Killing Spinor-Valued Forms and the Cone Construction
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Topology and Physics 2019 - Lecture 2
Topology and Physics 2019 - lecture 2 Marcel Vonk February 12, 2019 2.1 Maxwell theory in differential form notation Maxwell's theory of electrodynamics is a great example of the usefulness of differential forms. A nice reference on this topic, though somewhat outdated when it comes to notation, is [1]. For notational simplicity, we will work in units where the speed of light, the vacuum permittivity and the vacuum permeability are all equal to 1: c = 0 = µ0 = 1. 2.1.1 The dual field strength In three dimensional space, Maxwell's electrodynamics describes the physics of the electric and magnetic fields E~ and B~ . These are three-dimensional vector fields, but the beauty of the theory becomes much more obvious if we (a) use a four-dimensional relativistic formulation, and (b) write it in terms of differential forms. For example, let us look at Maxwells two source-free, homogeneous equations: r · B = 0;@tB + r × E = 0: (2.1) That these equations have a relativistic flavor becomes clear if we write them out in com- ponents and organize the terms somewhat suggestively: x y z 0 + @xB + @yB + @zB = 0 x z y −@tB + 0 − @yE + @zE = 0 (2.2) y z x −@tB + @xE + 0 − @zE = 0 z y x −@tB − @xE + @yE + 0 = 0 Note that we also multiplied the last three equations by −1 to clarify the structure. All in all, we see that we have four equations (one for each space-time coordinate) which each contain terms in which the four coordinate derivatives act. Therefore, we may be tempted to write our set of equations in more \relativistic" notation as ^µν @µF = 0 (2.3) 1 with F^µν the coordinates of an antisymmetric two-tensor (i. -
LP THEORY of DIFFERENTIAL FORMS on MANIFOLDS This
TRANSACTIONSOF THE AMERICAN MATHEMATICALSOCIETY Volume 347, Number 6, June 1995 LP THEORY OF DIFFERENTIAL FORMS ON MANIFOLDS CHAD SCOTT Abstract. In this paper, we establish a Hodge-type decomposition for the LP space of differential forms on closed (i.e., compact, oriented, smooth) Rieman- nian manifolds. Critical to the proof of this result is establishing an LP es- timate which contains, as a special case, the L2 result referred to by Morrey as Gaffney's inequality. This inequality helps us show the equivalence of the usual definition of Sobolev space with a more geometric formulation which we provide in the case of differential forms on manifolds. We also prove the LP boundedness of Green's operator which we use in developing the LP theory of the Hodge decomposition. For the calculus of variations, we rigorously verify that the spaces of exact and coexact forms are closed in the LP norm. For nonlinear analysis, we demonstrate the existence and uniqueness of a solution to the /1-harmonic equation. 1. Introduction This paper contributes primarily to the development of the LP theory of dif- ferential forms on manifolds. The reader should be aware that for the duration of this paper, manifold will refer only to those which are Riemannian, compact, oriented, C°° smooth and without boundary. For p = 2, the LP theory is well understood and the L2-Hodge decomposition can be found in [M]. However, in the case p ^ 2, the LP theory has yet to be fully developed. Recent appli- cations of the LP theory of differential forms on W to both quasiconformal mappings and nonlinear elasticity continue to motivate interest in this subject. -
NOTES on DIFFERENTIAL FORMS. PART 3: TENSORS 1. What Is A
