When a Neonate Is Born, So Is a Microbiota
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Medical Microbiology, Virology and Immunology (General Part)
YEREVAN STATE MEDICAL UNIVERSITY AFTER MKHITAR HERATSI Department of Medical Microbiology M.S.Hovhannisyan Medical Microbiology, Virology and Immunology (General Part) Yerevan 2019 AIMS AND PROBLEMS, SHORT HISTORICAL OUTLINE ON THE DEVELOPMENT OF MICROBIOLOGY Microbiology (GK-micros-small, bios-life, logos-science) - is the science studying minute organisms, invisible to the naked eye, named microbes. Microbiology studies the laws of the life and development of microorganisms and also the changes which they bring about in animal and plant organisms and in non-living matter. The microbes are found everywhere; they are on all the subjects around us. And these microbes are subdivided into: Pathogenic – causative agents of infectious diseases Conditionally pathogenic – this can become pathogenic according to the condition. Non-pathogenic – saprophytes, which are in nature and participate in the circulation of the substances (matters). According to the requirements of society MB divided into: general agricultural veterinary sanitary medical We should study medical microbiology. Modern medical microbiology has become an extensive science. It studied the microorganisms - bacteria, viruses, fungi, which are pathogenic for the human organism. Medical microbiology is subdivided into – bacteriology – the science of bacteria, the causative agents of a number of infectious diseases; virology – the science of viruses – no cellular living systems, capable of causing infectious diseases in man; immunology – the science which is concerned with the mechanisms of body protection against pathogenic microorganisms and foreign cells and substances; mycology – the study of fungi, pathogenic for man; protozoology – which deals with pathogenic, unicellular animal organisms. Each of these disciplines studies the following problems (items): 1. Morphology and physiology which includes microscopic and other kinds of research. -
Microbial Communities in Placentas from Term Normal Pregnancy Exhibit Spatially Variable Profiles Lindsay A
Washington University School of Medicine Digital Commons@Becker Open Access Publications 2017 Microbial communities in placentas from term normal pregnancy exhibit spatially variable profiles Lindsay A. Parnell Washington University School of Medicine in St. Louis Catherine M. Briggs Washington University School of Medicine in St. Louis Bin Cao Washington University School of Medicine in St. Louis Omar Delannoy-Bruno Washington University School of Medicine in St. Louis Andrew E. Schrieffer Washington University School of Medicine in St. Louis See next page for additional authors Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs Recommended Citation Parnell, Lindsay A.; Briggs, Catherine M.; Cao, Bin; Delannoy-Bruno, Omar; Schrieffer, Andrew E.; and Mysorekar, Indira U., ,"Microbial communities in placentas from term normal pregnancy exhibit spatially variable profiles." Scientific Reports.7,. (2017). https://digitalcommons.wustl.edu/open_access_pubs/6175 This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact [email protected]. Authors Lindsay A. Parnell, Catherine M. Briggs, Bin Cao, Omar Delannoy-Bruno, Andrew E. Schrieffer, and Indira U. Mysorekar This open access publication is available at Digital Commons@Becker: https://digitalcommons.wustl.edu/open_access_pubs/6175 www.nature.com/scientificreports OPEN Microbial communities in placentas from term normal pregnancy exhibit spatially variable profles Received: 30 January 2017 Lindsay A. Parnell1, Catherine M. Briggs1, Bin Cao1, Omar Delannoy-Bruno1, Andrew E. Accepted: 24 August 2017 Schriefer2 & Indira U. Mysorekar 1,3 Published: xx xx xxxx The placenta is the principal organ nurturing the fetus during pregnancy and was traditionally considered to be sterile. -
Human Microbiota Association with Immunoglobulin a and Its Participation in Immune Response La Asociación De La Microbiota Huma
