Almost Complex Manifolds an Almost-Complex Manifold Is A

Total Page:16

File Type:pdf, Size:1020Kb

Almost Complex Manifolds an Almost-Complex Manifold Is A Almost complex manifolds An almost-complex manifold is a smooth real manifold 2 M equipped with a smooth endomorphism field J : T M T M satisfying J = Ix for → x − all x M. The linear algebra introduced above may be applied pointwise to the tangent bundle∈ of M. The complexified tangent bundle is TCM := T M C, where C is regarded as a trivial 1,0 0,1 ⊗ vector bundle over M. Since TC,xM = Tx M Tx M for any point x M as above, the tensor field J splits the complexified tangent bundle⊕ into bundles of eigen∈spaces 1,0 0,1 TCM = T M T M, ⊕ and the smooth complex vector bundles (TM,J) and (T 1,0M, i) are C-linearly isomorphic. We notice that a real smooth manifold carrying an almost complex structure may not be a complex manifold. We’ll discuss later that a real smooth manifold carrying an integral almost complex structure is a complex manifold. [Example] (Almost complex structure on spheres) It is natural to ask which spheres S2n admit almost-complex structures or complex structure (or other ones such as K¨ahler structure). 2 CP1 p m R R S = is the Riemann sphere, a complex manifold. It is known HDR(S , ) = • for p =0or p = m; 0 otherwsie. On the other hand, if X is a compact K¨ahler manifold, it is known that the Betti number b (X) 1. Thus S2 is the only sphere that admits 2 ≥ a K¨ahler structure. S2 has only one almost-complex structure up to equivalence. S4 does not admit any almost complex structure. • S6 admits many non-equivalent almost complex structure, but it is an open problem • whether S6 admits an integrable complex structure18. As above, S6 cannot admit K¨ahler structure. For Sn with n 8, deep results from algebraic topology imply that there is no almost • ≥ complex structure there. n [ Example] (C is an almost-complex manifold) Let zα = xα + √ 1yα be the usual − coordinates on Cn, identified with coordinates (x, y) on R2n. 18For the definition of integrable complex structure, see the end of this section. 44 The real tangent bundle T Cn has frame ∂ , ∂ . The almost complex structure ∂xα ∂yα • J : T Cn T Cn is given by: { } → ∂ ∂ ∂ ∂ J( )= , J( )= . ∂xα ∂yα ∂yα −∂xα n n TCC , the complexification of T C , has frame • ∂ 1 ∂ ∂ ∂ 1 ∂ ∂ = √ 1 , = + √ 1 ∂zα 2∂xα − − ∂yα ∂zα 2∂xα − ∂yα n n The extended almost complex structure J : TCC TCC is given by → ∂ 1 ∂ ∂ ∂ J( )= + √ 1 = √ 1 , ∂z 2 ∂y − ∂x − ∂z α α α α ∂ 1 ∂ ∂ ∂ J( )= √ 1 = √ 1 . ∂z 2 ∂y − − ∂x − − ∂z α α α α T 1,0Cn has frame ∂ , and the almost complex structure is given by J( ∂ ) = • { ∂zα } ∂zα √ 1 ∂ . − ∂zα T 0,1Cn has frame ∂ , and the almost complex structure is given by J( ∂ ) = • { ∂zα } ∂zα √ 1 ∂ . − − ∂zα Similarly a complex manifold carries a natural almost complex structure. A map f :(M,J) (M, J) between almost-complex manifolds is pseudoholomorphic if → (f∗)J = J(f∗). f e The followinge is a straightforward consequence of the chain rule and the Cauchy-Riemann equations: Let ∆n Cn be a polydisk. A map f : ∆n Cm is pseudoholomorphic if and ⊂ → only if f is holomorphic. Holomorphic tangent bundles Let X be a complex manifold which is equipped −1 with holomorphic charts (Uα, τα) of X such that the transition maps ταβ = τα τβ are { n } ◦ holomorphic. From τα : Uα C , at each point x Uα X we have the Jacobian → ∈ ⊂ n dτα : TxX C . → 45 −1 The Jacobain of the transition maps τij := τi τ is the matrix ◦ j k ∂τij (τj(z)). ∂zl k,l The holomorphic tangent bundle of a complex manifold X is the holomorphic vector bundle X on X which is given by the transition matrices T k ∂τij τij(z) := (τj(z)). ∂zl k,l Just like line bundles, transition matrices satisfying transition conditions (i.e., τjj = Id,τij · τji = Id and τij τjk τki = Id) is equivalent to existence of vector bundles. · · n We denote by TX the underlying real tangent space. As in the C case, if (z1, ..., zn) are holomorphic coordinates on an open subset U X and zj := xj +iyj, then (x1,y1, ..., xn,yn) ⊂ ∂ ∂ ∂ ∂ define real coordinates of X on U and TX admits a basis ( , , ..., , ). The U ∂x1 ∂y1 ∂xn ∂yn | ∂ ∂ ∂ ∂ almost complex structure J : TX U TX U is given by J = , J = . The | → | ∂xj ∂yj ∂yj − ∂xj complexified tangent space C TX has the eigenspace of the eigenvalues i and i, denoted 1,0 0,1 ⊗ C 1,0 0,1 −1,0 by TX and TX so that we have the spliting direct sum TX = TX TX . T X has a basis ∂ := 1 ∂ i ∂ , and T 0,1X has a basis ∂ := 1 ⊗∂ + i ∂ . ⊕ ∂zk 2 ∂xk − ∂yk ∂zk 2 ∂xk ∂yk We claim: The subspace T 1,0X is canonically isomorphic to the holomorphic tangent space X (as a complex vector bundle). In fact, let X = iUi be an open covering by T Cn −1 ∪∗ 1,0 1,0 holomorphic charts φi : Ui Vi := φi(Ui) . Then (φi ) (T X Ui ) T Vi and the latter is canonically trivialized.→ With respect⊂ to these canonical trivializations| ≃ the induced − isomorphisms T 1,0 V T 1,0 V are given by the Jacobian J(φ φ 1) φ (x). Thus both φj (x) j φi(x) i i j j 1,0 ≃ ◦ ◦ bundles T X and X are associated to the same cocycle J(φij) φj . Then they are T { ◦ } isomorphic. Hence we can also call T 1,0X the holomorphic tangent bundle of X. 0,1 Similarly the subspace T X is canonically isomorphic to the complex conjugate X (with complex structure J via the C-linear embeddings). Hence we can call T 0,1X theT anti-holomorphic tangent− bundle of X. The dual spaces V ∗, (V ∗)1,0 and (V ∗)0,1 of a real vector space V Let V be a finite dimensional real vector space endowed with an almost complex structure J. Then the dual space ∗ V = HomR(V, R) 46 has a natural almost complex structure given by J : V ∗ V ∗, f J(f) where J(f)(v) := ∗ → → ∗ f(J(v)). The induced decomposition on (V )C = HomR(V, C)=(VC) is given by ∗ ∗1,0 ∗0,1 (V )C = V V ⊕ where ∗1,0 1,0 ∗ V = f HomR(V, C) f(I(v)) = if(v) =(V ) , { ∈ | } ∗0,1 0,1 ∗ V = f HomR(V, C) f(I(v)) = if(v) =(V ) . { ∈ | − } The natural decomposition of its exterior algebra of V is •V = d k V. ∧ ⊕k=0 ∧ Also the natural decomposition of its exterior algebra of VC is • d k VC = VC. ∧ ⊕k=0 ∧ ∗ ∗ • Moreover, VC = V R C, and V is the real subspace of VC that is left invariant under complex∧ conjugation.∧ ⊗ ∧ ∧ We define p,q p 1,0 q 0,1 V := V C V , ∧ ∧ ⊗ ∧ where the exterior products of V 1,0 and V 0,1 are taken as exterior products of complex vector spaces. An element α V p,qV is of bidegree (p, q). ∈ Proposition 5.1 If V admits an almost complex structure, then p,q p+q 1. V is in a canonical way a subspace of VC. ∧ ∧ k p,q 2. VC = p q k V . ∧ ⊕ + = ∧ ∗ p,q q,p 3. Complex conjugation on VC defines an anti- C linear isomorphism V V , i.e., p,qV = q,pV . ∧ ∧ ≃ ∧ ∧ ∧ 4. The exterior product is of bidegree (0, 0), i.e., (α, β) α β maps p,q r,sV to the subspace p+r,q+sV . → ∧ ∧ × ∧ ∧ 47.
