A Beginner's Guide to Holomorphic Manifolds
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Diagonal Lifts of Metrics to Coframe Bundle
Proceedings of the Institute of Mathematics and Mechanics, National Academy of Sciences of Azerbaijan Volume 44, Number 2, 2018, Pages 328{337 DIAGONAL LIFTS OF METRICS TO COFRAME BUNDLE HABIL FATTAYEV AND ARIF SALIMOV Abstract. In this paper the diagonal lift Dg of a Riemannian metric g ∗ of a manifold Mn to the coframe bundle F (Mn) is defined, Levi-Civita connection, Killing vector fields with respect to the metric Dg and also an almost paracomplex structures in the coframe bundle are studied. 1. Introduction The Riemannian metrics in the tangent bundle firstly has been investigated by the Sasaki [14]. Tondeur [16] and Sato [15] have constructed Riemannian metrics on the cotangent bundle, the construction being the analogue of the metric Sasaki for the tangent bundle. Mok [7] has defined so-called the diagonal lift of metric to the linear frame bundle, which is a Riemannian metric resembles the Sasaki metric of tangent bundle. Some properties and applications for the Riemannian metrics of the tangent, cotangent, linear frame and tensor bundles are given in [1-4,7-9,12,13]. This paper is devoted to the investigation of Riemannian metrics in the coframe bundle. In 2 we briefly describe the definitions and results that are needed later, after which the diagonal lift Dg of a Riemannian metric g is constructed in 3. The Levi-Civita connection of the metric Dg is determined in In 4. In 5 we consider Killing vector fields in coframe bundle with respect to Riemannian metric Dg. An almost paracomplex structures in the coframe bundle equipped with metric Dg are studied in 6. -
Bulletin De La S
BULLETIN DE LA S. M. F. NGAIMING MOK An embedding theorem of complete Kähler manifolds of positive bisectional curvature onto affine algebraic varieties Bulletin de la S. M. F., tome 112 (1984), p. 197-258 <http://www.numdam.org/item?id=BSMF_1984__112__197_0> © Bulletin de la S. M. F., 1984, tous droits réservés. L’accès aux archives de la revue « Bulletin de la S. M. F. » (http: //smf.emath.fr/Publications/Bulletin/Presentation.html) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/ conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Bull. Soc. math. France, 112, 1984, p. 197-258. AN EMBEDDING THEOREM OF COMPLETE KAHLER MANIFOLDS OF POSITIVE BISECTIONAL CURVATURE ONTO AFFINE ALGEBRAIC VARIETIES BY NGAIMING MOK (*) R£SUM£. — Nous prouvons qu'une variete complete kahleriennc non compacte X de courbure biscctionnclle positive satisfaisant qudques conditions quantitatives geometriques est biholomorphiqucment isomorphe a une varictc affine algebrique. Si X est une surface complcxe de courbure riemannienne positive satisfaisant les memes conditions quantitatives, nous demontrons que X est en fait biholomorphiquement isomorphe a C2. ABSTRACT. - We prove that a complete noncompact Kahler manifold X of positive bisectional curvature satisfying suitable growth conditions can be biholomorphicaUy embed- ded onto an affine algebraic variety. In case X is a complex surface of positive Riemannian sectional curvature satisfying the same growth conditions, we show that X is biholomorphic toC2. -
Informal Lecture Notes for Complex Analysis
Informal lecture notes for complex analysis Robert Neel I'll assume you're familiar with the review of complex numbers and their algebra as contained in Appendix G of Stewart's book, so we'll pick up where that leaves off. 1 Elementary complex functions In one-variable real calculus, we have a collection of basic functions, like poly- nomials, rational functions, the exponential and log functions, and the trig functions, which we understand well and which serve as the building blocks for more general functions. The same is true in one complex variable; in fact, the real functions we just listed can be extended to complex functions. 