NOTES ON DIFFERENTIAL FORMS. PART 3: TENSORS 1. What is a tensor? 1 n Let V be a finite-dimensional vector space. It could be R , it could be the tangent space to a manifold at a point, or it could just be an abstract vector space. A k-tensor is a map T : V × · · · × V ! R 2 (where there are k factors of V ) that is linear in each factor. That is, for fixed ~v2; : : : ;~vk, T (~v1;~v2; : : : ;~vk−1;~vk) is a linear function of ~v1, and for fixed ~v1;~v3; : : : ;~vk, T (~v1; : : : ;~vk) is a k ∗ linear function of ~v2, and so on. The space of k-tensors on V is denoted T (V ). Examples: n • If V = R , then the inner product P (~v; ~w) = ~v · ~w is a 2-tensor. For fixed ~v it's linear in ~w, and for fixed ~w it's linear in ~v. n • If V = R , D(~v1; : : : ;~vn) = det ~v1 ··· ~vn is an n-tensor. n • If V = R , T hree(~v) = \the 3rd entry of ~v" is a 1-tensor. • A 0-tensor is just a number. It requires no inputs at all to generate an output. Note that the definition of tensor says nothing about how things behave when you rotate vectors or permute their order. The inner product P stays the same when you swap the two vectors, but the determinant D changes sign when you swap two vectors. Both are tensors. For a 1-tensor like T hree, permuting the order of entries doesn't even make sense! ~ ~ Let fb1;:::; bng be a basis for V . -
Arxiv:Gr-Qc/0611154 V1 30 Nov 2006 Otx Fcra Geometry
MacDowell–Mansouri Gravity and Cartan Geometry Derek K. Wise Department of Mathematics University of California Riverside, CA 92521, USA email: [email protected] November 29, 2006 Abstract The geometric content of the MacDowell–Mansouri formulation of general relativity is best understood in terms of Cartan geometry. In particular, Cartan geometry gives clear geomet- ric meaning to the MacDowell–Mansouri trick of combining the Levi–Civita connection and coframe field, or soldering form, into a single physical field. The Cartan perspective allows us to view physical spacetime as tangentially approximated by an arbitrary homogeneous ‘model spacetime’, including not only the flat Minkowski model, as is implicitly used in standard general relativity, but also de Sitter, anti de Sitter, or other models. A ‘Cartan connection’ gives a prescription for parallel transport from one ‘tangent model spacetime’ to another, along any path, giving a natural interpretation of the MacDowell–Mansouri connection as ‘rolling’ the model spacetime along physical spacetime. I explain Cartan geometry, and ‘Cartan gauge theory’, in which the gauge field is replaced by a Cartan connection. In particular, I discuss MacDowell–Mansouri gravity, as well as its recent reformulation in terms of BF theory, in the arXiv:gr-qc/0611154 v1 30 Nov 2006 context of Cartan geometry. 1 Contents 1 Introduction 3 2 Homogeneous spacetimes and Klein geometry 8 2.1 Kleingeometry ................................... 8 2.2 MetricKleingeometry ............................. 10 2.3 Homogeneousmodelspacetimes. ..... 11 3 Cartan geometry 13 3.1 Ehresmannconnections . .. .. .. .. .. .. .. .. 13 3.2 Definition of Cartan geometry . ..... 14 3.3 Geometric interpretation: rolling Klein geometries . .............. 15 3.4 ReductiveCartangeometry . 17 4 Cartan-type gauge theory 20 4.1 Asequenceofbundles ............................. -
Gsm025-Endmatter.Pdf
http://dx.doi.org/10.1090/gsm/025 Selected Titles in This Series 25 Thomas Friedrich, Dirac operators in Riemannian geometry, 2000 24 Helmut Koch, Number theory: Algebraic numbers and functions, 2000 23 Alberto Candel and Lawrence Conlon, Foliations I, 2000 22 Giinter R. Krause and Thomas H. Lenagan, Growth of algebras and Gelfand-Kirillov dimension, 2000 21 John B. Conway, A course in operator theory, 2000 20 Robert E. Gompf and Andras I. Stipsicz, 4-manifolds and Kirby calculus, 1999 19 Lawrence C. Evans, Partial differential equations, 1998 18 Winfried Just and Martin Weese, Discovering modern set theory. II: Set-theoretic tools for every mathematician, 1997 17 Henryk Iwaniec, Topics in classical automorphic forms, 1997 16 Richard V. Kadison and John R. Ringrose, Fundamentals of the theory of operator algebras. Volume II: Advanced theory, 1997 15 Richard V. Kadison and John R. Ringrose, Fundamentals of the theory of operator algebras. Volume I: Elementary theory, 1997 14 Elliott H. Lieb and Michael Loss, Analysis, 1997 13 Paul C. Shields, The ergodic theory of discrete sample paths, 1996 12 N. V. Krylov, Lectures on elliptic and parabolic equations in Holder spaces, 1996 11 Jacques Dixmier, Enveloping algebras, 1996 Printing 10 Barry Simon, Representations of finite and compact groups, 1996 9 Dino Lorenzini, An invitation to arithmetic geometry, 1996 8 Winfried Just and Martin Weese, Discovering modern set theory. I: The basics, 1996 7 Gerald J. Janusz, Algebraic number fields, second edition, 1996 6 Jens Carsten Jantzen, Lectures on quantum groups, 1996 5 Rick Miranda, Algebraic curves and Riemann surfaces, 1995 4 Russell A. -
