FROM DIFFERENTIATION in AFFINE SPACES to CONNECTIONS Jovana -Duretic 1. Introduction Definition 1. We Say That a Real Valued
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Connections on Bundles Md
Dhaka Univ. J. Sci. 60(2): 191-195, 2012 (July) Connections on Bundles Md. Showkat Ali, Md. Mirazul Islam, Farzana Nasrin, Md. Abu Hanif Sarkar and Tanzia Zerin Khan Department of Mathematics, University of Dhaka, Dhaka 1000, Bangladesh, Email: [email protected] Received on 25. 05. 2011.Accepted for Publication on 15. 12. 2011 Abstract This paper is a survey of the basic theory of connection on bundles. A connection on tangent bundle , is called an affine connection on an -dimensional smooth manifold . By the general discussion of affine connection on vector bundles that necessarily exists on which is compatible with tensors. I. Introduction = < , > (2) In order to differentiate sections of a vector bundle [5] or where <, > represents the pairing between and ∗. vector fields on a manifold we need to introduce a Then is a section of , called the absolute differential structure called the connection on a vector bundle. For quotient or the covariant derivative of the section along . example, an affine connection is a structure attached to a differentiable manifold so that we can differentiate its Theorem 1. A connection always exists on a vector bundle. tensor fields. We first introduce the general theorem of Proof. Choose a coordinate covering { }∈ of . Since connections on vector bundles. Then we study the tangent vector bundles are trivial locally, we may assume that there is bundle. is a -dimensional vector bundle determine local frame field for any . By the local structure of intrinsically by the differentiable structure [8] of an - connections, we need only construct a × matrix on dimensional smooth manifold . each such that the matrices satisfy II. -
Killing Spinor-Valued Forms and the Cone Construction
ARCHIVUM MATHEMATICUM (BRNO) Tomus 52 (2016), 341–355 KILLING SPINOR-VALUED FORMS AND THE CONE CONSTRUCTION Petr Somberg and Petr Zima Abstract. On a pseudo-Riemannian manifold M we introduce a system of partial differential Killing type equations for spinor-valued differential forms, and study their basic properties. We discuss the relationship between solutions of Killing equations on M and parallel fields on the metric cone over M for spinor-valued forms. 1. Introduction The subject of the present article are the systems of over-determined partial differential equations for spinor-valued differential forms, classified as atypeof Killing equations. The solution spaces of these systems of PDE’s are termed Killing spinor-valued differential forms. A central question in geometry asks for pseudo-Riemannian manifolds admitting non-trivial solutions of Killing type equa- tions, namely how the properties of Killing spinor-valued forms relate to the underlying geometric structure for which they can occur. Killing spinor-valued forms are closely related to Killing spinors and Killing forms with Killing vectors as a special example. Killing spinors are both twistor spinors and eigenspinors for the Dirac operator, and real Killing spinors realize the limit case in the eigenvalue estimates for the Dirac operator on compact Riemannian spin manifolds of positive scalar curvature. There is a classification of complete simply connected Riemannian manifolds equipped with real Killing spinors, leading to the construction of manifolds with the exceptional holonomy groups G2 and Spin(7), see [8], [1]. Killing vector fields on a pseudo-Riemannian manifold are the infinitesimal generators of isometries, hence they influence its geometrical properties. -
Arxiv:Gr-Qc/0611154 V1 30 Nov 2006 Otx Fcra Geometry
