Foramen Magnum Meningiomas: Concepts, Classifications, and Nuances

Total Page:16

File Type:pdf, Size:1020Kb

Foramen Magnum Meningiomas: Concepts, Classifications, and Nuances Neurosurg Focus 14 (6):Article 10, 2003, Click here to return to Table of Contents Foramen magnum meningiomas: concepts, classifications, and nuances MELFORT R. BOULTON, M.D., PH.D., AND MICHAEL D. CUSIMANO, M.D., PH.D., F.R.C.S.(C) Division of Neurosurgery, St. Michael’s Hospital, and the University of Toronto, Ontario, Canada Foramen magnum meningiomas represent a common histological tumor in a rare and eloquent location. The authors review the clinical presentation, relevant anatomical details of the foramen magnum region, neuroimaging features, the posterior and posterolateral surgical approaches for resection, and outcomes. Based the experiences of the senior author (M.D.C.) and a review of the literature, they introduce the concept of a “surgical corridor,” discuss the classification of these tumors, and the nuances of care for patients with these challenging lesions. KEY WORDS • meningioma • foramen magnum • craniovertebral junction • skull base • suboccipital craniotomy Meningiomas are slow-growing benign tumors that from the lower third of the clivus, to upper margin of the arise at any location where arachnoid cells reside. Al- body of C-2, laterally from the jugular tubercle to the though meningiomas account for a sizable proportion of upper margin of the C-2 laminae, and posteriorly from the all primary intracranial neoplasms (14.3–19%),46 only 1.8 anterior edge of the squamous occipital bone to the C-2 to 3.2% arise at the foramen magnum.2 Their indolent spinous process. development at the craniospinal junction makes clinical The foramen magnum contains several critical neu- diagnosis complex and often leads to a long interval be- roanatomical and vascular structures of which the surgeon tween onset of symptoms and diagnosis. The sensitivity of must be aware. The neural structures include the cerebel- this region to surgical manipulation has sparked recent lar tonsils, inferior vermis, fourth ventricle, caudal aspect debate as to the most advantageous surgical approach. The of the medulla, lower cranial nerves (ninth–12th), rostral intent of this paper is to provide an overview of the rele- aspect of the spinal cord, and upper cervical nerves (C-1 vant surgical anatomy, clinical features, and nuances of and C-2). The ninth through 11th cranial nerves arise as a the management of foramen magnum meningiomas. We series of rootlets along the anterior medulla, with the introduce the concept of the “surgical corridor” and dis- spinal component of the 11th cranial nerve arising mid- cuss its importance in the management of these challeng- way between the anterior and posterior spinal rootlets of ing lesions. the spinal cord. The spinal accessory rootlets coalesce and ascend rostral to join the ninth, 10th, and the cranial por- tion of the 11th nerve. Together, these nerves exit the skull FORAMEN MAGNUM ANATOMY through the jugular foramen. The 12th cranial nerve exits the medulla more anteriorly than the other lower cranial Several excellent reviews of foramen magnum anatomy 3,10,14–17,29–31 nerves and passes anterior to the ipsilateral VA on its have been published. By definition, foramen course to the hypoglossal canal, located within the superi- magnum meningiomas arise from arachnoid at the cra- or and anterior–most portion of the occipital condyle. niospinal junction. The borders of this zone, as defined 14,17 Major arterial structures located within the foramen by George and George and colleagues range anteriorly magnum include the VAs, PICAs, anterior and posterior spinal arteries, and the meningeal branches of the verte- Abbreviations used in this paper: CSF = cerebrospinal fluid; bral, external, and internal carotid arteries. The VA cours- CT = computerized tomography; GKS = gamma knife surgery; es through the foramen tranversalis until reaching C-1 MR = magnetic resonance; PICA = posterior inferior cerebellar where it curves above the lateral aspect of the posterior artery; QOL = quality of life; VA = vertebral artery. arch and proceeds rostral to pierce the dura mater just Neurosurg. Focus / Volume 14 / June, 2003 1 Unauthenticated | Downloaded 10/01/21 10:34 AM UTC M. R. Boulton and M. D. Cusimano inferior to the lateral edge of the foramen magnum adja- cent to the occipital condyle. Its intradural portion typi- cally gives rise to the posterior spinal artery and PICA, although the origin of the PICA has been reported to vary, arising at, above, or below the foramen magnum.13 CLASSIFICATION OF FORAMEN MAGNUM MENINGIOMAS We describe foramen magnum meningiomas as having originated primarily from within the confines of the fora- men magnum or having secondarily invaded the region but originating elsewhere. We also classify the primary tumors according to their anteroposterior and lateromedi- al orientations. The spinal dentate ligament delineates the anterior and posterior compartments. Most lesions (68– 98%)2 arise anterolaterally; a posterolateral origin is the second most frequent, purely posterior lesions the third, Fig. 1. Illustration of the surgical