Recommended publications
  • A Geometric Take on Metric Learning
    A Geometric take on Metric Learning Søren Hauberg Oren Freifeld Michael J. Black MPI for Intelligent Systems Brown University MPI for Intelligent Systems Tubingen,¨ Germany Providence, US Tubingen,¨ Germany [email protected] [email protected] [email protected] Abstract Multi-metric learning techniques learn local metric tensors in different parts of a feature space. With such an approach, even simple classifiers can be competitive with the state-of-the-art because the distance measure locally adapts to the struc- ture of the data. The learned distance measure is, however, non-metric, which has prevented multi-metric learning from generalizing to tasks such as dimensional- ity reduction and regression in a principled way. We prove that, with appropriate changes, multi-metric learning corresponds to learning the structure of a Rieman- nian manifold. We then show that this structure gives us a principled way to perform dimensionality reduction and regression according to the learned metrics. Algorithmically, we provide the first practical algorithm for computing geodesics according to the learned metrics, as well as algorithms for computing exponential and logarithmic maps on the Riemannian manifold. Together, these tools let many Euclidean algorithms take advantage of multi-metric learning. We illustrate the approach on regression and dimensionality reduction tasks that involve predicting measurements of the human body from shape data. 1 Learning and Computing Distances Statistics relies on measuring distances. When the Euclidean metric is insufficient, as is the case in many real problems, standard methods break down. This is a key motivation behind metric learning, which strives to learn good distance measures from data.
    [Show full text]
  • Riemann Surfaces
    RIEMANN SURFACES AARON LANDESMAN CONTENTS 1. Introduction 2 2. Maps of Riemann Surfaces 4 2.1. Defining the maps 4 2.2. The multiplicity of a map 4 2.3. Ramification Loci of maps 6 2.4. Applications 6 3. Properness 9 3.1. Definition of properness 9 3.2. Basic properties of proper morphisms 9 3.3. Constancy of degree of a map 10 4. Examples of Proper Maps of Riemann Surfaces 13 5. Riemann-Hurwitz 15 5.1. Statement of Riemann-Hurwitz 15 5.2. Applications 15 6. Automorphisms of Riemann Surfaces of genus ≥ 2 18 6.1. Statement of the bound 18 6.2. Proving the bound 18 6.3. We rule out g(Y) > 1 20 6.4. We rule out g(Y) = 1 20 6.5. We rule out g(Y) = 0, n ≥ 5 20 6.6. We rule out g(Y) = 0, n = 4 20 6.7. We rule out g(C0) = 0, n = 3 20 6.8. 21 7. Automorphisms in low genus 0 and 1 22 7.1. Genus 0 22 7.2. Genus 1 22 7.3. Example in Genus 3 23 Appendix A. Proof of Riemann Hurwitz 25 Appendix B. Quotients of Riemann surfaces by automorphisms 29 References 31 1 2 AARON LANDESMAN 1. INTRODUCTION In this course, we’ll discuss the theory of Riemann surfaces. Rie- mann surfaces are a beautiful breeding ground for ideas from many areas of math. In this way they connect seemingly disjoint fields, and also allow one to use tools from different areas of math to study them.