1.1 Polynomials and rational functions We start with polynomials and rational functions. We know how to multiply and add complex numbers, and thus we understand polynomial functions. To be specific, a degree n polynomial, for some non-negative integer n, is a function of the form n n−1 f(z) = cnz + cn−1z + ··· + c1z + c0; 3 where the ci are complex numbers with cn 6= 0. For example, f(z) = 2z + (1 − i)z + 2i is a degree three (complex) polynomial. Polynomials are clearly defined on all of C. A rational function is the quotient of two polynomials, and it is defined everywhere where the denominator is non-zero. z2+1 Example: The function f(z) = z2−1 is a rational function. The denomina- tor will be zero precisely when z2 = 1. We know that every non-zero complex number has n distinct nth roots, and thus there will be two points at which the denominator is zero. -
Chapter 13 the Geometry of Circles
Chapter 13 TheR. Connelly geometry of circles Math 452, Spring 2002 Math 4520, Fall 2017 CLASSICAL GEOMETRIES So far we have been studying lines and conics in the Euclidean plane. What about circles, 14. The geometry of circles one of the basic objects of study in Euclidean geometry? One approach is to use the complex numbersSo far .we Recall have thatbeen the studying projectivities lines and of conics the projective in the Euclidean plane overplane., whichWhat weabout call 2, circles, Cone of the basic objects of study in Euclidean geometry? One approachC is to use CP are given by 3 by 3 matrices, and these projectivities restricted to a complex projective the complex numbers 1C. Recall that the projectivities of the projective plane over C, line,v.rhich which we wecall call Cp2, a CPare, given are the by Moebius3 by 3 matrices, functions, and whichthese projectivities themselves correspondrestricted to to a 2-by-2 matrices.complex Theprojective Moebius line, functions which we preservecall a Cpl the, are cross the Moebius ratio. This functions, is where which circles themselves come in. correspond to a 2 by 2 matrix. The Moebius functions preserve the cross ratio. This is 13.1where circles The come cross in. ratio for the complex field We14.1 look The for anothercross ratio geometric for the interpretation complex field of the cross ratio for the complex field, or better 1 yet forWeCP look= Cfor[f1g another. Recall geometric the polarinterpretation decomposition of the cross of a complexratio for numberthe complexz = refield,iθ, where r =orjz betterj is the yet magnitude for Cpl = ofCz U, and{ 00 } .Recallθ is the the angle polar that decomposition the line through of a complex 0 and znumbermakes with thez real -rei9, axis. -
Curves, Surfaces, and Abelian Varieties
Curves, Surfaces, and Abelian Varieties Donu Arapura April 27, 2017 Contents 1 Basic curve theory2 1.1 Hyperelliptic curves.........................2 1.2 Topological genus...........................4 1.3 Degree of the canonical divisor...................6 1.4 Line bundles.............................7 1.5 Serre duality............................. 10 1.6 Harmonic forms............................ 13 1.7 Riemann-Roch............................ 16 1.8 Genus 3 curves............................ 18 1.9 Automorphic forms.......................... 20 2 Divisors on a surface 22 2.1 Bezout's theorem........................... 22 2.2 Divisors................................ 23 2.3 Intersection Pairing.......................... 24 2.4 Adjunction formula.......................... 27 2.5 Riemann-Roch............................ 29 2.6 Blow ups and Castelnuovo's theorem................ 31 3 Abelian varieties 34 3.1 Elliptic curves............................. 34 3.2 Abelian varieties and theta functions................ 36 3.3 Jacobians............................... 39 3.4 More on polarizations........................ 41 4 Elliptic Surfaces 44 4.1 Fibered surfaces........................... 44 4.2 Ruled surfaces............................ 45 4.3 Elliptic surfaces: examples...................... 46 4.4 Singular fibres............................. 48 4.5 The Shioda-Tate formula...................... 