Colegio Mexicano de Inmunología Clínica A.C. Revista Inmunología Alergia México Human microbiota association with immunoglobulin A and its participation in immune response La asociación de la microbiota humana con la inmunoglo- bulina A y su participación en la respuesta inmunológica Erick Saúl Sánchez-Salguero,1 Leopoldo Santos-Argumedo1 Abstract Human microbiota is the aggregate of microorganisms that reside in our body. Its phylogenetic composition is related to the risk for suff ering from infl ammatory diseases and allergic conditions. Humans interact with a large number and variety of these microorganisms via the skin and mucous membranes. An immune protection mechanism is the production of secretory IgA (SIgA), which recognizes resident pathogenic microorganisms and prevents their interaction with host epithelial cells by means of immune exclusion. Formerly, it was thought that SIgA only function in mucous membranes was to recognize and exclude pathogens, but thanks to the use of massive sequencing techniques for human microbiota phylogenetic characterization, now we know that it can be associated with pathogenic and non-pathogenic microorganisms, an association that is important for functions the microbiota carries out in epithelia, such as regulating the capability of certain microbial species to settle on the skin and mucous membranes, and stimulation and regulation of the immune response and of the risk for the development of infl ammatory problems, allergic conditions, autoimmune diseases, and even cancer. Established microbiota determines the type of bacterial species (and probably viral and protozoan species) that reside on the skin and mucous membranes, promoting microbial diversity. Keywords: Secretory Immunoglobulin A; Microbiota; Immunity; Allergy; Skin and mucosal membranes Este artículo debe citarse como: Sánchez-Salguero ES, Santos-Argumedo L. -
Current Progresses on Vaginal Microbiome, Bacterial Vaginosis and Biofilms
Current progresses on vaginal microbiome, bacterial vaginosis and biofilms Gary Ventolini1, Abdul Hamood2 1 Professor and Regional Dean School of Medicine Texas Tech University Health Sciences Center Permian Basin 800 West, 4th Street. Odessa, Texas, 79705 USA; 2 Professor Department of Immunology and Molecular Microbiology Texas Tech University Health Sciences Center 3601 4th Street. Lub- bock, Texas, 79430 USA. ABSTRACT Recent advances in vaginal microbiome research have indicated that dysbiosis is a complex disorder involving not only cellular and bacterial metabolites, but also hormonal and environmental factors. With newly attained information, harmful gynecological conditions like Bacterial Vaginosis could be efficiently treated to restore health and enhance quality of life across women’s lifespan. Furthermore, newest discoveries on Lactobacilli products and biofilms will let us take care of serious medical conditions. Particularly, relating to antibiotic resistant pathogen biofilm producers like Pseudomonas aeruginosa and benefit patients with severe infected burns and sepsis. We scrutinize the significance of the current progresses on vaginal microbiome, bacterial vaginosis and biofilms. KEYWORDS Vaginal microbiome, bacterial vaginosis, biofilm. Introduction Article history Received 4 May 2020 – Accepted 6 Jun 2020 It is crucial to promote the integration of the available in- Contact formation from the bench (biomedical science with its physi- Gary Ventolini; [email protected] ologic pathways) to bed side (practical clinical application of School of Medicine Texas Tech University Health Sciences Center Permian scientific developments). Basin 800 West, 4th Street. Odessa, Texas, 79705 USA The genital tract microbiome represents 9% of the total women’s microbiome [1]. Recent advances in vaginal microbi- ome research have indicated that dysbiosis is a complex disor- permitted in-depth study of the vaginal microbiome. -
Contributions of the Maternal Oral and Gut Microbiome to Placental
www.nature.com/scientificreports OPEN Contributions of the maternal oral and gut microbiome to placental microbial colonization Received: 8 February 2017 Accepted: 21 April 2017 in overweight and obese pregnant Published: xx xx xxxx women Luisa F. Gomez-Arango1,2, Helen. L. Barrett 1,2,3, H. David McIntyre1,4, Leonie K. Callaway1,2,3, Mark Morrison2, 5, 6 & Marloes Dekker Nitert 2,6 A distinct bacterial signature of the placenta was reported, providing evidence that the fetus does not develop in a sterile environment. The oral microbiome was suggested as a possible source of the bacterial DNA present in the placenta based on similarities to the oral non-pregnant microbiome. Here, the possible origin of the placental microbiome was assessed, examining the gut, oral and placental microbiomes from the same pregnant women. Microbiome profiles from 37 overweight and obese pregnant women were examined by 16SrRNA sequencing. Fecal and oral contributions to the establishment of the placental microbiome were evaluated. Core phylotypes between body sites and metagenome predictive functionality were determined. The placental microbiome showed a higher resemblance and phylogenetic proximity with the pregnant oral microbiome. However, similarity decreased at lower taxonomic levels and microbiomes clustered based on tissue origin. Core genera: Prevotella, Streptococcus and Veillonella were shared between all body compartments. Pathways encoding tryptophan, fatty-acid metabolism and benzoate degradation were highly enriched specifically in the placenta. Findings demonstrate that the placental microbiome exhibits a higher resemblance with the pregnant oral microbiome. Both oral and gut microbiomes contribute to the microbial seeding of the placenta, suggesting that placental colonization may have multiple niche sources. -
