Complex Projective Space the Complex Projective Space Cpn Is the Most Important Compact Complex Manifold

Total Page:16

File Type:pdf, Size:1020Kb

Complex Projective Space the Complex Projective Space Cpn Is the Most Important Compact Complex Manifold Complex projective space The complex projective space CPn is the most important compact complex manifold. By definition, CPn is the set of lines in Cn+1 or, equivalently, CPn := (Cn+1 0 )/C∗, \{ } ∗ n+1 n where C acts by multiplication on C . The points of CP are written as (z0, z1, ..., zn). ∗ Here, the notation intends to indicate that for λ C the two points (λz0, λz1, ..., λzn) and n ∈ (z0, z1, ..., zn) define the same point in CP . We denote the equivalent class by [z0 : z1 : ... : n zn]. Only the origin (0, 0, ..., 0) does not define a point in CP . n We take the standard open covering of CP . Let Ui be the open set n Ui := [z : ... : zn] zi =0 CP . { 0 | } ⊂ Consider the bijective maps n τi : Ui C → z0 zi−1 zi+1 zn [z0 : ... : zn] , ..., , , ..., → zi zi zi zi For the transition maps −1 τij = τi τ : τj(Ui Uj) τi(Ui Uj) ◦ j ∩ → ∩ w1 wi−1 wi+1 wj−1 1 wi+1 wn (w1, ..., wn) , ..., , , ..., , , , ..., → wi wi wi wi wi wi wi is biholomorphic. In fact, −1 τij(w , ..., wn)= τi τ (w , ..., wn) 1 ◦ j 1 = τi([w1 : ... : wj−1 : 1 : wj+1 : ... : wn]) w1 wi−1 wi+1 wj−1 1 wi+1 wn = τi : ... : : 1 : : ... : : : : ... : wi wi wi wi wi wi wi w w − w w − 1 w w = 1 , ..., i 1 , i+1 , ..., j 1 , , i+1 , ..., n wi wi wi wi wi wi wi In particular, when n = 1, CP1 = U U where 0 ∪ 1 z1 1 U0 = [z0 : z1] z0 =0 = [1 : z0 =0 = [1 : w] w C S , { | } { z0 | } { | ∈ } ≃ − {∞} and z0 1 U1 = [z0 : z1] z1 =0 = [ :1 z1 =0 = [w : 1] w C S 0 . { | } { z1 | } { | ∈ } ≃ −{ } 8 Then 1 τ = τ τ −1(w)= τ ([w : 1]) = , and τ = τ −1. (2) 01 0 ◦ 1 0 w 10 01 Complex tori We’ll study “genus” g of a compact Riemann surface M, the number of “holes” of M. When g = 0, M is biholomorphic to CP1. When g = 2, it is torus. Geometrically, a torus can be “glued” as follows. Gluing to construct a torus Analytically, we let M = C as a topological space and Γ= g(z)= z + m + m √ 1, m , m Z { 1 2 − 1 2 ∈ } as a subgroup of Aut(C). We define an equivalence relation: z z if and only if there is ∼ some g Γ such that g(z)= z. In other words, z z if and only if z z = m1 + m2√ 1 for ∈ ∼ e− − some integers m1 and m2. We denote by [z] the equivalence class represented by z. Then from the natural projection e e e π : M = C M/Γ= C/ , z [z], → ∼ → we get a quotient space M/ or M/Γ, and we can define a quotient topology on M/Γ. Namely, Uˆ M/Γ is open if and∼ only if π−1(Uˆ) is open in M. Let ⊂ ν = [U]= U/ ∼: U is open in M such that g(U) U = for g = Id, g Γ . { ∩ ∅ ∈ } Then ν forms a basis of the topology of M/Γ. We notice that the map πM M/Γ is a covering map. → Now, for any p M/Γ, p has a neighborhood [Up] ν. Then we have disjoint union ∈ ⊂ −1 π ([Up]) = g(Up) and , g[∈Γ 9 ′ ′ g(Up) g (Up) = g = g . ∅⇔ \ −1 Moreover, π g(Up) : g(Up) [Up] is a homeomorphism. By regaring (π g(Up)) as coordinate map, it can| be verified that→ the torus T := M/Γ is a complex manifold.