51 1 Chapter 1 Basic curve theory 1.1 Hyperelliptic curves As all of us learn in calculus, integrals involving square roots of quadratic poly- nomials can be evaluated by elementary methods. For higher degree polynomi- als, this is no longer true, and this was a subject of intense study in the 19th century. An integral of the form Z p(x) dx (1.1) pf(x) is called elliptic if f(x) is a polynomial of degree 3 or 4, and hyperelliptic if f has higher degree, say d. It was Riemann who introduced the geometric point of view, that we should really be looking at the algebraic curve Xo defined by y2 = f(x) 2 Qd in C . -
Killing Spinor-Valued Forms and the Cone Construction
ARCHIVUM MATHEMATICUM (BRNO) Tomus 52 (2016), 341–355 KILLING SPINOR-VALUED FORMS AND THE CONE CONSTRUCTION Petr Somberg and Petr Zima Abstract. On a pseudo-Riemannian manifold M we introduce a system of partial differential Killing type equations for spinor-valued differential forms, and study their basic properties. We discuss the relationship between solutions of Killing equations on M and parallel fields on the metric cone over M for spinor-valued forms. 1. Introduction The subject of the present article are the systems of over-determined partial differential equations for spinor-valued differential forms, classified as atypeof Killing equations. The solution spaces of these systems of PDE’s are termed Killing spinor-valued differential forms. A central question in geometry asks for pseudo-Riemannian manifolds admitting non-trivial solutions of Killing type equa- tions, namely how the properties of Killing spinor-valued forms relate to the underlying geometric structure for which they can occur. Killing spinor-valued forms are closely related to Killing spinors and Killing forms with Killing vectors as a special example. Killing spinors are both twistor spinors and eigenspinors for the Dirac operator, and real Killing spinors realize the limit case in the eigenvalue estimates for the Dirac operator on compact Riemannian spin manifolds of positive scalar curvature. There is a classification of complete simply connected Riemannian manifolds equipped with real Killing spinors, leading to the construction of manifolds with the exceptional holonomy groups G2 and Spin(7), see [8], [1]. Killing vector fields on a pseudo-Riemannian manifold are the infinitesimal generators of isometries, hence they influence its geometrical properties. -
Arxiv:Gr-Qc/0611154 V1 30 Nov 2006 Otx Fcra Geometry
MacDowell–Mansouri Gravity and Cartan Geometry Derek K. Wise Department of Mathematics University of California Riverside, CA 92521, USA email: [email protected] November 29, 2006 Abstract The geometric content of the MacDowell–Mansouri formulation of general relativity is best understood in terms of Cartan geometry. In particular, Cartan geometry gives clear geomet- ric meaning to the MacDowell–Mansouri trick of combining the Levi–Civita connection and coframe field, or soldering form, into a single physical field. The Cartan perspective allows us to view physical spacetime as tangentially approximated by an arbitrary homogeneous ‘model spacetime’, including not only the flat Minkowski model, as is implicitly used in standard general relativity, but also de Sitter, anti de Sitter, or other models. A ‘Cartan connection’ gives a prescription for parallel transport from one ‘tangent model spacetime’ to another, along any path, giving a natural interpretation of the MacDowell–Mansouri connection as ‘rolling’ the model spacetime along physical spacetime. I explain Cartan geometry, and ‘Cartan gauge theory’, in which the gauge field is replaced by a Cartan connection. In particular, I discuss MacDowell–Mansouri gravity, as well as its recent reformulation in terms of BF theory, in the arXiv:gr-qc/0611154 v1 30 Nov 2006 context of Cartan geometry. 1 Contents 1 Introduction 3 2 Homogeneous spacetimes and Klein geometry 8 2.1 Kleingeometry ................................... 8 2.2 MetricKleingeometry ............................. 10 2.3 Homogeneousmodelspacetimes. ..... 11 3 Cartan geometry 13 3.1 Ehresmannconnections . .. .. .. .. .. .. .. .. 13 3.2 Definition of Cartan geometry . ..... 14 3.3 Geometric interpretation: rolling Klein geometries . .............. 15 3.4 ReductiveCartangeometry . 17 4 Cartan-type gauge theory 20 4.1 Asequenceofbundles ............................. -
