6-Dimensional Almost Complex Manifolds
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Density of Thin Film Billiard Reflection Pseudogroup in Hamiltonian Symplectomorphism Pseudogroup Alexey Glutsyuk
Density of thin film billiard reflection pseudogroup in Hamiltonian symplectomorphism pseudogroup Alexey Glutsyuk To cite this version: Alexey Glutsyuk. Density of thin film billiard reflection pseudogroup in Hamiltonian symplectomor- phism pseudogroup. 2020. hal-03026432v2 HAL Id: hal-03026432 https://hal.archives-ouvertes.fr/hal-03026432v2 Preprint submitted on 6 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Density of thin film billiard reflection pseudogroup in Hamiltonian symplectomorphism pseudogroup Alexey Glutsyuk∗yzx December 3, 2020 Abstract Reflections from hypersurfaces act by symplectomorphisms on the space of oriented lines with respect to the canonical symplectic form. We consider an arbitrary C1-smooth hypersurface γ ⊂ Rn+1 that is either a global strictly convex closed hypersurface, or a germ of hy- persurface. We deal with the pseudogroup generated by compositional ratios of reflections from γ and of reflections from its small deforma- tions. In the case, when γ is a global convex hypersurface, we show that the latter pseudogroup is dense in the pseudogroup of Hamiltonian diffeomorphisms between subdomains of the phase cylinder: the space of oriented lines intersecting γ transversally. We prove an analogous local result in the case, when γ is a germ. -
[Math.CV] 6 May 2005
HOLOMORPHIC FLEXIBILITY PROPERTIES OF COMPLEX MANIFOLDS FRANC FORSTNERICˇ Abstract. We obtain results on approximation of holomorphic maps by al- gebraic maps, the jet transversality theorem for holomorphic and algebraic maps between certain classes of manifolds, and the homotopy principle for holomorphic submersions of Stein manifolds to certain algebraic manifolds. 1. Introduction In the present paper we use the term holomorphic flexibility property for any of several analytic properties of complex manifolds which are opposite to Koba- yashi-Eisenman-Brody hyperbolicity, the latter expressing holomorphic rigidity. A connected complex manifold Y is n-hyperbolic for some n ∈{1,..., dim Y } if every entire holomorphic map Cn → Y has rank less than n; for n = 1 this means that every holomorphic map C → Y is constant ([4], [16], [46], [47]). On the other hand, all flexibility properties of Y will require the existence of many such maps. We shall center our discussion around the following classical property which was studied by many authors (see the surveys [53] and [25]): Oka property: Every continuous map f0 : X → Y from a Stein manifold X is homotopic to a holomorphic map f1 : X → Y ; if f0 is holomorphic on (a neighbor- hood of) a compact H(X)-convex subset K of X then a homotopy {ft}t∈[0,1] from f0 to a holomorphic map f1 can be chosen such that ft is holomorphic and uniformly close to f0 on K for every t ∈ [0, 1]. Here, H(X)-convexity means convexity with respect to the algebra H(X) of all holomorphic functions on X (§2). -
A Geometric Take on Metric Learning
A Geometric take on Metric Learning Søren Hauberg Oren Freifeld Michael J. Black MPI for Intelligent Systems Brown University MPI for Intelligent Systems Tubingen,¨ Germany Providence, US Tubingen,¨ Germany [email protected] [email protected] [email protected] Abstract Multi-metric learning techniques learn local metric tensors in different parts of a feature space. With such an approach, even simple classifiers can be competitive with the state-of-the-art because the distance measure locally adapts to the struc- ture of the data. The learned distance measure is, however, non-metric, which has prevented multi-metric learning from generalizing to tasks such as dimensional- ity reduction and regression in a principled way. We prove that, with appropriate changes, multi-metric learning corresponds to learning the structure of a Rieman- nian manifold. We then show that this structure gives us a principled way to perform dimensionality reduction and regression according to the learned metrics. Algorithmically, we provide the first practical algorithm for computing geodesics according to the learned metrics, as well as algorithms for computing exponential and logarithmic maps on the Riemannian manifold. Together, these tools let many Euclidean algorithms take advantage of multi-metric learning. We illustrate the approach on regression and dimensionality reduction tasks that involve predicting measurements of the human body from shape data. 1 Learning and Computing Distances Statistics relies on measuring distances. When the Euclidean metric is insufficient, as is the case in many real problems, standard methods break down. This is a key motivation behind metric learning, which strives to learn good distance measures from data. -