MacDowell–Mansouri Gravity and Cartan Geometry Derek K. Wise Department of Mathematics University of California Riverside, CA 92521, USA email: [email protected] November 29, 2006 Abstract The geometric content of the MacDowell–Mansouri formulation of general relativity is best understood in terms of Cartan geometry. In particular, Cartan geometry gives clear geomet- ric meaning to the MacDowell–Mansouri trick of combining the Levi–Civita connection and coframe field, or soldering form, into a single physical field. The Cartan perspective allows us to view physical spacetime as tangentially approximated by an arbitrary homogeneous ‘model spacetime’, including not only the flat Minkowski model, as is implicitly used in standard general relativity, but also de Sitter, anti de Sitter, or other models. A ‘Cartan connection’ gives a prescription for parallel transport from one ‘tangent model spacetime’ to another, along any path, giving a natural interpretation of the MacDowell–Mansouri connection as ‘rolling’ the model spacetime along physical spacetime. I explain Cartan geometry, and ‘Cartan gauge theory’, in which the gauge field is replaced by a Cartan connection. In particular, I discuss MacDowell–Mansouri gravity, as well as its recent reformulation in terms of BF theory, in the arXiv:gr-qc/0611154 v1 30 Nov 2006 context of Cartan geometry. 1 Contents 1 Introduction 3 2 Homogeneous spacetimes and Klein geometry 8 2.1 Kleingeometry ................................... 8 2.2 MetricKleingeometry ............................. 10 2.3 Homogeneousmodelspacetimes. ..... 11 3 Cartan geometry 13 3.1 Ehresmannconnections . .. .. .. .. .. .. .. .. 13 3.2 Definition of Cartan geometry . ..... 14 3.3 Geometric interpretation: rolling Klein geometries . .............. 15 3.4 ReductiveCartangeometry . 17 4 Cartan-type gauge theory 20 4.1 Asequenceofbundles ............................. -
Two Exotic Holonomies in Dimension Four, Path Geometries, and Twistor Theory
Two Exotic Holonomies in Dimension Four, Path Geometries, and Twistor Theory by Robert L. Bryant* Table of Contents §0. Introduction §1. The Holonomy of a Torsion-Free Connection §2. The Structure Equations of H3-andG3-structures §3. The Existence Theorems §4. Path Geometries and Exotic Holonomy §5. Twistor Theory and Exotic Holonomy §6. Epilogue §0. Introduction Since its introduction by Elie´ Cartan, the holonomy of a connection has played an important role in differential geometry. One of the best known results concerning hol- onomy is Berger’s classification of the possible holonomies of Levi-Civita connections of Riemannian metrics. Since the appearance of Berger [1955], much work has been done to refine his listofpossible Riemannian holonomies. See the recent works by Besse [1987]or Salamon [1989]foruseful historical surveys and applications of holonomy to Riemannian and algebraic geometry. Less well known is that, at the same time, Berger also classified the possible pseudo- Riemannian holonomies which act irreducibly on each tangent space. The intervening years have not completely resolved the question of whether all of the subgroups of the general linear group on his pseudo-Riemannian list actually occur as holonomy groups of pseudo-Riemannian metrics, but, as of this writing, only one class of examples on his list remains in doubt, namely SO∗(2p) ⊂ GL(4p)forp ≥ 3. Perhaps the least-known aspect of Berger’s work on holonomy concerns his list of the possible irreducibly-acting holonomy groups of torsion-free affine connections. (Torsion- free connections are the natural generalization of Levi-Civita connections in the metric case.) Part of the reason for this relative obscurity is that affine geometry is not as well known or widely usedasRiemannian geometry and global results are generally lacking. -
Flat Connections on Oriented 2-Manifolds
e Bull. London Math. Soc. 37 (2005) 1–14 C 2005 London Mathematical Society DOI: 10.1112/S002460930400373X FLAT CONNECTIONS ON ORIENTED 2-MANIFOLDS LISA C. JEFFREY Abstract This paper aims to provide a survey on the subject of representations of fundamental groups of 2-manifolds, or in other guises flat connections on orientable 2-manifolds or moduli spaces parametrizing holomorphic vector bundles on Riemann surfaces. It emphasizes the relationships between the different descriptions of these spaces. The final two sections of the paper outline results of the author and Kirwan on the cohomology rings of certain of the spaces described earlier (formulas for intersection numbers that were discovered by Witten (Commun. Math. Phys. 141 (1991) 153–209 and J. Geom. Phys. 9 (1992) 303–368) and given a mathematical proof by the author and Kirwan (Ann. of Math. 148 (1998) 109–196)). 