Vaginal Probiotics for Reproductive Health and Related Dysbiosis: Systematic Review and Meta-Analysis
Journal of Clinical Medicine Review Vaginal Probiotics for Reproductive Health and Related Dysbiosis: Systematic Review and Meta-Analysis Ana López-Moreno 1,2,* and Margarita Aguilera 1,2,3,* 1 Department of Microbiology, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain 2 Instituto de Nutrición y Tecnología de los Alimentos, INYTA-Granada, 18100 Granada, Spain 3 Instituto de Investigación Biosanitaria, Ibs-Granada, 18012 Granada, Spain * Correspondence: [email protected] (A.L.-M.); [email protected] (M.A.); Tel.: +34-9-5824-5129 (M.A.); Fax: +34-958-246235 (M.A.) Abstract: The use of probiotics in reproductive-related dysbiosis is an area of continuous progress due to the growing interest from clinicians and patients suffering from recurrent reproductive microbiota disorders. An imbalance in the natural colonization sites related to reproductive health—vaginal, cervicovaginal, endometrial, and pregnancy-related altered microbiota—could play a decisive role in reproductive outcomes. Oral and vaginal administrations are in continuous discussion regarding the clinical effects pursued, but the oral route is used and studied more often despite the need for further transference to the colonization site. The aim of the present review was to retrieve the standard- ized protocols of vaginal probiotics commonly used for investigating their microbiota modulation capacities. Most of the studies selected focused on treating bacterial vaginosis (BV) as the most common dysbiosis; a few studies focused on vulvovaginal candidiasis (VVC) and on pretreatment during in vitro fertilization (IVF). Vaginal probiotic doses administered were similar to oral probiotics Citation: López-Moreno, A.; 7 10 Aguilera, M. Vaginal Probiotics for protocols, ranging from ≥10 CFU/day to 2.5 × 10 CFU/day, but were highly variable regarding Reproductive Health and Related the treatment duration timing. -
Placental Microbiome and Its Association with Preterm Labor: Systematic Literature Review
Review Article ISSN: 2574 -1241 DOI: 10.26717/BJSTR.2019.17.002962 Placental Microbiome and Its Association With Preterm Labor: Systematic Literature Review Bhuchitra Singh1 and Ping Xia2* 1Department of Gynecology & Obstetrics, Johns Hopkins School of Medicine, USA 2Department of Gynecology & Obstetrics, Johns Hopkins School of Medicine, USA *Corresponding author: Ping Xia, Department of Gynecology & Obstetrics, Johns Hopkins School of Medicine, USA ARTICLE INFO abstract Received: April 09, 2019 Preterm birth is a major cause of mortality and morbidity in infants, and it is also associated with lifelong health consequences. To understand the etiology of preterm Published: April 18, 2019 labor, recent studies have looked into how the placental microbiome differs between term and preterm births, and how the microbiome affects pregnancy outcomes. This Citation: Bhuchitra Singh, Ping Xia. review synthesized selected studies (n=5) from PubMed. Overall, these studies associated Placental Microbiome and Its As- preterm labor with placental bacteria. The research indicates that the placental sociation With Preterm Labor: Sys- microbiome is similar to the human oral microbiome. Studies also show that there are tematic Literature Review. Biomed bacteria present in both term and preterm fetal membranes. Although bacteria exists in J Sci & Tech Res 17(2)-2019. BJSTR. both types, the microbes of preterm membranes are greater in prevalence and species MS.ID.002962. diversity. In addition, compared to term births, preterm births contained more microbial DNA in placentas of subjects with chorioamnionitis and without chorioamnionitis. These Keywords: Microbiome; Placenta; Placental Microbiome; Preterm Birth; variety, and preterm labor regardless of bacterial infection status. The reviewed articles Pregnancy Outcomes alsofindings lead indicateto questions a positive of proper relationship sampling between methods bacterial and contamination, presence, microbial which will DNA be discussed using the results of Salter et al. -
Does a Prenatal Bacterial Microbiota Exist?