corridor. A: Normal rela- and least common are entirely anterior. We also classify tionship of brainstem to foramen magnum. oc = occipital condyle; these lesions based on their size relative to that of the fora- cmj = cervicomedullary junction. B–D: As the tumor (T) en- men magnum (small, Ͻ one third the transverse dimen- larges, it displaces the brainstem posteriorly and typically to one sion of the foramen magnum; medium, one third to one side, naturally creating a widened surgical corridor. B: A narrow half its dimension; large, Ͼ one half). corridor of less than 1 cm between the condyle and cervicomed- Most importantly, when managing these lesions, we de- ullary junction. C: Adequate corridor with a 1- to 2-cm distance. D: Large corridor (Ͼ 2 cm) that allows relatively easy access to the fine an avenue that we term the “surgical corridor.” This anterior foramen magnum. is defined as “the space for surgical access to a lesion.” It describes the space that the surgeon will work through to access the lesion. The surgical corridor can be enlarged naturally by a tumor displacing normal structures like the undeniable, and lead to significant and often permanent medulla oblongata in a confined space such as the fora- neurological deficit. Early features of foramen magnum men magnum. Alternatively, one goal of a surgical route meningiomas include occipital headache and upper cervi- such as the transcondylar approach would be to enlarge cal pain, which is often exacerbated by neck flexion or the surgical corridor. Valsalva maneuvers. Classic foramen magnum syndrome In the management of foramen magnum meningiomas, is defined by development of unilateral arm sensory and the surgical corridor involves the space between the later- motor deficits, which progress to the ipsilateral leg, then al margin of the cervicomedullary junction and the medi- the contralateral leg, and finally contralateral upper ex- al aspect of the occipital condyle. The corridor can and tremity. Long tract findings characteristic of upper motor should be assessed on preoperative imaging. In these le- lesions are found paradoxically in the presence of atrophy sions, the corridor represents the view of a lesion that a in the intrinsic muscles of the hands. Later findings surgeon obtains via a posterolateral approach after remov- include spastic quadriparesis and lower cranial nerve pal- ing only the occipital bone and leaving the condyle intact. sies. Slowly progressive lesions such as these allow the We define a corridor as “narrow” if it provides a diameter development of accessory muscles to replace trapezius of access to the tumor of less than 1 cm; “adequate” if it is and sternocleidomastoid function. We therefore highly re- greater than 1 cm but less than 2 cm; and “large” if greater commend that the patient be undressed and the sternoclei- than 2 cm (Fig. 1). Thus, a tumor arising primarily from domastoid and trapezius muscles be closely inspected for the posterior lip of the foramen magnum and extending atrophy. Likewise, the tongue should be inspected at rest laterally has a large corridor of access, whereas one pure- for atrophy and fasciculation. Close attention to sensory ly anterior with no displacement of the cervicomedullary testing of the C-2 dermatome will help establish the diag- junction has a narrow corridor. Most tumors, once ad- nosis. Patients attest to initial sensory disturbances such as vanced enough to produce symptoms, have at least an ade- cold or burning dysesthesias, astereognosis, and anesthe- quate corridor. sia but often do not seek medical attention until intractable pain, motor deficits, or ataxia ensue. Terminal progression includes quadriplegia, an inability to maintain airway pro- CLINICAL PRESENTATION tection with secondary pneumonitis, and ultimately respi- ratory arrest. The clinical presentation of foramen magnum meningi- omas is protean, and the mean length of symptoms prior IMAGING FEATURES to diagnosis is 30.8 months, even in the era of MR im- aging.16 The clinical differential diagnosis includes multi- The role of neuroimaging is to confirm the clinical ple sclerosis, amyotrophic lateral sclerosis, syringomyelia, diagnosis and to allow the planning of a surgical approach. and cervical spondylosis.11,20,36 In a cursory examination Magnetic resonance imaging is the modality of choice for the physician may miss subtle findings early in the stage defining tumors of the foramen magnum because it pro- of the progression, but later symptoms are often advanced, vides high-resolution images of soft-tissue anatomy that is 2 Neurosurg. Focus / Volume 14 / June, 2003 Unauthenticated | Downloaded 10/01/21 10:34 AM UTC Foramen magnum meningiomas not susceptible to degradation by the surrounding skull resect tumor safely because of the sharp contrast between base, a pitfall of CT scanning. Although plain T1-weight- bone and soft tissues. It is sometimes difficult to outline ed MR images demonstrate excellent anatomical detail, bone margins on MR images, and this technique may they provide little discrimination between tumor and brain- overestimate the size of the surgical corridor available for stem because the former may appear isointense, mild- extirpation.