1. Introduction This paper aims to provide a survey on the subject of representations of fundamental groups of 2-manifolds, or in other guises flat connections on orientable 2-manifolds or moduli spaces parametrizing holomorphic vector bundles on Riemann surfaces. Sections 1 and 2 are intended to be accessible to anyone with a background corresponding to an introductory course on differentiable manifolds (at the advanced undergraduate or beginning research student level in UK universities). Sections 3 and 4 describe recent work on the topology of the spaces treated in Sections 1 and 2, and may require more background in algebraic topology (for instance, familiarity with homology theory). The layout of the paper is as follows. Section 1.2 treats the Jacobian (which is the simplest prototype for the class of objects treated throughout the paper, corresponding to the group U(1)). -
Riemannian Geometry and Multilinear Tensors with Vector Fields on Manifolds Md
International Journal of Scientific & Engineering Research, Volume 5, Issue 9, September-2014 157 ISSN 2229-5518 Riemannian Geometry and Multilinear Tensors with Vector Fields on Manifolds Md. Abdul Halim Sajal Saha Md Shafiqul Islam Abstract-In the paper some aspects of Riemannian manifolds, pseudo-Riemannian manifolds, Lorentz manifolds, Riemannian metrics, affine connections, parallel transport, curvature tensors, torsion tensors, killing vector fields, conformal killing vector fields are focused. The purpose of this paper is to develop the theory of manifolds equipped with Riemannian metric. I have developed some theorems on torsion and Riemannian curvature tensors using affine connection. A Theorem 1.20 named “Fundamental Theorem of Pseudo-Riemannian Geometry” has been established on Riemannian geometry using tensors with metric. The main tools used in the theorem of pseudo Riemannian are tensors fields defined on a Riemannian manifold. Keywords: Riemannian manifolds, pseudo-Riemannian manifolds, Lorentz manifolds, Riemannian metrics, affine connections, parallel transport, curvature tensors, torsion tensors, killing vector fields, conformal killing vector fields. —————————— —————————— I. Introduction (c) { } is a family of open sets which covers , that is, 푖 = . Riemannian manifold is a pair ( , g) consisting of smooth 푈 푀 manifold and Riemannian metric g. A manifold may carry a (d) ⋃ is푈 푖푖 a homeomorphism푀 from onto an open subset of 푀 ′ further structure if it is endowed with a metric tensor, which is a 푖 . 푖 푖 휑 푈 푈 natural generation푀 of the inner product between two vectors in 푛 ℝ to an arbitrary manifold. Riemannian metrics, affine (e) Given and such that , the map = connections,푛 parallel transport, curvature tensors, torsion tensors, ( ( ) killingℝ vector fields and conformal killing vector fields play from푖 푗 ) to 푖 푗 is infinitely푖푗 −1 푈 푈 푈 ∩ 푈 ≠ ∅ 휓 important role to develop the theorem of Riemannian manifolds. -
HARMONIC MAPS Contents 1. Introduction 2 1.1. Notational
HARMONIC MAPS ANDREW SANDERS Contents 1. Introduction 2 1.1. Notational conventions 2 2. Calculus on vector bundles 2 3. Basic properties of harmonic maps 7 3.1. First variation formula 7 References 10 1 2 ANDREW SANDERS 1. Introduction 1.1. Notational conventions. By a smooth manifold M we mean a second- countable Hausdorff topological space with a smooth maximal atlas. We denote the tangent bundle of M by TM and the cotangent bundle of M by T ∗M: 2. Calculus on vector bundles Given a pair of manifolds M; N and a smooth map f : M ! N; it is advantageous to consider the differential df : TM ! TN as a section df 2 Ω0(M; T ∗M ⊗ f ∗TN) ' Ω1(M; f ∗TN): There is a general for- malism for studying the calculus of differential forms with values in vector bundles equipped with a connection. This formalism allows a fairly efficient, and more coordinate-free, treatment of many