Moduli Spaces
spaces. Moduli spaces such as the moduli of elliptic curves (which we discuss below) play a central role Moduli Spaces in a variety of areas that have no immediate link to the geometry being classified, in particular in alge- David D. Ben-Zvi braic number theory and algebraic topology. Moreover, the study of moduli spaces has benefited tremendously in recent years from interactions with Many of the most important problems in mathemat- physics (in particular with string theory). These inter- ics concern classification. One has a class of math- actions have led to a variety of new questions and new ematical objects and a notion of when two objects techniques. should count as equivalent. It may well be that two equivalent objects look superficially very different, so one wishes to describe them in such a way that equiv- 1 Warmup: The Moduli Space of Lines in alent objects have the same description and inequiva- the Plane lent objects have different descriptions. Moduli spaces can be thought of as geometric solu- Let us begin with a problem that looks rather simple, tions to geometric classification problems. In this arti- but that nevertheless illustrates many of the impor- cle we shall illustrate some of the key features of mod- tant ideas of moduli spaces. uli spaces, with an emphasis on the moduli spaces Problem. Describe the collection of all lines in the of Riemann surfaces. (Readers unfamiliar with Rie- real plane R2 that pass through the origin. mann surfaces may find it helpful to begin by reading about them in Part III.) In broad terms, a moduli To save writing, we are using the word “line” to mean problem consists of three ingredients. -
Arxiv:Math/0608115V2 [Math.NA] 13 Aug 2006 H Osrcino Nt Lmn Cee N Oo.I H Re the the in Is On
Multivariate Lagrange Interpolation and an Application of Cayley-Bacharach Theorem for It Xue-Zhang Lianga Jie-Lin Zhang Ming Zhang Li-Hong Cui Institute of Mathematics, Jilin University, Changchun, 130012, P. R. China [email protected] Abstract In this paper,we deeply research Lagrange interpolation of n-variables and give an application of Cayley-Bacharach theorem for it. We pose the concept of sufficient inter- section about s(1 ≤ s ≤ n) algebraic hypersurfaces in n-dimensional complex Euclidean space and discuss the Lagrange interpolation along the algebraic manifold of sufficient intersection. By means of some theorems ( such as Bezout theorem, Macaulay theorem (n) and so on ) we prove the dimension for the polynomial space Pm along the algebraic manifold S = s(f1, · · · ,fs)(where f1(X) = 0, · · · ,fs(X) = 0 denote s algebraic hyper- surfaces ) of sufficient intersection and give a convenient expression for dimension calcu- lation by using the backward difference operator. According to Mysovskikh theorem, we give a proof of the existence and a characterizing condition of properly posed set of nodes of arbitrary degree for interpolation along an algebraic manifold of sufficient intersec- tion. Further we point out that for s algebraic hypersurfaces f1(X) = 0, · · · ,fs(X) = 0 of sufficient intersection, the set of polynomials f1, · · · ,fs must constitute the H-base of ideal Is =<f1, · · · ,fs >. As a main result of this paper, we deduce a general method of constructing properly posed set of nodes for Lagrange interpolation along an algebraic manifold, namely the superposition interpolation process. At the end of the paper, we use the extended Cayley-Bacharach theorem to resolve some problems of Lagrange interpolation along the 0-dimensional and 1-dimensional algebraic manifold. -
Symplectic Structures on Gauge Theory?