Recommended publications
  • Implications to Occipital Headache
    The Journal of Neuroscience, March 6, 2019 • 39(10):1867–1880 • 1867 Neurobiology of Disease Non-Trigeminal Nociceptive Innervation of the Posterior Dura: Implications to Occipital Headache X Rodrigo Noseda, Agustin Melo-Carrillo, Rony-Reuven Nir, Andrew M. Strassman, and XRami Burstein Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115 Current understanding of the origin of occipital headache falls short of distinguishing between cause and effect. Most preclinical studies involving trigeminovascular neurons sample neurons that are responsive to stimulation of dural areas in the anterior 2/3 of the cranium and the periorbital skin. Hypothesizing that occipital headache may involve activation of meningeal nociceptors that innervate the posterior 1⁄3 of the dura, we sought to map the origin and course of meningeal nociceptors that innervate the posterior dura overlying the cerebellum. Using AAV-GFP tracing and single-unit recording techniques in male rats, we found that neurons in C2–C3 DRGs innervate the dura of the posterior fossa; that nearly half originate in DRG neurons containing CGRP and TRPV1; that nerve bundles traverse suboccipital muscles before entering the cranium through bony canals and large foramens; that central neurons receiving nociceptive information from the posterior dura are located in C2–C4 spinal cord and that their cutaneous and muscle receptive fields are found around the ears, occipital skin and neck muscles; and that administration of inflammatory mediators to their dural receptive field, sensitize their responses to stimulation of the posterior dura, peri-occipital skin and neck muscles. These findings lend rationale for the common practice of attempting to alleviate migraine headaches by targeting the greater and lesser occipital nerves with anesthetics.
    [Show full text]
  • PE2812 Breaking Arm Bones a Second Time
    Breaking Arm Bones a Second Time Children who have broken arm bones are at higher risk for breaking the same arm bones again if they do not go through the right treatment, for the right amount of time. How likely is it that There is up to a 5% chance (1 out of every 20 cases) of breaking forearm my child’s arm bones a second time, in the same place. There is a higher risk to break these bones again if the first fracture is in the middle of the forearm bones (as bones will break seen in the pictures below). There is a lower risk if the fracture is closer to again? the hand. Most repeat fractures tend to happen within six months after the first injury heals. First fracture Same fracture after healing for about 6 weeks 1 of 2 To Learn More Free Interpreter Services • Orthopedics and Sports Medicine • In the hospital, ask your nurse. 206-987-2109 • From outside the hospital, call the • Ask your child’s healthcare provider toll-free Family Interpreting Line, 1-866-583-1527. Tell the interpreter • seattlechildrens.org the name or extension you need. Breaking Arm Bones a Second Time How can I help my Wearing a cast for at least six weeks lowers the risk of breaking the same child lower the risk arm bones again. After wearing a cast, we recommend your child wear a brace for 4 weeks in order to protect the injured area and start improving of having a wrist movement. While your child wears a brace, we recommend they do repeated bone not participate in contact sports (e.g., soccer, football or dodge ball).