calculations in the theory of harmonic maps. While this approach is somewhat abstract and obfuscates the analytic content of many expressions, it takes full advantage of the algebraic symmetries available and therefore simplifies many expressions. We will develop some of this theory now and use it freely throughout the text. The following exposition will closely fol- low [Xin96]. Let M be a smooth manifold and π : E ! M a real vector bundle on M or rank r: Throughout, we denote the space of smooth sections of E by Ω0(M; E): More generally, the space of differential p-forms with values in E is given by Ωp(M; E) := Ω0(M; ΛpT ∗M ⊗ E): Definition 2.1. -
Math 865, Topics in Riemannian Geometry
Math 865, Topics in Riemannian Geometry Jeff A. Viaclovsky Fall 2007 Contents 1 Introduction 3 2 Lecture 1: September 4, 2007 4 2.1 Metrics, vectors, and one-forms . 4 2.2 The musical isomorphisms . 4 2.3 Inner product on tensor bundles . 5 2.4 Connections on vector bundles . 6 2.5 Covariant derivatives of tensor fields . 7 2.6 Gradient and Hessian . 9 3 Lecture 2: September 6, 2007 9 3.1 Curvature in vector bundles . 9 3.2 Curvature in the tangent bundle . 10 3.3 Sectional curvature, Ricci tensor, and scalar curvature . 13 4 Lecture 3: September 11, 2007 14 4.1 Differential Bianchi Identity . 14 4.2 Algebraic study of the curvature tensor . 15 5 Lecture 4: September 13, 2007 19 5.1 Orthogonal decomposition of the curvature tensor . 19 5.2 The curvature operator . 20 5.3 Curvature in dimension three . 21 6 Lecture 5: September 18, 2007 22 6.1 Covariant derivatives redux . 22 6.2 Commuting covariant derivatives . 24 6.3 Rough Laplacian and gradient . 25 7 Lecture 6: September 20, 2007 26 7.1 Commuting Laplacian and Hessian . 26 7.2 An application to PDE . 28 1 8 Lecture 7: Tuesday, September 25. 29 8.1 Integration and adjoints . 29 9 Lecture 8: September 23, 2007 34 9.1 Bochner and Weitzenb¨ock formulas . 34 10 Lecture 9: October 2, 2007 38 10.1 Manifolds with positive curvature operator . 38 11 Lecture 10: October 4, 2007 41 11.1 Killing vector fields . 41 11.2 Isometries . 44 12 Lecture 11: October 9, 2007 45 12.1 Linearization of Ricci tensor . -
A Geodesic Connection in Fréchet Geometry
A geodesic connection in Fr´echet Geometry Ali Suri Abstract. In this paper first we propose a formula to lift a connection on M to its higher order tangent bundles T rM, r 2 N. More precisely, for a given connection r on T rM, r 2 N [ f0g, we construct the connection rc on T r+1M. Setting rci = rci−1 c, we show that rc1 = lim rci exists − and it is a connection on the Fr´echet manifold T 1M = lim T iM and the − geodesics with respect to rc1 exist. In the next step, we will consider a Riemannian manifold (M; g) with its Levi-Civita connection r. Under suitable conditions this procedure i gives a sequence of Riemannian manifolds f(T M, gi)gi2N equipped with ci c1 a sequence of Riemannian connections fr gi2N. Then we show that r produces the curves which are the (local) length minimizer of T 1M. M.S.C. 2010: 58A05, 58B20. Key words: Complete lift; spray; geodesic; Fr´echet manifolds; Banach manifold; connection. 1 Introduction In the first section we remind the bijective correspondence between linear connections and homogeneous sprays. Then using the results of [6] for complete lift of sprays, we propose a formula to lift a connection on M to its higher order tangent bundles T rM, r 2 N. More precisely, for a given connection r on T rM, r 2 N [ f0g, we construct its associated spray S and then we lift it to a homogeneous spray Sc on T r+1M [6]. Then, using the bijective correspondence between connections and sprays, we derive the connection rc on T r+1M from Sc. -
The Language of Differential Forms