Bounded Holomorphic Functions on Finite Riemann Surfaces
BOUNDED HOLOMORPHIC FUNCTIONS ON FINITE RIEMANN SURFACES BY E. L. STOUT(i) 1. Introduction. This paper is devoted to the study of some problems concerning bounded holomorphic functions on finite Riemann surfaces. Our work has its origin in a pair of theorems due to Lennart Carleson. The first of the theorems of Carleson we shall be concerned with is the following [7] : Theorem 1.1. Let fy,---,f„ be bounded holomorphic functions on U, the open unit disc, such that \fy(z) + — + \f„(z) | su <5> 0 holds for some ô and all z in U. Then there exist bounded holomorphic function gy,---,g„ on U such that ftEi + - +/A-1. In §2, we use this theorem to establish an analogous result in the setting of finite open Riemann surfaces. §§3 and 4 consider certain questions which arise naturally in the course of the proof of this generalization. We mention that the chief result of §2, Theorem 2.6, has been obtained independently by N. L. Ailing [3] who has used methods more highly algebraic than ours. The second matter we shall be concerned with is that of interpolation. If R is a Riemann surface and if £ is a subset of R, call £ an interpolation set for R if for every bounded complex-valued function a on £, there is a bounded holo- morphic function f on R such that /1 £ = a. Carleson [6] has characterized interpolation sets in the unit disc: Theorem 1.2. The set {zt}™=1of points in U is an interpolation set for U if and only if there exists ô > 0 such that for all n ** n00 k = l;ktn 1 — Z.Zl An alternative proof is to be found in [12, p. -
Oka Manifolds: from Oka to Stein and Back
ANNALES DE LA FACULTÉ DES SCIENCES Mathématiques FRANC FORSTNERICˇ Oka manifolds: From Oka to Stein and back Tome XXII, no 4 (2013), p. 747-809. <http://afst.cedram.org/item?id=AFST_2013_6_22_4_747_0> © Université Paul Sabatier, Toulouse, 2013, tous droits réservés. L’accès aux articles de la revue « Annales de la faculté des sci- ences de Toulouse Mathématiques » (http://afst.cedram.org/), implique l’accord avec les conditions générales d’utilisation (http://afst.cedram. org/legal/). Toute reproduction en tout ou partie de cet article sous quelque forme que ce soit pour tout usage autre que l’utilisation à fin strictement personnelle du copiste est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. cedram Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques http://www.cedram.org/ Annales de la Facult´e des Sciences de Toulouse Vol. XXII, n◦ 4, 2013 pp. 747–809 Oka manifolds: From Oka to Stein and back Franc Forstnericˇ(1) ABSTRACT. — Oka theory has its roots in the classical Oka-Grauert prin- ciple whose main result is Grauert’s classification of principal holomorphic fiber bundles over Stein spaces. Modern Oka theory concerns holomor- phic maps from Stein manifolds and Stein spaces to Oka manifolds. It has emerged as a subfield of complex geometry in its own right since the appearance of a seminal paper of M. Gromov in 1989. In this expository paper we discuss Oka manifolds and Oka maps. We de- scribe equivalent characterizations of Oka manifolds, the functorial prop- erties of this class, and geometric sufficient conditions for being Oka, the most important of which is Gromov’s ellipticity. -
Hodge Decomposition