Two Exotic Holonomies in Dimension Four, Path Geometries, and Twistor Theory
Two Exotic Holonomies in Dimension Four, Path Geometries, and Twistor Theory by Robert L. Bryant* Table of Contents §0. Introduction §1. The Holonomy of a Torsion-Free Connection §2. The Structure Equations of H3-andG3-structures §3. The Existence Theorems §4. Path Geometries and Exotic Holonomy §5. Twistor Theory and Exotic Holonomy §6. Epilogue §0. Introduction Since its introduction by Elie´ Cartan, the holonomy of a connection has played an important role in differential geometry. One of the best known results concerning hol- onomy is Berger’s classification of the possible holonomies of Levi-Civita connections of Riemannian metrics. Since the appearance of Berger [1955], much work has been done to refine his listofpossible Riemannian holonomies. See the recent works by Besse [1987]or Salamon [1989]foruseful historical surveys and applications of holonomy to Riemannian and algebraic geometry. Less well known is that, at the same time, Berger also classified the possible pseudo- Riemannian holonomies which act irreducibly on each tangent space. The intervening years have not completely resolved the question of whether all of the subgroups of the general linear group on his pseudo-Riemannian list actually occur as holonomy groups of pseudo-Riemannian metrics, but, as of this writing, only one class of examples on his list remains in doubt, namely SO∗(2p) ⊂ GL(4p)forp ≥ 3. Perhaps the least-known aspect of Berger’s work on holonomy concerns his list of the possible irreducibly-acting holonomy groups of torsion-free affine connections. (Torsion- free connections are the natural generalization of Levi-Civita connections in the metric case.) Part of the reason for this relative obscurity is that affine geometry is not as well known or widely usedasRiemannian geometry and global results are generally lacking. -
Flat Connections on Oriented 2-Manifolds
e Bull. London Math. Soc. 37 (2005) 1–14 C 2005 London Mathematical Society DOI: 10.1112/S002460930400373X FLAT CONNECTIONS ON ORIENTED 2-MANIFOLDS LISA C. JEFFREY Abstract This paper aims to provide a survey on the subject of representations of fundamental groups of 2-manifolds, or in other guises flat connections on orientable 2-manifolds or moduli spaces parametrizing holomorphic vector bundles on Riemann surfaces. It emphasizes the relationships between the different descriptions of these spaces. The final two sections of the paper outline results of the author and Kirwan on the cohomology rings of certain of the spaces described earlier (formulas for intersection numbers that were discovered by Witten (Commun. Math. Phys. 141 (1991) 153–209 and J. Geom. Phys. 9 (1992) 303–368) and given a mathematical proof by the author and Kirwan (Ann. of Math. 148 (1998) 109–196)). 1. Introduction This paper aims to provide a survey on the subject of representations of fundamental groups of 2-manifolds, or in other guises flat connections on orientable 2-manifolds or moduli spaces parametrizing holomorphic vector bundles on Riemann surfaces. Sections 1 and 2 are intended to be accessible to anyone with a background corresponding to an introductory course on differentiable manifolds (at the advanced undergraduate or beginning research student level in UK universities). Sections 3 and 4 describe recent work on the topology of the spaces treated in Sections 1 and 2, and may require more background in algebraic topology (for instance, familiarity with homology theory). The layout of the paper is as follows. Section 1.2 treats the Jacobian (which is the simplest prototype for the class of objects treated throughout the paper, corresponding to the group U(1)). -