Appendix A The Language of Differential Forms This appendix—with the only exception of Sect.A.4.2—does not contain any new physical notions with respect to the previous chapters, but has the purpose of deriving and rewriting some of the previous results using a different language: the language of the so-called differential (or exterior) forms. Thanks to this language we can rewrite all equations in a more compact form, where all tensor indices referred to the diffeomorphisms of the curved space–time are “hidden” inside the variables, with great formal simplifications and benefits (especially in the context of the variational computations). The matter of this appendix is not intended to provide a complete nor a rigorous introduction to this formalism: it should be regarded only as a first, intuitive and oper- ational approach to the calculus of differential forms (also called exterior calculus, or “Cartan calculus”). The main purpose is to quickly put the reader in the position of understanding, and also independently performing, various computations typical of a geometric model of gravity. The readers interested in a more rigorous discussion of differential forms are referred, for instance, to the book [22] of the bibliography. Let us finally notice that in this appendix we will follow the conventions introduced in Chap. 12, Sect. 12.1: latin letters a, b, c,...will denote Lorentz indices in the flat tangent space, Greek letters μ, ν, α,... tensor indices in the curved manifold. For the matter fields we will always use natural units = c = 1. Also, unless otherwise stated, in the first three Sects. -
Math 704: Part 1: Principal Bundles and Connections
MATH 704: PART 1: PRINCIPAL BUNDLES AND CONNECTIONS WEIMIN CHEN Contents 1. Lie Groups 1 2. Principal Bundles 3 3. Connections and curvature 6 4. Covariant derivatives 12 References 13 1. Lie Groups A Lie group G is a smooth manifold such that the multiplication map G × G ! G, (g; h) 7! gh, and the inverse map G ! G, g 7! g−1, are smooth maps. A Lie subgroup H of G is a subgroup of G which is at the same time an embedded submanifold. A Lie group homomorphism is a group homomorphism which is a smooth map between the Lie groups. The Lie algebra, denoted by Lie(G), of a Lie group G consists of the set of left-invariant vector fields on G, i.e., Lie(G) = fX 2 X (G)j(Lg)∗X = Xg, where Lg : G ! G is the left translation Lg(h) = gh. As a vector space, Lie(G) is naturally identified with the tangent space TeG via X 7! X(e). A Lie group homomorphism naturally induces a Lie algebra homomorphism between the associated Lie algebras. Finally, the universal cover of a connected Lie group is naturally a Lie group, which is in one to one correspondence with the corresponding Lie algebras. Example 1.1. Here are some important Lie groups in geometry and topology. • GL(n; R), GL(n; C), where GL(n; C) can be naturally identified as a Lie sub- group of GL(2n; R). • SL(n; R), O(n), SO(n) = O(n) \ SL(n; R), Lie subgroups of GL(n; R). -
Math 396. Covariant Derivative, Parallel Transport, and General Relativity
Math 396. Covariant derivative, parallel transport, and General Relativity 1. Motivation Let M be a smooth manifold with corners, and let (E, ∇) be a C∞ vector bundle with connection over M. Let γ : I → M be a smooth map from a nontrivial interval to M (a “path” in M); keep in mind that γ may not be injective and that its velocity may be zero at a rather arbitrary closed subset of I (so we cannot necessarily extend the standard coordinate on I near each t0 ∈ I to part of a local coordinate system on M near γ(t0)). In pseudo-Riemannian geometry E = TM and ∇ is a specific connection arising from the metric tensor (the Levi-Civita connection; see §4). A very fundamental concept is that of a (smooth) section along γ for a vector bundle on M. Before we give the official definition, we consider an example. Example 1.1. To each t0 ∈ I there is associated a velocity vector 0 ∗ γ (t0) = dγ(t0)(∂t|t0 ) ∈ Tγ(t0)(M) = (γ (TM))(t0). Hence, we get a set-theoretic section of the pullback bundle γ∗(TM) → I by assigning to each time 0 t0 the velocity vector γ (t0) at that time. This is not just a set-theoretic section, but a smooth section. Indeed, this problem is local, so pick t0 ∈ I and an open U ⊆ M containing γ(J) for an open ∞ neighborhood J ⊆ I around t0, with J and U so small that U admits a C coordinate system {x1, . , xn}. Let γi = xi ◦ γ|J ; these are smooth functions on J since γ is a smooth map from I into M.