| [Example] In general, such “gluing process” may not produce a smooth manifold. For example, let g : C2 C2, (z , z ) ( z , z ) (3) → 1 2 → − 1 − 2 be an element in Aut(C2). Then Γ = g,Id defines a subgroup. C2/Γ is not a smooth manifold. { } In order to make quotient space a smooth manifold, we introduce some notions as follows. Let M be a complex manifold of dimension n. Write Aut(M)= f : M M, f biholomorphic . { → } Then Aut(M) is a group under the composition law, called the automorphism group of M. Let Γ Aut(M) be a subgroup. ⊂ (i) Γ is called discrete if p M, Γ(p )= r(p ) : r Γ is a discrete subset. ∀ 0 ∈ 0 { 0 ∈ } (ii) Γ is said to be fixed point free if for any g Γ, g = id, g has no fixed point. ∈ (iii) Γ is called properly discontinuous if for any K ,K M, r Γ : r(K ) K = 1 2 ⊂⊂ { ∈ 1 2 ∅} is a finite set of Γ. T Theorem 1.2 8 Let M be a complex manifold and Γ Aut(M) be a subgroup. If Γ is fixed ⊂ point free and properly discontinuous. M/Γ has a canonical structure of a complex maniofld induced from that of M. Going back to (3), when M = C2 and Γ = g,Id where g(z)= z, we see that Γ is not fixed point free because g(0, 0) = (0, 0) so that{g has} a fixed point (0−, 0). In fact, consider a Γ-invariant map (i.e., each component function is Γ invariant) L : C2 C3, (z , z ) (z2, z2, z z ). → 1 2 → 1 2 1 2 Notice L(z1, z2)= L(z1, z2) if and only if either (z1, z2)=(z1, z2)or(z1, z2)=( z1, z2). It induces a quotient map − − e e e e e e L : C2/Γ A = (z , z , z ) C3, z z = z2 . → { 1 2 3 ∈ 1 2 3 } Here C2/Γ can be identified with A which is a variety on C2 with singularity 0. 8cf. K.Kodaira, Complex manifolds and deformation of complex structures, Spring-Verlag, 1985, theorem 2.2, p.44 10 2 De Rham Theorem and Dolbeault Theorem Homology For a topological space X, it can associates some invariant groups called “homology groups” Hp(X) in the sense that if f : X Y is a homeomorphism, it induces → a group isomorphism f∗ : Hp(X) Hp(Y ), p. → ∀ Let X be a topological space. A chain complex C(X) is a sequence of abelian groups or modules with homomorphisms ∂n : Cn Cn− which we call boundary operators. That is, → 1 ∂n+1 ∂n ∂n−1 ∂2 ∂1 ∂0 ... Cn Cn− ... C C 0 −−−→ −→ 1 −−−→ −→ 1 −→ 0 −→ where 0 denotes the trivial group and Cj = 0 for j < 0. We also require the composition of any two consecutive boundary operators to be zero. That is, for all n, ∂n ∂n =0. ◦ +1 This means im(∂n ) ker(∂n). +1 ⊆ Now since each Cn is abelian, im(Cn) is a normal subgroup of ker(Cn). We define the n-th homology group of X with respec to the chain complex C(X) to be the factor group (or quotient module) Hn(X)= ker(∂n)/im(∂n+1) We also use the notation Zn(X) := ker(∂n) and Bn(X) := im(∂n+1), so Hn(X)= Zn(X)/Bn(X). Simplicial homology and singular homology 9 The simplicial homology groups Hn(X) are defined by using the simplicial chain complex C(X), with C(X)n the free abelian group generated by the n-simplices of X. Here an n-simplex is an n-dimensional polytope which is the convex hull of its n + 1 vertices. 1-simplex, 2-simplex, 3-simplex, 4-simplex, and 5-simplex 9cf., en.wikipedia.org: simplex, simplicial homology. 11 If σn = [p0, ..., pn], then n k ∂nσn := ( 1) [p , ..., pk− ,pk , ...pn]. − 0 1 +1 Xk=0 We can verify that ∂n+1 ∂n = 0. For example, if σ = [p0,p1,p2] is a 2-simplex. ∂2(σ) = [p ,p ] [p ,p ] + [p ,p ]◦ and ∂ ∂ (σ) = [p ] [p ] [p ] + [p ] + [p ] [p ]=0. 1 2 − 0 2 0 1 1 ◦ 2 2 − 1 − 2 0 1 − 0 12.