    [Show full text]
  • Holomorphic Embedding of Complex Curves in Spaces of Constant Holomorphic Curvature (Wirtinger's Theorem/Kaehler Manifold/Riemann Surfaces) ISSAC CHAVEL and HARRY E
    Proc. Nat. Acad. Sci. USA Vol. 69, No. 3, pp. 633-635, March 1972 Holomorphic Embedding of Complex Curves in Spaces of Constant Holomorphic Curvature (Wirtinger's theorem/Kaehler manifold/Riemann surfaces) ISSAC CHAVEL AND HARRY E. RAUCH* The City College of The City University of New York and * The Graduate Center of The City University of New York, 33 West 42nd St., New York, N.Y. 10036 Communicated by D. C. Spencer, December 21, 1971 ABSTRACT A special case of Wirtinger's theorem ever, the converse is not true in general: the complex curve asserts that a complex curve (two-dimensional) hob-o embedded as a real minimal surface is not necessarily holo- morphically embedded in a Kaehler manifold is a minimal are obstructions. With the by morphically embedded-there surface. The converse is not necessarily true. Guided that we view the considerations from the theory of moduli of Riemann moduli problem in mind, this fact suggests surfaces, we discover (among other results) sufficient embedding of our complex curve as a real minimal surface topological aind differential-geometric conditions for a in a Kaehler manifold as the solution to the differential-geo- minimal (Riemannian) immersion of a 2-manifold in for our present mapping problem metric metric extremal problem complex projective space with the Fubini-Study as our infinitesimal moduli, differential- to be holomorphic. and that we then seek, geometric invariants on the curve whose vanishing forms neces- sary and sufficient conditions for the minimal embedding to be INTRODUCTION AND MOTIVATION holomorphic. Going further, we observe that minimal surface It is known [1-5] how Riemann's conception of moduli for con- evokes the notion of second fundamental forms; while the formal mapping of homeomorphic, multiply connected Rie- moduli problem, again, suggests quadratic differentials.
    [Show full text]
  • Complex Manifolds
    Complex Manifolds Lecture notes based on the course by Lambertus van Geemen A.A. 2012/2013 Author: Michele Ferrari. For any improvement suggestion, please email me at: [email protected] Contents n 1 Some preliminaries about C 3 2 Basic theory of complex manifolds 6 2.1 Complex charts and atlases . 6 2.2 Holomorphic functions . 8 2.3 The complex tangent space and cotangent space . 10 2.4 Differential forms . 12 2.5 Complex submanifolds . 14 n 2.6 Submanifolds of P ............................... 16 2.6.1 Complete intersections . 18 2 3 The Weierstrass }-function; complex tori and cubics in P 21 3.1 Complex tori . 21 3.2 Elliptic functions . 22 3.3 The Weierstrass }-function . 24 3.4 Tori and cubic curves . 26 3.4.1 Addition law on cubic curves . 28 3.4.2 Isomorphisms between tori . 30 2 Chapter 1 n Some preliminaries about C We assume that the reader has some familiarity with the notion of a holomorphic function in one complex variable. We extend that notion with the following n n Definition 1.1. Let f : C ! C, U ⊆ C open with a 2 U, and let z = (z1; : : : ; zn) be n the coordinates in C . f is holomorphic in a = (a1; : : : ; an) 2 U if f has a convergent power series expansion: +1 X k1 kn f(z) = ak1;:::;kn (z1 − a1) ··· (zn − an) k1;:::;kn=0 This means, in particular, that f is holomorphic in each variable. Moreover, we define OCn (U) := ff : U ! C j f is holomorphicg m A map F = (F1;:::;Fm): U ! C is holomorphic if each Fj is holomorphic.