Commun. Math. Phys. 193, 47 – 67 (1998) Communications in Mathematical Physics c Springer-Verlag 1998 Symplectic Structures on Gauge Theory? Nai-Chung Conan Leung School of Mathematics, 127 Vincent Hall, University of Minnesota, Minneapolis, MN 55455, USA Received: 27 February 1996 / Accepted: 7 July 1997 [ ] Abstract: We study certain natural differential forms ∗ and their equivariant ex- tensions on the space of connections. These forms are defined usingG the family local index theorem. When the base manifold is symplectic, they define a family of sym- plectic forms on the space of connections. We will explain their relationships with the Einstein metric and the stability of vector bundles. These forms also determine primary and secondary characteristic forms (and their higher level generalizations). Contents 1 Introduction ............................................... 47 2 Higher Index of the Universal Family ........................... 49 2.1 Dirac operators ............................................. 50 2.2 ∂-operator ................................................ 52 3 Moment Map and Stable Bundles .............................. 53 4 Space of Generalized Connections ............................. 58 5 Higer Level Chern–Simons Forms ............................. 60 [ ] 6 Equivariant Extensions of ∗ ................................ 63 1. Introduction In this paper, we study natural differential forms [2k] on the space of connections on a vector bundle E over X, A i [2k] FA (A)(B1,B2,...,B2 )= Tr[e 2π B1B2 B2 ] Aˆ(X). k ··· k sym ZX They are invariant closed differential forms on . They are introduced as the family local indexG for universal family of operators. A ? This research is supported by NSF grant number: DMS-9114456 48 N-C. C. Leung We use them to define higher Chern-Simons forms of E: [ ] ch(E; A0,...,A )=∗ L(A0,...,A ), l l ◦ l l and discuss their properties. -
Riemann Surfaces
RIEMANN SURFACES AARON LANDESMAN CONTENTS 1. Introduction 2 2. Maps of Riemann Surfaces 4 2.1. Defining the maps 4 2.2. The multiplicity of a map 4 2.3. Ramification Loci of maps 6 2.4. Applications 6 3. Properness 9 3.1. Definition of properness 9 3.2. Basic properties of proper morphisms 9 3.3. Constancy of degree of a map 10 4. Examples of Proper Maps of Riemann Surfaces 13 5. Riemann-Hurwitz 15 5.1. Statement of Riemann-Hurwitz 15 5.2. Applications 15 6. Automorphisms of Riemann Surfaces of genus ≥ 2 18 6.1. Statement of the bound 18 6.2. Proving the bound 18 6.3. We rule out g(Y) > 1 20 6.4. We rule out g(Y) = 1 20 6.5. We rule out g(Y) = 0, n ≥ 5 20 6.6. We rule out g(Y) = 0, n = 4 20 6.7. We rule out g(C0) = 0, n = 3 20 6.8. 21 7. Automorphisms in low genus 0 and 1 22 7.1. Genus 0 22 7.2. Genus 1 22 7.3. Example in Genus 3 23 Appendix A. Proof of Riemann Hurwitz 25 Appendix B. Quotients of Riemann surfaces by automorphisms 29 References 31 1 2 AARON LANDESMAN 1. INTRODUCTION In this course, we’ll discuss the theory of Riemann surfaces. Rie- mann surfaces are a beautiful breeding ground for ideas from many areas of math. In this way they connect seemingly disjoint fields, and also allow one to use tools from different areas of math to study them. -
Mathematisches Forschungsinstitut Oberwolfach Singularities