Recommended publications
  • Projective Geometry: a Short Introduction
    Projective Geometry: A Short Introduction Lecture Notes Edmond Boyer Master MOSIG Introduction to Projective Geometry Contents 1 Introduction 2 1.1 Objective . .2 1.2 Historical Background . .3 1.3 Bibliography . .4 2 Projective Spaces 5 2.1 Definitions . .5 2.2 Properties . .8 2.3 The hyperplane at infinity . 12 3 The projective line 13 3.1 Introduction . 13 3.2 Projective transformation of P1 ................... 14 3.3 The cross-ratio . 14 4 The projective plane 17 4.1 Points and lines . 17 4.2 Line at infinity . 18 4.3 Homographies . 19 4.4 Conics . 20 4.5 Affine transformations . 22 4.6 Euclidean transformations . 22 4.7 Particular transformations . 24 4.8 Transformation hierarchy . 25 Grenoble Universities 1 Master MOSIG Introduction to Projective Geometry Chapter 1 Introduction 1.1 Objective The objective of this course is to give basic notions and intuitions on projective geometry. The interest of projective geometry arises in several visual comput- ing domains, in particular computer vision modelling and computer graphics. It provides a mathematical formalism to describe the geometry of cameras and the associated transformations, hence enabling the design of computational ap- proaches that manipulates 2D projections of 3D objects. In that respect, a fundamental aspect is the fact that objects at infinity can be represented and manipulated with projective geometry and this in contrast to the Euclidean geometry. This allows perspective deformations to be represented as projective transformations. Figure 1.1: Example of perspective deformation or 2D projective transforma- tion. Another argument is that Euclidean geometry is sometimes difficult to use in algorithms, with particular cases arising from non-generic situations (e.g.
    [Show full text]
  • HE WANG Abstract. a Mini-Course on Rational Homotopy Theory
    RATIONAL HOMOTOPY THEORY HE WANG Abstract. A mini-course on rational homotopy theory. Contents 1. Introduction 2 2. Elementary homotopy theory 3 3. Spectral sequences 8 4. Postnikov towers and rational homotopy theory 16 5. Commutative differential graded algebras 21 6. Minimal models 25 7. Fundamental groups 34 References 36 2010 Mathematics Subject Classification. Primary 55P62 . 1 2 HE WANG 1. Introduction One of the goals of topology is to classify the topological spaces up to some equiva- lence relations, e.g., homeomorphic equivalence and homotopy equivalence (for algebraic topology). In algebraic topology, most of the time we will restrict to spaces which are homotopy equivalent to CW complexes. We have learned several algebraic invariants such as fundamental groups, homology groups, cohomology groups and cohomology rings. Using these algebraic invariants, we can seperate two non-homotopy equivalent spaces. Another powerful algebraic invariants are the higher homotopy groups. Whitehead the- orem shows that the functor of homotopy theory are power enough to determine when two CW complex are homotopy equivalent. A rational coefficient version of the homotopy theory has its own techniques and advan- tages: 1. fruitful algebraic structures. 2. easy to calculate. RATIONAL HOMOTOPY THEORY 3 2. Elementary homotopy theory 2.1. Higher homotopy groups. Let X be a connected CW-complex with a base point x0. Recall that the fundamental group π1(X; x0) = [(I;@I); (X; x0)] is the set of homotopy classes of maps from pair (I;@I) to (X; x0) with the product defined by composition of paths. Similarly, for each n ≥ 2, the higher homotopy group n n πn(X; x0) = [(I ;@I ); (X; x0)] n n is the set of homotopy classes of maps from pair (I ;@I ) to (X; x0) with the product defined by composition.
