ui Uj) ◦ j ∩ → ∩ w1 wi−1 wi+1 wj−1 1 wi+1 wn (w1, ..., wn) , ..., , , ..., , , , ..., → wi wi wi wi wi wi wi is biholomorphic. In fact, −1 τij(w , ..., wn)= τi τ (w , ..., wn) 1 ◦ j 1 = τi([w1 : ... : wj−1 : 1 : wj+1 : ... : wn]) w1 wi−1 wi+1 wj−1 1 wi+1 wn = τi : ... : : 1 : : ... : : : : ... : wi wi wi wi wi wi wi w w − w w − 1 w w = 1 , ..., i 1 , i+1 , ..., j 1 , , i+1 , ..., n wi wi wi wi wi wi wi In particular, when n = 1, CP1 = U U where 0 ∪ 1 z1 1 U0 = [z0 : z1] z0 =0 = [1 : z0 =0 = [1 : w] w C S , { | } { z0 | } { | ∈ } ≃ − {∞} and z0 1 U1 = [z0 : z1] z1 =0 = [ :1 z1 =0 = [w : 1] w C S 0 .
    [Show full text]
  • NOTES on INTEGRABILITY of COMPLEX STRUCTURES Recall
    NOTES ON INTEGRABILITY OF COMPLEX STRUCTURES NILAY KUMAR Recall that every complex manifold is by definition a smooth manifold. This raises the following question: when can a smooth manifold be given the structure of a complex manifold, i.e. a complex structure? We begin by reviewing some definitions. Definition 1. An almost complex structure J on a 2n-dimensional smooth mani- fold M is a (real) vector bundle endomorphism J : TM ! TM satisfying J 2 = − id. Exercise 2. Show that if M has an almost complex structure then it must be even-dimensional. Suppose (M; J) is an almost complex manifold of dimension 2n. Define the complexified tangent bundle TCM = TM ⊗ C to be the tensor product of the real tangent bundle with the trivial complex line bundle. Notice that TCM has fibers that are 4n dimensional. Complexifying the almost complex structure J, we obtain J = J ⊗ . Notice that J 2 = − id and hence J has eigenvalues ±i. Thus we can C C C C decompose 1;0 0;1 TCM = T M ⊕ T M; 1 the ±i-eigenbundles of JC. These are the holomorphic and antiholomorphic tan- gent bundles of (M; J). Proposition 3. There is a natural almost complex structure J on any complex manifold X. Proof. Let fUα; φαg be an atlas for X. Each Uα is biholomorphic to an open subset of Cn, and hence has real coordinates (x1; : : : ; xn; y1; : : : ; yn) comprising the i i i coordinates z = x + iy . Consider, in this chart, the endomorphism J of TUα i i i i sending @=@x 7! @=@y and @=@y 7! −@=@x at every point of Uα.
    [Show full text]
  • Notes on Cobordism
    Notes on Cobordism Haynes Miller Author address: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA Notes typed by Dan Christensen and Gerd Laures based on lectures of Haynes Miller, Spring, 1994. Still in preliminary form, with much missing. This version dated December 5, 2001. Contents Chapter 1. Unoriented Bordism 1 1. Steenrod's Question 1 2. Thom Spaces and Stable Normal Bundles 3 3. The Pontrjagin{Thom Construction 5 4. Spectra 9 5. The Thom Isomorphism 12 6. Steenrod Operations 14 7. Stiefel-Whitney Classes 15 8. The Euler Class 19 9. The Steenrod Algebra 20 10. Hopf Algebras 24 11. Return of the Steenrod Algebra 28 12. The Answer to the Question 32 13. Further Comments on the Eilenberg{Mac Lane Spectrum 35 Chapter 2. Complex Cobordism 39 1. Various Bordisms 39 2. Complex Oriented Cohomology Theories 42 3. Generalities on Formal Group Laws 46 4. p-Typicality of Formal Group Laws 53 5. The Universal p-Typical Formal Group Law 61 6. Representing (R) 65 F 7. Applications to Topology 69 8. Characteristic Numbers 71 9. The Brown-Peterson Spectrum 78 10. The Adams Spectral Sequence 79 11. The BP -Hopf Invariant 92 12. The MU-Cohomology of a Finite Complex 93 iii iv CONTENTS 13. The Landweber Filtration Theorem 98 Chapter 3. The Nilpotence Theorem 101 1. Statement of Nilpotence Theorems 101 2. An Outline of the Proof 103 3. The Vanishing Line Lemma 106 4. The Nilpotent Cofibration Lemma 108 Appendices 111 Appendix A. A Construction of the Steenrod Squares 111 1. The Definition 111 2.
    [Show full text]