    [Show full text]
  • INTRODUCTION to ALGEBRAIC GEOMETRY 1. Preliminary Of
    INTRODUCTION TO ALGEBRAIC GEOMETRY WEI-PING LI 1. Preliminary of Calculus on Manifolds 1.1. Tangent Vectors. What are tangent vectors we encounter in Calculus? 2 0 (1) Given a parametrised curve α(t) = x(t); y(t) in R , α (t) = x0(t); y0(t) is a tangent vector of the curve. (2) Given a surface given by a parameterisation x(u; v) = x(u; v); y(u; v); z(u; v); @x @x n = × is a normal vector of the surface. Any vector @u @v perpendicular to n is a tangent vector of the surface at the corresponding point. (3) Let v = (a; b; c) be a unit tangent vector of R3 at a point p 2 R3, f(x; y; z) be a differentiable function in an open neighbourhood of p, we can have the directional derivative of f in the direction v: @f @f @f D f = a (p) + b (p) + c (p): (1.1) v @x @y @z In fact, given any tangent vector v = (a; b; c), not necessarily a unit vector, we still can define an operator on the set of functions which are differentiable in open neighbourhood of p as in (1.1) Thus we can take the viewpoint that each tangent vector of R3 at p is an operator on the set of differential functions at p, i.e. @ @ @ v = (a; b; v) ! a + b + c j ; @x @y @z p or simply @ @ @ v = (a; b; c) ! a + b + c (1.2) @x @y @z 3 with the evaluation at p understood.
    [Show full text]
  • Complex Cobordism and Almost Complex Fillings of Contact Manifolds
    MSci Project in Mathematics COMPLEX COBORDISM AND ALMOST COMPLEX FILLINGS OF CONTACT MANIFOLDS November 2, 2016 Naomi L. Kraushar supervised by Dr C Wendl University College London Abstract An important problem in contact and symplectic topology is the question of which contact manifolds are symplectically fillable, in other words, which contact manifolds are the boundaries of symplectic manifolds, such that the symplectic structure is consistent, in some sense, with the given contact struc- ture on the boundary. The homotopy data on the tangent bundles involved in this question is finding an almost complex filling of almost contact manifolds. It is known that such fillings exist, so that there are no obstructions on the tangent bundles to the existence of symplectic fillings of contact manifolds; however, so far a formal proof of this fact has not been written down. In this paper, we prove this statement. We use cobordism theory to deal with the stable part of the homotopy obstruction, and then use obstruction theory, and a variant on surgery theory known as contact surgery, to deal with the unstable part of the obstruction. Contents 1 Introduction 2 2 Vector spaces and vector bundles 4 2.1 Complex vector spaces . .4 2.2 Symplectic vector spaces . .7 2.3 Vector bundles . 13 3 Contact manifolds 19 3.1 Contact manifolds . 19 3.2 Submanifolds of contact manifolds . 23 3.3 Complex, almost complex, and stably complex manifolds . 25 4 Universal bundles and classifying spaces 30 4.1 Universal bundles . 30 4.2 Universal bundles for O(n) and U(n).............. 33 4.3 Stable vector bundles .
    [Show full text]
  • Lecture 2 Tangent Space, Differential Forms, Riemannian Manifolds
    Lecture 2 tangent space, differential forms, Riemannian manifolds differentiable manifolds A manifold is a set that locally look like Rn. For example, a two-dimensional sphere S2 can be covered by two subspaces, one can be the northen hemisphere extended slightly below the equator and another can be the southern hemisphere extended slightly above the equator. Each patch can be mapped smoothly into an open set of R2. In general, a manifold M consists of a family of open sets Ui which covers M, i.e. iUi = M, n ∪ and, for each Ui, there is a continuous invertible map ϕi : Ui R . To be precise, to define → what we mean by a continuous map, we has to define M as a topological space first. This requires a certain set of properties for open sets of M. We will discuss this in a couple of weeks. For now, we assume we know what continuous maps mean for M. If you need to know now, look at one of the standard textbooks (e.g., Nakahara). Each (Ui, ϕi) is called a coordinate chart. Their collection (Ui, ϕi) is called an atlas. { } The map has to be one-to-one, so that there is an inverse map from the image ϕi(Ui) to −1 Ui. If Ui and Uj intersects, we can define a map ϕi ϕj from ϕj(Ui Uj)) to ϕi(Ui Uj). ◦ n ∩ ∩ Since ϕj(Ui Uj)) to ϕi(Ui Uj) are both subspaces of R , we express the map in terms of n ∩ ∩ functions and ask if they are differentiable.