    [Show full text]
  • An Introduction to Complex Algebraic Geometry with Emphasis on The
    AN INTRODUCTION TO COMPLEX ALGEBRAIC GEOMETRY WITH EMPHASIS ON THE THEORY OF SURFACES By Chris Peters Mathematisch Instituut der Rijksuniversiteit Leiden and Institut Fourier Grenoble i Preface These notes are based on courses given in the fall of 1992 at the University of Leiden and in the spring of 1993 at the University of Grenoble. These courses were meant to elucidate the Mori point of view on classification theory of algebraic surfaces as briefly alluded to in [P]. The material presented here consists of a more or less self-contained advanced course in complex algebraic geometry presupposing only some familiarity with the theory of algebraic curves or Riemann surfaces. But the goal, as in the lectures, is to understand the Enriques classification of surfaces from the point of view of Mori-theory. In my opininion any serious student in algebraic geometry should be acquainted as soon as possible with the yoga of coherent sheaves and so, after recalling the basic concepts in algebraic geometry, I have treated sheaves and their cohomology theory. This part culminated in Serre’s theorems about coherent sheaves on projective space. Having mastered these tools, the student can really start with surface theory, in particular with intersection theory of divisors on surfaces. The treatment given is algebraic, but the relation with the topological intersection theory is commented on briefly. A fuller discussion can be found in Appendix 2. Intersection theory then is applied immediately to rational surfaces. A basic tool from the modern point of view is Mori’s rationality theorem. The treatment for surfaces is elementary and I borrowed it from [Wi].
    [Show full text]
  • Riemann Surfaces
    RIEMANN SURFACES AARON LANDESMAN CONTENTS 1. Introduction 2 2. Maps of Riemann Surfaces 4 2.1. Defining the maps 4 2.2. The multiplicity of a map 4 2.3. Ramification Loci of maps 6 2.4. Applications 6 3. Properness 9 3.1. Definition of properness 9 3.2. Basic properties of proper morphisms 9 3.3. Constancy of degree of a map 10 4. Examples of Proper Maps of Riemann Surfaces 13 5. Riemann-Hurwitz 15 5.1. Statement of Riemann-Hurwitz 15 5.2. Applications 15 6. Automorphisms of Riemann Surfaces of genus ≥ 2 18 6.1. Statement of the bound 18 6.2. Proving the bound 18 6.3. We rule out g(Y) > 1 20 6.4. We rule out g(Y) = 1 20 6.5. We rule out g(Y) = 0, n ≥ 5 20 6.6. We rule out g(Y) = 0, n = 4 20 6.7. We rule out g(C0) = 0, n = 3 20 6.8. 21 7. Automorphisms in low genus 0 and 1 22 7.1. Genus 0 22 7.2. Genus 1 22 7.3. Example in Genus 3 23 Appendix A. Proof of Riemann Hurwitz 25 Appendix B. Quotients of Riemann surfaces by automorphisms 29 References 31 1 2 AARON LANDESMAN 1. INTRODUCTION In this course, we’ll discuss the theory of Riemann surfaces. Rie- mann surfaces are a beautiful breeding ground for ideas from many areas of math. In this way they connect seemingly disjoint fields, and also allow one to use tools from different areas of math to study them.
    [Show full text]
  • Holomorphic Embedding of Complex Curves in Spaces of Constant Holomorphic Curvature (Wirtinger's Theorem/Kaehler Manifold/Riemann Surfaces) ISSAC CHAVEL and HARRY E
    Proc. Nat. Acad. Sci. USA Vol. 69, No. 3, pp. 633-635, March 1972 Holomorphic Embedding of Complex Curves in Spaces of Constant Holomorphic Curvature (Wirtinger's theorem/Kaehler manifold/Riemann surfaces) ISSAC CHAVEL AND HARRY E. RAUCH* The City College of The City University of New York and * The Graduate Center of The City University of New York, 33 West 42nd St., New York, N.Y. 10036 Communicated by D. C. Spencer, December 21, 1971 ABSTRACT A special case of Wirtinger's theorem ever, the converse is not true in general: the complex curve asserts that a complex curve (two-dimensional) hob-o embedded as a real minimal surface is not necessarily holo- morphically embedded in a Kaehler manifold is a minimal are obstructions. With the by morphically embedded-there surface. The converse is not necessarily true. Guided that we view the considerations from the theory of moduli of Riemann moduli problem in mind, this fact suggests surfaces, we discover (among other results) sufficient embedding of our complex curve as a real minimal surface topological aind differential-geometric conditions for a in a Kaehler manifold as the solution to the differential-geo- minimal (Riemannian) immersion of a 2-manifold in for our present mapping problem metric metric extremal problem complex projective space with the Fubini-Study as our infinitesimal moduli, differential- to be holomorphic. and that we then seek, geometric invariants on the curve whose vanishing forms neces- sary and sufficient conditions for the minimal embedding to be INTRODUCTION AND MOTIVATION holomorphic. Going further, we observe that minimal surface It is known [1-5] how Riemann's conception of moduli for con- evokes the notion of second fundamental forms; while the formal mapping of homeomorphic, multiply connected Rie- moduli problem, again, suggests quadratic differentials.