    [Show full text]
  • Study Guide Medical Terminology by Thea Liza Batan About the Author
    Study Guide Medical Terminology By Thea Liza Batan About the Author Thea Liza Batan earned a Master of Science in Nursing Administration in 2007 from Xavier University in Cincinnati, Ohio. She has worked as a staff nurse, nurse instructor, and level department head. She currently works as a simulation coordinator and a free- lance writer specializing in nursing and healthcare. All terms mentioned in this text that are known to be trademarks or service marks have been appropriately capitalized. Use of a term in this text shouldn’t be regarded as affecting the validity of any trademark or service mark. Copyright © 2017 by Penn Foster, Inc. All rights reserved. No part of the material protected by this copyright may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the copyright owner. Requests for permission to make copies of any part of the work should be mailed to Copyright Permissions, Penn Foster, 925 Oak Street, Scranton, Pennsylvania 18515. Printed in the United States of America CONTENTS INSTRUCTIONS 1 READING ASSIGNMENTS 3 LESSON 1: THE FUNDAMENTALS OF MEDICAL TERMINOLOGY 5 LESSON 2: DIAGNOSIS, INTERVENTION, AND HUMAN BODY TERMS 28 LESSON 3: MUSCULOSKELETAL, CIRCULATORY, AND RESPIRATORY SYSTEM TERMS 44 LESSON 4: DIGESTIVE, URINARY, AND REPRODUCTIVE SYSTEM TERMS 69 LESSON 5: INTEGUMENTARY, NERVOUS, AND ENDOCRINE S YSTEM TERMS 96 SELF-CHECK ANSWERS 134 © PENN FOSTER, INC. 2017 MEDICAL TERMINOLOGY PAGE III Contents INSTRUCTIONS INTRODUCTION Welcome to your course on medical terminology. You’re taking this course because you’re most likely interested in pursuing a health and science career, which entails ­proficiency­in­communicating­with­healthcare­professionals­such­as­physicians,­nurses,­ or dentists.
    [Show full text]
  • Morfofunctional Structure of the Skull
    N.L. Svintsytska V.H. Hryn Morfofunctional structure of the skull Study guide Poltava 2016 Ministry of Public Health of Ukraine Public Institution «Central Methodological Office for Higher Medical Education of MPH of Ukraine» Higher State Educational Establishment of Ukraine «Ukranian Medical Stomatological Academy» N.L. Svintsytska, V.H. Hryn Morfofunctional structure of the skull Study guide Poltava 2016 2 LBC 28.706 UDC 611.714/716 S 24 «Recommended by the Ministry of Health of Ukraine as textbook for English- speaking students of higher educational institutions of the MPH of Ukraine» (minutes of the meeting of the Commission for the organization of training and methodical literature for the persons enrolled in higher medical (pharmaceutical) educational establishments of postgraduate education MPH of Ukraine, from 02.06.2016 №2). Letter of the MPH of Ukraine of 11.07.2016 № 08.01-30/17321 Composed by: N.L. Svintsytska, Associate Professor at the Department of Human Anatomy of Higher State Educational Establishment of Ukraine «Ukrainian Medical Stomatological Academy», PhD in Medicine, Associate Professor V.H. Hryn, Associate Professor at the Department of Human Anatomy of Higher State Educational Establishment of Ukraine «Ukrainian Medical Stomatological Academy», PhD in Medicine, Associate Professor This textbook is intended for undergraduate, postgraduate students and continuing education of health care professionals in a variety of clinical disciplines (medicine, pediatrics, dentistry) as it includes the basic concepts of human anatomy of the skull in adults and newborns. Rewiewed by: O.M. Slobodian, Head of the Department of Anatomy, Topographic Anatomy and Operative Surgery of Higher State Educational Establishment of Ukraine «Bukovinian State Medical University», Doctor of Medical Sciences, Professor M.V.
    [Show full text]
  • Biomechanics of Temporo-Parietal Skull Fracture Narayan Yoganandan *, Frank A
    Clinical Biomechanics 19 (2004) 225–239 www.elsevier.com/locate/clinbiomech Review Biomechanics of temporo-parietal skull fracture Narayan Yoganandan *, Frank A. Pintar Department of Neurosurgery, Medical College of Wisconsin, 9200 West Wisconsin Avenue, Milwaukee, WI 53226, USA Received 16 December 2003; accepted 16 December 2003 Abstract This paper presents an analysis of research on the biomechanics of head injury with an emphasis on the tolerance of the skull to lateral impacts. The anatomy of this region of the skull is briefly described from a biomechanical perspective. Human cadaver investigations using unembalmed and embalmed and intact and isolated specimens subjected to static and various types of dynamic loading (e.g., drop, impactor) are described. Fracture tolerances in the form of biomechanical variables such as peak force, peak acceleration, and head injury criteria are used in the presentation. Lateral impact data are compared, where possible, with other regions of the cranial vault (e.g., frontal and occipital bones) to provide a perspective on relative variations between different anatomic regions of the human skull. The importance of using appropriate instrumentation to derive injury metrics is underscored to guide future experiments. Relevance A unique advantage of human cadaver tests is the ability to obtain fundamental data for delineating the biomechanics of the structure and establishing tolerance limits. Force–deflection curves and acceleration time histories are used to derive secondary variables such as head injury criteria. These parameters have direct application in safety engineering, for example, in designing vehicular interiors for occupant protection. Differences in regional biomechanical tolerances of the human head have implications in clinical and biomechanical applications.