Hodge Decomposition Daniel Lowengrub April 27, 2014 1 Introduction All of the content in these notes in contained in the book Differential Analysis on Complex Man- ifolds by Raymond Wells. The primary objective here is to highlight the steps needed to prove the Hodge decomposition theorems for real and complex manifolds, in addition to providing intuition as to how everything fits together. 1.1 The Decomposition Theorem On a given complex manifold X, there are two natural cohomologies to consider. One is the de Rham Cohomology which can be defined on a general, possibly non complex, manifold. The second one is the Dolbeault cohomology which uses the complex structure. We’ll quickly go over the definitions of these cohomologies in order to set notation but for a precise discussion I recommend Huybrechts or Wells. If X is a manifold, we can define the de Rahm Complex to be the chain complex 0 E(Ω0)(X) −d E(Ω1)(X) −d ::: Where Ω = T∗ denotes the cotangent vector bundle and Ωk is the alternating product Ωk = ΛkΩ. In general, we’ll use the notation! E(E) to! denote the sheaf! of sections associated to a vector bundle E. The boundary operator is the usual differentiation operator. The de Rham cohomology of the manifold X is defined to be the cohomology of the de Rham chain complex: d Ker(E(Ωn)(X) − E(Ωn+1)(X)) n (X R) = HdR , d Im(E(Ωn-1)(X) − E(Ωn)(X)) ! We can also consider the de Rham cohomology with complex coefficients by tensoring the de Rham complex with C in order to obtain the de Rham complex! with complex coefficients 0 d 1 d 0 E(ΩC)(X) − E(ΩC)(X) − ::: where ΩC = Ω ⊗ C and the differential d is linearly extended. -
Riemann Surfaces
RIEMANN SURFACES AARON LANDESMAN CONTENTS 1. Introduction 2 2. Maps of Riemann Surfaces 4 2.1. Defining the maps 4 2.2. The multiplicity of a map 4 2.3. Ramification Loci of maps 6 2.4. Applications 6 3. Properness 9 3.1. Definition of properness 9 3.2. Basic properties of proper morphisms 9 3.3. Constancy of degree of a map 10 4. Examples of Proper Maps of Riemann Surfaces 13 5. Riemann-Hurwitz 15 5.1. Statement of Riemann-Hurwitz 15 5.2. Applications 15 6. Automorphisms of Riemann Surfaces of genus ≥ 2 18 6.1. Statement of the bound 18 6.2. Proving the bound 18 6.3. We rule out g(Y) > 1 20 6.4. We rule out g(Y) = 1 20 6.5. We rule out g(Y) = 0, n ≥ 5 20 6.6. We rule out g(Y) = 0, n = 4 20 6.7. We rule out g(C0) = 0, n = 3 20 6.8. 21 7. Automorphisms in low genus 0 and 1 22 7.1. Genus 0 22 7.2. Genus 1 22 7.3. Example in Genus 3 23 Appendix A. Proof of Riemann Hurwitz 25 Appendix B. Quotients of Riemann surfaces by automorphisms 29 References 31 1 2 AARON LANDESMAN 1. INTRODUCTION In this course, we’ll discuss the theory of Riemann surfaces. Rie- mann surfaces are a beautiful breeding ground for ideas from many areas of math. In this way they connect seemingly disjoint fields, and also allow one to use tools from different areas of math to study them. -
Isometry Types of Frame Bundles
Pacific Journal of Mathematics ISOMETRY TYPES OF FRAME BUNDLES WOUTER VAN LIMBEEK Volume 285 No. 2 December 2016 PACIFIC JOURNAL OF MATHEMATICS Vol. 285, No. 2, 2016 dx.doi.org/10.2140/pjm.2016.285.393 ISOMETRY TYPES OF FRAME BUNDLES WOUTER VAN LIMBEEK We consider the oriented orthonormal frame bundle SO.M/ of an oriented Riemannian manifold M. The Riemannian metric on M induces a canon- ical Riemannian metric on SO.M/. We prove that for two closed oriented Riemannian n-manifolds M and N, the frame bundles SO.M/ and SO.N/ are isometric if and only if M and N are isometric, except possibly in di- mensions 3, 4, and 8. This answers a question of Benson Farb except in dimensions 3, 4, and 8. 1. Introduction 393 2. Preliminaries 396 3. High dimensional isometry groups of manifolds 400 4. Geometric characterization of the fibers of SO.M/ ! M 403 5. Proof for M with positive constant curvature 415 6. Proof of the main theorem for surfaces 422 Acknowledgements 425 References 425 1. Introduction Let M be an oriented Riemannian manifold, and let X VD SO.M/ be the oriented orthonormal frame bundle of M. The Riemannian structure g on M induces in a canonical way a Riemannian metric gSO on SO.M/. This construction was first carried out by O’Neill[1966] and independently by Mok[1978], and is very similar to Sasaki’s[1958; 1962] construction of a metric on the unit tangent bundle of M, so we will henceforth refer to gSO as the Sasaki–Mok–O’Neill metric on SO.M/.