    [Show full text]
  • 5. the Inverse Function Theorem We Now Want to Aim for a Version of the Inverse Function Theorem
    5. The inverse function theorem We now want to aim for a version of the Inverse function Theorem. In differential geometry, the inverse function theorem states that if a function is an isomorphism on tangent spaces, then it is locally an isomorphism. Unfortunately this is too much to expect in algebraic geometry, since the Zariski topology is too weak for this to be true. For example consider a curve which double covers another curve. At any point where there are two points in the fibre, the map on tangent spaces is an isomorphism. But there is no Zariski neighbourhood of any point where the map is an isomorphism. Thus a minimal requirement is that the morphism is a bijection. Note that this is not enough in general for a morphism between al- gebraic varieties to be an isomorphism. For example in characteristic p, Frobenius is nowhere smooth and even in characteristic zero, the parametrisation of the cuspidal cubic is a bijection but not an isomor- phism. Lemma 5.1. If f : X −! Y is a projective morphism with finite fibres, then f is finite. Proof. Since the result is local on the base, we may assume that Y is affine. By assumption X ⊂ Y × Pn and we are projecting onto the first factor. Possibly passing to a smaller open subset of Y , we may assume that there is a point p 2 Pn such that X does not intersect Y × fpg. As the blow up of Pn at p, fibres over Pn−1 with fibres isomorphic to P1, and the composition of finite morphisms is finite, we may assume that n = 1, by induction on n.
    [Show full text]
  • Cohomology of the Complex Grassmannian
    COHOMOLOGY OF THE COMPLEX GRASSMANNIAN JONAH BLASIAK Abstract. The Grassmannian is a generalization of projective spaces–instead of looking at the set of lines of some vector space, we look at the set of all n-planes. It can be given a manifold structure, and we study the cohomology ring of the Grassmannian manifold in the case that the vector space is complex. The mul- tiplicative structure of the ring is rather complicated and can be computed using the fact that for smooth oriented manifolds, cup product is Poincar´edual to intersection. There is some nice com- binatorial machinery for describing the intersection numbers. This includes the symmetric Schur polynomials, Young tableaux, and the Littlewood-Richardson rule. Sections 1, 2, and 3 introduce no- tation and the necessary topological tools. Section 4 uses linear algebra to prove Pieri’s formula, which describes the cup product of the cohomology ring in a special case. Section 5 describes the combinatorics and algebra that allow us to deduce all the multi- plicative structure of the cohomology ring from Pieri’s formula. 1. Basic properties of the Grassmannian The Grassmannian can be defined for a vector space over any field; the cohomology of the Grassmannian is the best understood for the complex case, and this is our focus. Following [MS], the complex Grass- m+n mannian Gn(C ) is the set of n-dimensional complex linear spaces, or n-planes for brevity, in the complex vector space Cm+n topologized n+m as follows: Let Vn(C ) denote the subspace of the n-fold direct sum Cm+n ⊕ ..
    [Show full text]
  • Spinc GEOMETRY of K¨AHLER MANIFOLDS and the HODGE
    SPINc GEOMETRY OF KAHLER¨ MANIFOLDS AND THE HODGE LAPLACIAN ON MINIMAL LAGRANGIAN SUBMANIFOLDS O. HIJAZI, S. MONTIEL, AND F. URBANO Abstract. From the existence of parallel spinor fields on Calabi- Yau, hyper-K¨ahleror complex flat manifolds, we deduce the ex- istence of harmonic differential forms of different degrees on their minimal Lagrangian submanifolds. In particular, when the sub- manifolds are compact, we obtain sharp estimates on their Betti numbers. When the ambient manifold is K¨ahler-Einstein with pos- itive scalar curvature, and especially if it is a complex contact manifold or the complex projective space, we prove the existence of K¨ahlerian Killing spinor fields for some particular spinc struc- tures. Using these fields, we construct eigenforms for the Hodge Laplacian on certain minimal Lagrangian submanifolds and give some estimates for their spectra. Applications on the Morse index of minimal Lagrangian submanifolds are obtained. 1. Introduction Recently, connections between the spectrum of the classical Dirac operator on submanifolds of a spin Riemannian manifold and its ge- ometry were investigated. Even when the submanifold is spin, many problems appear. In fact, it is known that the restriction of the spin bundle of a spin manifold M to a spin submanifold is a Hermitian bun- dle given by the tensorial product of the intrinsic spin bundle of the submanifold and certain bundle associated with the normal bundle of the immersion ([2, 3, 6]). In general, it is not easy to have a control on such a Hermitian bundle. Some results have been obtained ([2, 24, 25]) when the normal bundle of the submanifold is trivial, for instance for hypersurfaces.