Mathematisches Forschungsinstitut Oberwolfach Report No. 43/2009 DOI: 10.4171/OWR/2009/43 Singularities Organised by Andr´as N´emethi, Budapest Duco van Straten, Mainz Victor A. Vassiliev, Moscow September 20th – September 26th, 2009 Abstract. Local/global Singularity Theory is concerned with the local/global structure of maps and spaces that occur in differential topology or theory of algebraic or analytic varieties. It uses methods from algebra, topology, alge- braic geometry and multi-variable complex analysis. Mathematics Subject Classification (2000): 14Bxx, 32Sxx, 58Kxx. Introduction by the Organisers The workshop Singularity Theory took place from September 20 to 26, 2009, and continued a long sequence of workshops Singularit¨aten that were organized regu- larly at Oberwolfach. It was attended by 46 participants with broad geographic representation. Funding from the Marie Curie Programme of EU provided com- plementary support for young researchers and PhD students. The schedule of the meeting comprised 23 lectures of one hour each, presenting recent progress and interesting directions in singularity theory. Some of the talks gave an overview of the state of the art, open problems and new efforts and results in certain areas of the field. For example, B. Teissier reported about the Kyoto meeting on ‘Resolution of Singularities’ and about recent developments in the geometry of local uniformization. J. Sch¨urmann presented the general picture of various generalizations of classical characteristic classes and the existence of functors connecting different geometrical levels. Strong applications of this for hypersurfaces was provided by L. Maxim. M. Kazarian reported on his new results and construction about the Thom polynomial of contact singularities; R. -
Holomorphic Embedding of Complex Curves in Spaces of Constant Holomorphic Curvature (Wirtinger's Theorem/Kaehler Manifold/Riemann Surfaces) ISSAC CHAVEL and HARRY E
Proc. Nat. Acad. Sci. USA Vol. 69, No. 3, pp. 633-635, March 1972 Holomorphic Embedding of Complex Curves in Spaces of Constant Holomorphic Curvature (Wirtinger's theorem/Kaehler manifold/Riemann surfaces) ISSAC CHAVEL AND HARRY E. RAUCH* The City College of The City University of New York and * The Graduate Center of The City University of New York, 33 West 42nd St., New York, N.Y. 10036 Communicated by D. C. Spencer, December 21, 1971 ABSTRACT A special case of Wirtinger's theorem ever, the converse is not true in general: the complex curve asserts that a complex curve (two-dimensional) hob-o embedded as a real minimal surface is not necessarily holo- morphically embedded in a Kaehler manifold is a minimal are obstructions. With the by morphically embedded-there surface. The converse is not necessarily true. Guided that we view the considerations from the theory of moduli of Riemann moduli problem in mind, this fact suggests surfaces, we discover (among other results) sufficient embedding of our complex curve as a real minimal surface topological aind differential-geometric conditions for a in a Kaehler manifold as the solution to the differential-geo- minimal (Riemannian) immersion of a 2-manifold in for our present mapping problem metric metric extremal problem complex projective space with the Fubini-Study as our infinitesimal moduli, differential- to be holomorphic. and that we then seek, geometric invariants on the curve whose vanishing forms neces- sary and sufficient conditions for the minimal embedding to be INTRODUCTION AND MOTIVATION holomorphic. Going further, we observe that minimal surface It is known [1-5] how Riemann's conception of moduli for con- evokes the notion of second fundamental forms; while the formal mapping of homeomorphic, multiply connected Rie- moduli problem, again, suggests quadratic differentials. -
Complex Manifolds