    [Show full text]
  • The Projective Geometry of the Spacetime Yielded by Relativistic Positioning Systems and Relativistic Location Systems Jacques Rubin
    The projective geometry of the spacetime yielded by relativistic positioning systems and relativistic location systems Jacques Rubin To cite this version: Jacques Rubin. The projective geometry of the spacetime yielded by relativistic positioning systems and relativistic location systems. 2014. hal-00945515 HAL Id: hal-00945515 https://hal.inria.fr/hal-00945515 Submitted on 12 Feb 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The projective geometry of the spacetime yielded by relativistic positioning systems and relativistic location systems Jacques L. Rubin (email: [email protected]) Université de Nice–Sophia Antipolis, UFR Sciences Institut du Non-Linéaire de Nice, UMR7335 1361 route des Lucioles, F-06560 Valbonne, France (Dated: February 12, 2014) As well accepted now, current positioning systems such as GPS, Galileo, Beidou, etc. are not primary, relativistic systems. Nevertheless, genuine, relativistic and primary positioning systems have been proposed recently by Bahder, Coll et al. and Rovelli to remedy such prior defects. These new designs all have in common an equivariant conformal geometry featuring, as the most basic ingredient, the spacetime geometry. In a first step, we show how this conformal aspect can be the four-dimensional projective part of a larger five-dimensional geometry.
    [Show full text]
  • Circles in a Complex Projective Space
    Adachi, T., Maeda, S. and Udagawa, S. Osaka J. Math. 32 (1995), 709-719 CIRCLES IN A COMPLEX PROJECTIVE SPACE TOSHIAKI ADACHI, SADAHIRO MAEDA AND SEIICHI UDAGAWA (Received February 15, 1994) 0. Introduction The study of circles is one of the interesting objects in differential geometry. A curve γ(s) on a Riemannian manifold M parametrized by its arc length 5 is called a circle, if there exists a field of unit vectors Ys along the curve which satisfies, together with the unit tangent vectors Xs — Ϋ(s)9 the differential equations : FSXS = kYs and FsYs= — kXs, where k is a positive constant, which is called the curvature of the circle γ(s) and Vs denotes the covariant differentiation along γ(s) with respect to the Aiemannian connection V of M. For given a point lEJIί, orthonormal pair of vectors u, v^ TXM and for any given positive constant k, we have a unique circle γ(s) such that γ(0)=x, γ(0) = u and (Psγ(s))s=o=kv. It is known that in a complete Riemannian manifold every circle can be defined for -oo<5<oo (Cf. [6]). The study of global behaviours of circles is very interesting. However there are few results in this direction except for the global existence theorem. In general, a circle in a Riemannian manifold is not closed. Here we call a circle γ(s) closed if = there exists So with 7(so) = /(0), XSo Xo and YSo— Yo. Of course, any circles in Euclidean m-space Em are closed. And also any circles in Euclidean m-sphere Sm(c) are closed.