    [Show full text]
  • The Chirka-Lindelof and Fatou Theorems for D-Bar Subsolutions
    The Chirka - Lindel¨of and Fatou theorems for ∂J-subsolutions Alexandre Sukhov* * Universit´ede Lille, Laboratoire Paul Painlev´e, U.F.R. de Math´e-matique, 59655 Villeneuve d’Ascq, Cedex, France, [email protected] The author is partially suported by Labex CEMPI. Institut of Mathematics with Computing Centre - Subdivision of the Ufa Research Centre of Russian Academy of Sciences, 45008, Chernyshevsky Str. 112, Ufa, Russia. Abstract. This paper studies boundary properties of bounded functions with bounded ∂J differential on strictly pseudoconvex domains in an almost complex manifold. MSC: 32H02, 53C15. Key words: almost complex manifold, ∂-operator, strictly pseudoconvex domain, the Fatou theorem. Contents 1 Introduction 2 2 Almost complex manifolds and almost holomorphic functions 3 arXiv:1808.04266v1 [math.CV] 10 Aug 2018 2.1 Almostcomplexmanifolds............................ 3 2.2 Pseudoholomorphicdiscs............................. 4 2.3 The ∂J -operator on an almost complex manifold (M,J)............ 6 2.4 Plurisubharmonic functions on almost complex manifolds: the background . 8 2.5 Boundary properties of subsolutions of the ∂-operator in the unit disc . 9 3 The Chirka-Lindel¨of principle for strictly pseudoconvex domains 10 3.1 Localapproximationbyhomogeneousmodels . .. 12 3.2 Caseofmodelstructures . .. .. .. 13 3.3 DeformationargumentandproofofTheorem3.4 . ... 16 4 The Fatou theorem 17 1 1 Introduction The first fundamental results on analytic properties of almost complex structures (in sev- eral variables) are due to Newlander - Nirenberg [9] and Nijenhuis - Woolf [10]. After the seminal work by M.Gromov [7] the theory of pseudoholomorphic curves in almost complex manifolds became one of the most powerful tools of the symplectic geometry and now is rapidly increasing.
    [Show full text]
  • The Orientation Manifesto (For Undergraduates)
    The Orientation Manifesto (for undergraduates) Timothy E. Goldberg 11 November 2007 An orientation of a vector space is represented by an ordered basis of the vector space. We think of an orientation as a twirl, namely the twirl that rotates the first basis vector to the second, and the second to the third, and so on. Two ordered bases represent the same orientation if they generate the same twirl. (This amounts to the linear transformation taking one basis to the other having positive determinant.) If you think about it carefully, there are only ever two choices of twirls, and hence only two choices of orientation. n Because each R has a standard choice of ordered basis, fe1; e2; : : : ; eng (where ei is has 1 in the ith coordinates and 0 everywhere else), each Rn has a standard choice of orientation. The standard orientation of R is the twirl that points in the positive direction. The standard orientation of R2 is the counterclockwise twirl, moving from 3 e1 = (1; 0) to e2 = (0; 1). The standard orientation of R is a twirl that sweeps from the positive x direction to the positive y direction, and up the positive z direction. It's like a directed helix, pointed up and spinning in the counterclockwise direction if viewed from above. See Figure 1. An orientation of a curve, or a surface, or a solid body, is really a choice of orientations of every single tangent space, in such a way that the twirls all agree with each other. (This can be made horribly precise, when necessary.) There are several ways for a manifold to pick up an orientation.
    [Show full text]