Complex Manifolds Lecture notes based on the course by Lambertus van Geemen A.A. 2012/2013 Author: Michele Ferrari. For any improvement suggestion, please email me at: [email protected] Contents n 1 Some preliminaries about C 3 2 Basic theory of complex manifolds 6 2.1 Complex charts and atlases . 6 2.2 Holomorphic functions . 8 2.3 The complex tangent space and cotangent space . 10 2.4 Differential forms . 12 2.5 Complex submanifolds . 14 n 2.6 Submanifolds of P ............................... 16 2.6.1 Complete intersections . 18 2 3 The Weierstrass }-function; complex tori and cubics in P 21 3.1 Complex tori . 21 3.2 Elliptic functions . 22 3.3 The Weierstrass }-function . 24 3.4 Tori and cubic curves . 26 3.4.1 Addition law on cubic curves . 28 3.4.2 Isomorphisms between tori . 30 2 Chapter 1 n Some preliminaries about C We assume that the reader has some familiarity with the notion of a holomorphic function in one complex variable. We extend that notion with the following n n Definition 1.1. Let f : C ! C, U ⊆ C open with a 2 U, and let z = (z1; : : : ; zn) be n the coordinates in C . f is holomorphic in a = (a1; : : : ; an) 2 U if f has a convergent power series expansion: +1 X k1 kn f(z) = ak1;:::;kn (z1 − a1) ··· (zn − an) k1;:::;kn=0 This means, in particular, that f is holomorphic in each variable. Moreover, we define OCn (U) := ff : U ! C j f is holomorphicg m A map F = (F1;:::;Fm): U ! C is holomorphic if each Fj is holomorphic. -
INTRODUCTION to ALGEBRAIC GEOMETRY 1. Preliminary Of
INTRODUCTION TO ALGEBRAIC GEOMETRY WEI-PING LI 1. Preliminary of Calculus on Manifolds 1.1. Tangent Vectors. What are tangent vectors we encounter in Calculus? 2 0 (1) Given a parametrised curve α(t) = x(t); y(t) in R , α (t) = x0(t); y0(t) is a tangent vector of the curve. (2) Given a surface given by a parameterisation x(u; v) = x(u; v); y(u; v); z(u; v); @x @x n = × is a normal vector of the surface. Any vector @u @v perpendicular to n is a tangent vector of the surface at the corresponding point. (3) Let v = (a; b; c) be a unit tangent vector of R3 at a point p 2 R3, f(x; y; z) be a differentiable function in an open neighbourhood of p, we can have the directional derivative of f in the direction v: @f @f @f D f = a (p) + b (p) + c (p): (1.1) v @x @y @z In fact, given any tangent vector v = (a; b; c), not necessarily a unit vector, we still can define an operator on the set of functions which are differentiable in open neighbourhood of p as in (1.1) Thus we can take the viewpoint that each tangent vector of R3 at p is an operator on the set of differential functions at p, i.e. @ @ @ v = (a; b; v) ! a + b + c j ; @x @y @z p or simply @ @ @ v = (a; b; c) ! a + b + c (1.2) @x @y @z 3 with the evaluation at p understood. -
Kähler Manifolds and Holonomy
K¨ahlermanifolds, lecture 3 M. Verbitsky K¨ahler manifolds and holonomy lecture 3 Misha Verbitsky Tel-Aviv University December 21, 2010, 1 K¨ahlermanifolds, lecture 3 M. Verbitsky K¨ahler manifolds DEFINITION: An Riemannian metric g on an almost complex manifiold M is called Hermitian if g(Ix; Iy) = g(x; y). In this case, g(x; Iy) = g(Ix; I2y) = −g(y; Ix), hence !(x; y) := g(x; Iy) is skew-symmetric. DEFINITION: The differential form ! 2 Λ1;1(M) is called the Hermitian form of (M; I; g). REMARK: It is U(1)-invariant, hence of Hodge type (1,1). DEFINITION: A complex Hermitian manifold (M; I; !) is called K¨ahler if d! = 0. The cohomology class [!] 2 H2(M) of a form ! is called the K¨ahler class of M, and ! the K¨ahlerform. 2 K¨ahlermanifolds, lecture 3 M. Verbitsky Levi-Civita connection and K¨ahlergeometry DEFINITION: Let (M; g) be a Riemannian manifold. A connection r is called orthogonal if r(g) = 0. It is called Levi-Civita if it is torsion-free. THEOREM: (\the main theorem of differential geometry") For any Riemannian manifold, the Levi-Civita connection exists, and it is unique. THEOREM: Let (M; I; g) be an almost complex Hermitian manifold. Then the following conditions are equivalent. (i)( M; I; g) is K¨ahler (ii) One has r(I) = 0, where r is the Levi-Civita connection. 3 K¨ahlermanifolds, lecture 3 M. Verbitsky Holonomy group DEFINITION: (Cartan, 1923) Let (B; r) be a vector bundle with connec- tion over M. For each loop γ based in x 2 M, let Vγ;r : Bjx −! Bjx be the corresponding parallel transport along the connection.