    [Show full text]
  • GLOSSARY of MEDICAL and ANATOMICAL TERMS
    GLOSSARY of MEDICAL and ANATOMICAL TERMS Abbreviations: • A. Arabic • abb. = abbreviation • c. circa = about • F. French • adj. adjective • G. Greek • Ge. German • cf. compare • L. Latin • dim. = diminutive • OF. Old French • ( ) plural form in brackets A-band abb. of anisotropic band G. anisos = unequal + tropos = turning; meaning having not equal properties in every direction; transverse bands in living skeletal muscle which rotate the plane of polarised light, cf. I-band. Abbé, Ernst. 1840-1905. German physicist; mathematical analysis of optics as a basis for constructing better microscopes; devised oil immersion lens; Abbé condenser. absorption L. absorbere = to suck up. acervulus L. = sand, gritty; brain sand (cf. psammoma body). acetylcholine an ester of choline found in many tissue, synapses & neuromuscular junctions, where it is a neural transmitter. acetylcholinesterase enzyme at motor end-plate responsible for rapid destruction of acetylcholine, a neurotransmitter. acidophilic adj. L. acidus = sour + G. philein = to love; affinity for an acidic dye, such as eosin staining cytoplasmic proteins. acinus (-i) L. = a juicy berry, a grape; applied to small, rounded terminal secretory units of compound exocrine glands that have a small lumen (adj. acinar). acrosome G. akron = extremity + soma = body; head of spermatozoon. actin polymer protein filament found in the intracellular cytoskeleton, particularly in the thin (I-) bands of striated muscle. adenohypophysis G. ade = an acorn + hypophyses = an undergrowth; anterior lobe of hypophysis (cf. pituitary). adenoid G. " + -oeides = in form of; in the form of a gland, glandular; the pharyngeal tonsil. adipocyte L. adeps = fat (of an animal) + G. kytos = a container; cells responsible for storage and metabolism of lipids, found in white fat and brown fat.
    [Show full text]
  • 98796-Anatomy of the Orbit
    Anatomy of the orbit Prof. Pia C Sundgren MD, PhD Department of Diagnostic Radiology, Clinical Sciences, Lund University, Sweden Lund University / Faculty of Medicine / Inst. Clinical Sciences / Radiology / ECNR Dubrovnik / Oct 2018 Lund University / Faculty of Medicine / Inst. Clinical Sciences / Radiology / ECNR Dubrovnik / Oct 2018 Lay-out • brief overview of the basic anatomy of the orbit and its structures • the orbit is a complicated structure due to its embryological composition • high number of entities, and diseases due to its composition of ectoderm, surface ectoderm and mesoderm Recommend you to read for more details Lund University / Faculty of Medicine / Inst. Clinical Sciences / Radiology / ECNR Dubrovnik / Oct 2018 Lund University / Faculty of Medicine / Inst. Clinical Sciences / Radiology / ECNR Dubrovnik / Oct 2018 3 x 3 Imaging technique 3 layers: - neuroectoderm (retina, iris, optic nerve) - surface ectoderm (lens) • CT and / or MR - mesoderm (vascular structures, sclera, choroid) •IOM plane 3 spaces: - pre-septal •thin slices extraconal - post-septal • axial and coronal projections intraconal • CT: soft tissue and bone windows 3 motor nerves: - occulomotor (III) • MR: T1 pre and post, T2, STIR, fat suppression, DWI (?) - trochlear (IV) - abducens (VI) Lund University / Faculty of Medicine / Inst. Clinical Sciences / Radiology / ECNR Dubrovnik / Oct 2018 Lund University / Faculty of Medicine / Inst. Clinical Sciences / Radiology / ECNR Dubrovnik / Oct 2018 Superior orbital fissure • cranial nerves (CN) III, IV, and VI • lacrimal nerve • frontal nerve • nasociliary nerve • orbital branch of middle meningeal artery • recurrent branch of lacrimal artery • superior orbital vein • superior ophthalmic vein Lund University / Faculty of Medicine / Inst. Clinical Sciences / Radiology / ECNR Dubrovnik / Oct 2018 Lund University / Faculty of Medicine / Inst.