    [Show full text]
  • NOTES on CARTIER and WEIL DIVISORS Recall: Definition 0.1. A
    NOTES ON CARTIER AND WEIL DIVISORS AKHIL MATHEW Abstract. These are notes on divisors from Ravi Vakil's book [2] on scheme theory that I prepared for the Foundations of Algebraic Geometry seminar at Harvard. Most of it is a rewrite of chapter 15 in Vakil's book, and the originality of these notes lies in the mistakes. I learned some of this from [1] though. Recall: Definition 0.1. A line bundle on a ringed space X (e.g. a scheme) is a locally free sheaf of rank one. The group of isomorphism classes of line bundles is called the Picard group and is denoted Pic(X). Here is a standard source of line bundles. 1. The twisting sheaf 1.1. Twisting in general. Let R be a graded ring, R = R0 ⊕ R1 ⊕ ::: . We have discussed the construction of the scheme ProjR. Let us now briefly explain the following additional construction (which will be covered in more detail tomorrow). L Let M = Mn be a graded R-module. Definition 1.1. We define the sheaf Mf on ProjR as follows. On the basic open set D(f) = SpecR(f) ⊂ ProjR, we consider the sheaf associated to the R(f)-module M(f). It can be checked easily that these sheaves glue on D(f) \ D(g) = D(fg) and become a quasi-coherent sheaf Mf on ProjR. Clearly, the association M ! Mf is a functor from graded R-modules to quasi- coherent sheaves on ProjR. (For R reasonable, it is in fact essentially an equiva- lence, though we shall not need this.) We now set a bit of notation.
    [Show full text]
  • Complex Manifolds
    Complex Manifolds Lecture notes based on the course by Lambertus van Geemen A.A. 2012/2013 Author: Michele Ferrari. For any improvement suggestion, please email me at: [email protected] Contents n 1 Some preliminaries about C 3 2 Basic theory of complex manifolds 6 2.1 Complex charts and atlases . 6 2.2 Holomorphic functions . 8 2.3 The complex tangent space and cotangent space . 10 2.4 Differential forms . 12 2.5 Complex submanifolds . 14 n 2.6 Submanifolds of P ............................... 16 2.6.1 Complete intersections . 18 2 3 The Weierstrass }-function; complex tori and cubics in P 21 3.1 Complex tori . 21 3.2 Elliptic functions . 22 3.3 The Weierstrass }-function . 24 3.4 Tori and cubic curves . 26 3.4.1 Addition law on cubic curves . 28 3.4.2 Isomorphisms between tori . 30 2 Chapter 1 n Some preliminaries about C We assume that the reader has some familiarity with the notion of a holomorphic function in one complex variable. We extend that notion with the following n n Definition 1.1. Let f : C ! C, U ⊆ C open with a 2 U, and let z = (z1; : : : ; zn) be n the coordinates in C . f is holomorphic in a = (a1; : : : ; an) 2 U if f has a convergent power series expansion: +1 X k1 kn f(z) = ak1;:::;kn (z1 − a1) ··· (zn − an) k1;:::;kn=0 This means, in particular, that f is holomorphic in each variable. Moreover, we define OCn (U) := ff : U ! C j f is holomorphicg m A map F = (F1;:::;Fm): U ! C is holomorphic if each Fj is holomorphic.
    [Show full text]
  • Complex Cobordism and Almost Complex Fillings of Contact Manifolds
    MSci Project in Mathematics COMPLEX COBORDISM AND ALMOST COMPLEX FILLINGS OF CONTACT MANIFOLDS November 2, 2016 Naomi L. Kraushar supervised by Dr C Wendl University College London Abstract An important problem in contact and symplectic topology is the question of which contact manifolds are symplectically fillable, in other words, which contact manifolds are the boundaries of symplectic manifolds, such that the symplectic structure is consistent, in some sense, with the given contact struc- ture on the boundary. The homotopy data on the tangent bundles involved in this question is finding an almost complex filling of almost contact manifolds. It is known that such fillings exist, so that there are no obstructions on the tangent bundles to the existence of symplectic fillings of contact manifolds; however, so far a formal proof of this fact has not been written down. In this paper, we prove this statement. We use cobordism theory to deal with the stable part of the homotopy obstruction, and then use obstruction theory, and a variant on surgery theory known as contact surgery, to deal with the unstable part of the obstruction. Contents 1 Introduction 2 2 Vector spaces and vector bundles 4 2.1 Complex vector spaces . .4 2.2 Symplectic vector spaces . .7 2.3 Vector bundles . 13 3 Contact manifolds 19 3.1 Contact manifolds . 19 3.2 Submanifolds of contact manifolds . 23 3.3 Complex, almost complex, and stably complex manifolds . 25 4 Universal bundles and classifying spaces 30 4.1 Universal bundles . 30 4.2 Universal bundles for O(n) and U(n).............. 33 4.3 Stable vector bundles .