Spinors of Real Type As Polyforms and the Generalized Killing Equation 11
SPINORS OF REAL TYPE AS POLYFORMS AND THE GENERALIZED KILLING EQUATION VICENTE CORTÉS, CALIN LAZAROIU, AND C. S. SHAHBAZI Abstract. We develop a new framework for the study of generalized Killing spinors, where generalized Killing spinor equations, possibly with constraints, can be formulated equivalently as systems of partial differential equations for a polyform satisfying algebraic relations in the Kähler- Atiyah bundle constructed by quantizing the exterior algebra bundle of the underlying manifold. At the core of this framework lies the characterization, which we develop in detail, of the image of the spinor squaring map of an irreducible Clifford module Σ of real type as a real algebraic variety in the Kähler-Atiyah algebra, which gives necessary and sufficient conditions for a polyform to be the square of a real spinor. We apply these results to Lorentzian four-manifolds, obtaining a new description of a real spinor on such a manifold through a certain distribution of parabolic 2-planes in its cotangent bundle. We use this result to give global characterizations of real Killing spinors on Lorentzian four-manifolds and of four-dimensional supersymmetric configurations of heterotic supergravity. In particular, we find new families of Einstein and non-Einstein four-dimensional Lorentzian metrics admitting real Killing spinors, some of which are deformations of the metric of AdS4 space-time. Contents 1. Introduction 1 2. Representing real vectors as endomorphisms in a paired vectorspace 6 3. From real spinors to polyforms 14 4. Constrained Generalized Killing spinors of real type 28 5. Real Killing spinors on Lorentzian four-manifolds 39 6. Supersymmetric heterotic configurations 47 Appendix A. -
Math 865, Topics in Riemannian Geometry
Math 865, Topics in Riemannian Geometry Jeff A. Viaclovsky Fall 2007 Contents 1 Introduction 3 2 Lecture 1: September 4, 2007 4 2.1 Metrics, vectors, and one-forms . 4 2.2 The musical isomorphisms . 4 2.3 Inner product on tensor bundles . 5 2.4 Connections on vector bundles . 6 2.5 Covariant derivatives of tensor fields . 7 2.6 Gradient and Hessian . 9 3 Lecture 2: September 6, 2007 9 3.1 Curvature in vector bundles . 9 3.2 Curvature in the tangent bundle . 10 3.3 Sectional curvature, Ricci tensor, and scalar curvature . 13 4 Lecture 3: September 11, 2007 14 4.1 Differential Bianchi Identity . 14 4.2 Algebraic study of the curvature tensor . 15 5 Lecture 4: September 13, 2007 19 5.1 Orthogonal decomposition of the curvature tensor . 19 5.2 The curvature operator . 20 5.3 Curvature in dimension three . 21 6 Lecture 5: September 18, 2007 22 6.1 Covariant derivatives redux . 22 6.2 Commuting covariant derivatives . 24 6.3 Rough Laplacian and gradient . 25 7 Lecture 6: September 20, 2007 26 7.1 Commuting Laplacian and Hessian . 26 7.2 An application to PDE . 28 1 8 Lecture 7: Tuesday, September 25. 29 8.1 Integration and adjoints . 29 9 Lecture 8: September 23, 2007 34 9.1 Bochner and Weitzenb¨ock formulas . 34 10 Lecture 9: October 2, 2007 38 10.1 Manifolds with positive curvature operator . 38 11 Lecture 10: October 4, 2007 41 11.1 Killing vector fields . 41 11.2 Isometries . 44 12 Lecture 11: October 9, 2007 45 12.1 Linearization of Ricci tensor . -
A Geodesic Connection in Fréchet Geometry