    [Show full text]
  • Morphology of the Foramen Magnum in Young Eastern European Adults
    Folia Morphol. Vol. 71, No. 4, pp. 205–216 Copyright © 2012 Via Medica O R I G I N A L A R T I C L E ISSN 0015–5659 www.fm.viamedica.pl Morphology of the foramen magnum in young Eastern European adults F. Burdan1, 2, J. Szumiło3, J. Walocha4, L. Klepacz5, B. Madej1, W. Dworzański1, R. Klepacz3, A. Dworzańska1, E. Czekajska-Chehab6, A. Drop6 1Department of Human Anatomy, Medical University of Lublin, Lublin, Poland 2St. John’s Cancer Centre, Lublin, Poland 3Department of Clinical Pathomorphology, Medical University of Lublin, Lublin, Poland 4Department of Anatomy, Collegium Medicum, Jagiellonian University, Krakow, Poland 5Department of Psychiatry and Behavioural Sciences, Behavioural Health Centre, New York Medical College, Valhalla NY, USA 6Department of General Radiology and Nuclear Medicine, Medical University of Lublin, Lublin, Poland [Received 21 July 2012; Accepted 7 September 2012] Background: The foramen magnum is an important anatomical opening in the base of the skull through which the posterior cranial fossa communicates with the vertebral canal. It is also related to a number of pathological condi- tions including Chiari malformations, various tumours, and occipital dysplasias. The aim of the study was to evaluate the morphology of the foramen magnum in adult individuals in relation to sex. Material and methods: The morphology of the foramen magnum was evalu- ated using 3D computer tomography images in 313 individuals (142 male, 171 female) aged 20–30 years. Results: The mean values of the foramen length (37.06 ± 3.07 vs. 35.47 ± ± 2.60 mm), breadth (32.98 ± 2.78 vs. 30.95 ± 2.71 mm) and area (877.40 ± ± 131.64 vs.
    [Show full text]
  • Lab Manual Axial Skeleton Atla
    1 PRE-LAB EXERCISES When studying the skeletal system, the bones are often sorted into two broad categories: the axial skeleton and the appendicular skeleton. This lab focuses on the axial skeleton, which consists of the bones that form the axis of the body. The axial skeleton includes bones in the skull, vertebrae, and thoracic cage, as well as the auditory ossicles and hyoid bone. In addition to learning about all the bones of the axial skeleton, it is also important to identify some significant bone markings. Bone markings can have many shapes, including holes, round or sharp projections, and shallow or deep valleys, among others. These markings on the bones serve many purposes, including forming attachments to other bones or muscles and allowing passage of a blood vessel or nerve. It is helpful to understand the meanings of some of the more common bone marking terms. Before we get started, look up the definitions of these common bone marking terms: Canal: Condyle: Facet: Fissure: Foramen: (see Module 10.18 Foramina of Skull) Fossa: Margin: Process: Throughout this exercise, you will notice bold terms. This is meant to focus your attention on these important words. Make sure you pay attention to any bold words and know how to explain their definitions and/or where they are located. Use the following modules to guide your exploration of the axial skeleton. As you explore these bones in Visible Body’s app, also locate the bones and bone markings on any available charts, models, or specimens. You may also find it helpful to palpate bones on yourself or make drawings of the bones with the bone markings labeled.