    [Show full text]
  • Grassmannians Via Projection Operators and Some of Their Special Submanifolds ∗
    GRASSMANNIANS VIA PROJECTION OPERATORS AND SOME OF THEIR SPECIAL SUBMANIFOLDS ∗ IVKO DIMITRIC´ Department of Mathematics, Penn State University Fayette, Uniontown, PA 15401-0519, USA E-mail: [email protected] We study submanifolds of a general Grassmann manifold which are of 1-type in a suitably defined Euclidean space of F−Hermitian matrices (such a submanifold is minimal in some hypersphere of that space and, apart from a translation, the im- mersion is built using eigenfunctions from a single eigenspace of the Laplacian). We show that a minimal 1-type hypersurface of a Grassmannian is mass-symmetric and has the type-eigenvalue which is a specific number in each dimension. We derive some conditions on the mean curvature of a 1-type hypersurface of a Grassmannian and show that such a hypersurface with a nonzero constant mean curvature has at most three constant principal curvatures. At the end, we give some estimates of the first nonzero eigenvalue of the Laplacian on a compact submanifold of a Grassmannian. 1. Introduction The Grassmann manifold of k dimensional subspaces of the vector space − Fm over a field F R, C, H can be conveniently defined as the base man- ∈{ } ifold of the principal fibre bundle of the corresponding Stiefel manifold of F unitary frames, where a frame is projected onto the F plane spanned − − by it. As observed already in 1927 by Cartan, all Grassmannians are sym- metric spaces and they have been studied in such context ever since, using the root systems and the Lie algebra techniques. However, the submani- fold geometry in Grassmannians of higher rank is much less developed than the corresponding geometry in rank-1 symmetric spaces, the notable excep- tions being the classification of the maximal totally geodesic submanifolds (the well known results of J.A.
    [Show full text]
  • CR Singular Immersions of Complex Projective Spaces
    Beitr¨agezur Algebra und Geometrie Contributions to Algebra and Geometry Volume 43 (2002), No. 2, 451-477. CR Singular Immersions of Complex Projective Spaces Adam Coffman∗ Department of Mathematical Sciences Indiana University Purdue University Fort Wayne Fort Wayne, IN 46805-1499 e-mail: Coff[email protected] Abstract. Quadratically parametrized smooth maps from one complex projective space to another are constructed as projections of the Segre map of the complexifi- cation. A classification theorem relates equivalence classes of projections to congru- ence classes of matrix pencils. Maps from the 2-sphere to the complex projective plane, which generalize stereographic projection, and immersions of the complex projective plane in four and five complex dimensions, are considered in detail. Of particular interest are the CR singular points in the image. MSC 2000: 14E05, 14P05, 15A22, 32S20, 32V40 1. Introduction It was shown by [23] that the complex projective plane CP 2 can be embedded in R7. An example of such an embedding, where R7 is considered as a subspace of C4, and CP 2 has complex homogeneous coordinates [z1 : z2 : z3], was given by the following parametric map: 1 2 2 [z1 : z2 : z3] 7→ 2 2 2 (z2z¯3, z3z¯1, z1z¯2, |z1| − |z2| ). |z1| + |z2| + |z3| Another parametric map of a similar form embeds the complex projective line CP 1 in R3 ⊆ C2: 1 2 2 [z0 : z1] 7→ 2 2 (2¯z0z1, |z1| − |z0| ). |z0| + |z1| ∗The author’s research was supported in part by a 1999 IPFW Summer Faculty Research Grant. 0138-4821/93 $ 2.50 c 2002 Heldermann Verlag 452 Adam Coffman: CR Singular Immersions of Complex Projective Spaces This may look more familiar when restricted to an affine neighborhood, [z0 : z1] = (1, z) = (1, x + iy), so the set of complex numbers is mapped to the unit sphere: 2x 2y |z|2 − 1 z 7→ ( , , ), 1 + |z|2 1 + |z|2 1 + |z|2 and the “point at infinity”, [0 : 1], is mapped to the point (0, 0, 1) ∈ R3.
    [Show full text]