A geodesic connection in Fr´echet Geometry Ali Suri Abstract. In this paper first we propose a formula to lift a connection on M to its higher order tangent bundles T rM, r 2 N. More precisely, for a given connection r on T rM, r 2 N [ f0g, we construct the connection rc on T r+1M. Setting rci = rci−1 c, we show that rc1 = lim rci exists − and it is a connection on the Fr´echet manifold T 1M = lim T iM and the − geodesics with respect to rc1 exist. In the next step, we will consider a Riemannian manifold (M; g) with its Levi-Civita connection r. Under suitable conditions this procedure i gives a sequence of Riemannian manifolds f(T M, gi)gi2N equipped with ci c1 a sequence of Riemannian connections fr gi2N. Then we show that r produces the curves which are the (local) length minimizer of T 1M. M.S.C. 2010: 58A05, 58B20. Key words: Complete lift; spray; geodesic; Fr´echet manifolds; Banach manifold; connection. 1 Introduction In the first section we remind the bijective correspondence between linear connections and homogeneous sprays. Then using the results of [6] for complete lift of sprays, we propose a formula to lift a connection on M to its higher order tangent bundles T rM, r 2 N. More precisely, for a given connection r on T rM, r 2 N [ f0g, we construct its associated spray S and then we lift it to a homogeneous spray Sc on T r+1M [6]. Then, using the bijective correspondence between connections and sprays, we derive the connection rc on T r+1M from Sc. -
The Language of Differential Forms
Appendix A The Language of Differential Forms This appendix—with the only exception of Sect.A.4.2—does not contain any new physical notions with respect to the previous chapters, but has the purpose of deriving and rewriting some of the previous results using a different language: the language of the so-called differential (or exterior) forms. Thanks to this language we can rewrite all equations in a more compact form, where all tensor indices referred to the diffeomorphisms of the curved space–time are “hidden” inside the variables, with great formal simplifications and benefits (especially in the context of the variational computations). The matter of this appendix is not intended to provide a complete nor a rigorous introduction to this formalism: it should be regarded only as a first, intuitive and oper- ational approach to the calculus of differential forms (also called exterior calculus, or “Cartan calculus”). The main purpose is to quickly put the reader in the position of understanding, and also independently performing, various computations typical of a geometric model of gravity. The readers interested in a more rigorous discussion of differential forms are referred, for instance, to the book [22] of the bibliography. Let us finally notice that in this appendix we will follow the conventions introduced in Chap. 12, Sect. 12.1: latin letters a, b, c,...will denote Lorentz indices in the flat tangent space, Greek letters μ, ν, α,... tensor indices in the curved manifold. For the matter fields we will always use natural units = c = 1. Also, unless otherwise stated, in the first three Sects. -
Math 704: Part 1: Principal Bundles and Connections
MATH 704: PART 1: PRINCIPAL BUNDLES AND CONNECTIONS WEIMIN CHEN Contents 1. Lie Groups 1 2. Principal Bundles 3 3. Connections and curvature 6 4. Covariant derivatives 12 References 13 1. Lie Groups A Lie group G is a smooth manifold such that the multiplication map G × G ! G, (g; h) 7! gh, and the inverse map G ! G, g 7! g−1, are smooth maps. A Lie subgroup H of G is a subgroup of G which is at the same time an embedded submanifold. A Lie group homomorphism is a group homomorphism which is a smooth map between the Lie groups. The Lie algebra, denoted by Lie(G), of a Lie group G consists of the set of left-invariant vector fields on G, i.e., Lie(G) = fX 2 X (G)j(Lg)∗X = Xg, where Lg : G ! G is the left translation Lg(h) = gh. As a vector space, Lie(G) is naturally identified with the tangent space TeG via X 7! X(e). A Lie group homomorphism naturally induces a Lie algebra homomorphism between the associated Lie algebras. Finally, the universal cover of a connected Lie group is naturally a Lie group, which is in one to one correspondence with the corresponding Lie algebras. Example 1.1. Here are some important Lie groups in geometry and topology. • GL(n; R), GL(n; C), where GL(n; C) can be naturally identified as a Lie sub- group of GL(2n; R). • SL(n; R), O(n), SO(n) = O(n) \ SL(n; R), Lie subgroups of GL(n; R).