    [Show full text]
  • The Skull O Neurocranium, Form and Function O Dermatocranium, Form
    Lesson 15 ◊ Lesson Outline: ♦ The Skull o Neurocranium, Form and Function o Dermatocranium, Form and Function o Splanchnocranium, Form and Function • Evolution and Design of Jaws • Fate of the Splanchnocranium ♦ Trends ◊ Objectives: At the end of this lesson, you should be able to: ♦ Describe the structure and function of the neurocranium ♦ Describe the structure and function of the dermatocranium ♦ Describe the origin of the splanchnocranium and discuss the various structures that have evolved from it. ♦ Describe the structure and function of the various structures that have been derived from the splanchnocranium ♦ Discuss various types of jaw suspension and the significance of the differences in each type ◊ References: ♦ Chapter: 9: 162-198 ◊ Reading for Next Lesson: ♦ Chapter: 9: 162-198 The Skull: From an anatomical perspective, the skull is composed of three parts based on the origins of the various components that make up the final product. These are the: Neurocranium (Chondocranium) Dermatocranium Splanchnocranium Each part is distinguished by its ontogenetic and phylogenetic origins although all three work together to produce the skull. The first two are considered part of the Cranial Skeleton. The latter is considered as a separate Visceral Skeleton in our textbook. Many other morphologists include the visceral skeleton as part of the cranial skeleton. This is a complex group of elements that are derived from the ancestral skeleton of the branchial arches and that ultimately gives rise to the jaws and the skeleton of the gill
    [Show full text]
  • MBB: Head & Neck Anatomy
    MBB: Head & Neck Anatomy Skull Osteology • This is a comprehensive guide of all the skull features you must know by the practical exam. • Many of these structures will be presented multiple times during upcoming labs. • This PowerPoint Handout is the resource you will use during lab when you have access to skulls. Mind, Brain & Behavior 2021 Osteology of the Skull Slide Title Slide Number Slide Title Slide Number Ethmoid Slide 3 Paranasal Sinuses Slide 19 Vomer, Nasal Bone, and Inferior Turbinate (Concha) Slide4 Paranasal Sinus Imaging Slide 20 Lacrimal and Palatine Bones Slide 5 Paranasal Sinus Imaging (Sagittal Section) Slide 21 Zygomatic Bone Slide 6 Skull Sutures Slide 22 Frontal Bone Slide 7 Foramen RevieW Slide 23 Mandible Slide 8 Skull Subdivisions Slide 24 Maxilla Slide 9 Sphenoid Bone Slide 10 Skull Subdivisions: Viscerocranium Slide 25 Temporal Bone Slide 11 Skull Subdivisions: Neurocranium Slide 26 Temporal Bone (Continued) Slide 12 Cranial Base: Cranial Fossae Slide 27 Temporal Bone (Middle Ear Cavity and Facial Canal) Slide 13 Skull Development: Intramembranous vs Endochondral Slide 28 Occipital Bone Slide 14 Ossification Structures/Spaces Formed by More Than One Bone Slide 15 Intramembranous Ossification: Fontanelles Slide 29 Structures/Apertures Formed by More Than One Bone Slide 16 Intramembranous Ossification: Craniosynostosis Slide 30 Nasal Septum Slide 17 Endochondral Ossification Slide 31 Infratemporal Fossa & Pterygopalatine Fossa Slide 18 Achondroplasia and Skull Growth Slide 32 Ethmoid • Cribriform plate/foramina
    [Show full text]
  • Osteoma of Occipital Bone
    © 2003 Indian Journal of Surgery www.indianjsurg.comCase Report Effective treatment is crucial for avoiding recurrent Low-grade chondrosarcoma in an extremity can be incidence and depends on excising all tissues with treated with limited surgery. carcinoma. As the tumour is radio-resistant, complete removal is the only treatment of choice. A wide excision REFERENCES for low-grade chondrosarcoma is generally advised. Following open biopsy, local excision or, if required, 1. Bovee JVMG, van der Heul RO, Taminiau AHM, Hogendoorn PCW, reconstruction is advised.5 Chondrosarcoma of the phalanx: A locally aggressive lesion with minimal metastatic potential. Cancer 1999;86:1724-32. 2. Evans HL, Ayala AG, Romsdahl MM, Prognostic factors in chond- In our case, we think that the removal of the tumoral rosarcoma of bone. Cancer 1977;40:818-31. tissue from the normal tissue margin is the treatment 3. Dahlin DC, Beabout JW, Dedifferentiation of low-grade chondro- sarcomas. Cancer 1971;28:461-6. of choice. Our case is a young case that had Grade 1 4. Damron TA, Rock MG, Unni KK, Subcutaneous involvement after chondrosarcoma in his fourth and fifth finger and fifth a metacarpal chondrosarcoma: Case report and review of litera- metatarsal diaphysis. The difference of our case from ture. Clin Orthop 1995;316:189-94. 5. Ogose A, Unni KK, Swee RG, May GK, Rowland CM, Sim FH. the ones reported in literature is that he was young Chondrosarcoma of small bones of the hands and feet. Cancer (18-year-old) and had a lesion involving two different 1997;80:50-9. compartments synchronously as localization.
    [Show full text]