COMMENTARY Does a prenatal bacterial microbiota exist? M Hornef1 and J Penders2 THE CONCEPT OF A PRENATAL the establishment of the neonate’s own meconium samples of 21 healthy human MICROBIOME microbiota.4 Recently, maternal-fetal neonates born by either vaginal delivery The recent technical progress and enor- transmission of commensal bacteria or caesarean section and cultured mous efforts to unravel the manifold and the existence of a placental micro- bacteria of the genera Staphylococcus, interactions of the microbiota with the biome have been suggested.5–10 Coloni- Enterococcus, Streptococcus, Leuconos- host’s organism have provided striking zation of the healthy placental and/or toc, Bifidobacterium, Rothia, Bacteroides and unforeseen insights. This work fetal tissue with a diverse group of but also of the Proteobacteria Klebsiella, assigns the microbiota a central role metabolically active bacteria would; Enterobacter and Escherichia coli.6 in human health and has identified novel however, fundamentally challenge our Again, oral administration of the labeled strategies to prevent and fight diseases in current thinking of the development of E. faecium strain to pregnant mice led to the future. One particular aspect of this the fetus within a sterile, protected the detection in meconium samples.6 work has been the early colonization of environment. It would require new They concluded the presence of the newborn and a strong influence of concepts to explain how bacteria can ‘‘mother-to-child transmission’’ before maternal sources on the developing persist within host tissue but remain birth. Three other groups described the microbiota of the neonate.1,2 Birth, or anatomically restricted to prevent sys- PCR-based detection of bacteria in more accurately rupture of the amniotic temic spread within the fetal organism placental tissue. -
Vaginal Microbiota and the Potential of Lactobacillus Derivatives in Maintaining Vaginal Health Wallace Jeng Yang Chee , Shu Yih Chew and Leslie Thian Lung Than*
Chee et al. Microb Cell Fact (2020) 19:203 https://doi.org/10.1186/s12934-020-01464-4 Microbial Cell Factories REVIEW Open Access Vaginal microbiota and the potential of Lactobacillus derivatives in maintaining vaginal health Wallace Jeng Yang Chee , Shu Yih Chew and Leslie Thian Lung Than* Abstract Human vagina is colonised by a diverse array of microorganisms that make up the normal microbiota and mycobiota. Lactobacillus is the most frequently isolated microorganism from the healthy human vagina, this includes Lactobacil- lus crispatus, Lactobacillus gasseri, Lactobacillus iners, and Lactobacillus jensenii. These vaginal lactobacilli have been touted to prevent invasion of pathogens by keeping their population in check. However, the disruption of vaginal ecosystem contributes to the overgrowth of pathogens which causes complicated vaginal infections such as bacterial vaginosis (BV), sexually transmitted infections (STIs), and vulvovaginal candidiasis (VVC). Predisposing factors such as menses, pregnancy, sexual practice, uncontrolled usage of antibiotics, and vaginal douching can alter the microbial community. Therefore, the composition of vaginal microbiota serves an important role in determining vagina health. Owing to their Generally Recognised as Safe (GRAS) status, lactobacilli have been widely utilised as one of the alterna- tives besides conventional antimicrobial treatment against vaginal pathogens for the prevention of chronic vaginitis and the restoration of vaginal ecosystem. In addition, the efectiveness of Lactobacillus as prophylaxis has also been well-founded in long-term administration. This review aimed to highlight the benefcial efects of lactobacilli deriva- tives (i.e. surface-active molecules) with anti-bioflm, antioxidant, pathogen-inhibition, and immunomodulation activi- ties in developing remedies for vaginal infections. -
Aerobic Vaginitis: Abnormal Vaginal Flora That Is Distinct from Bacterial Vaginosis
Aerobic Vaginitis: Abnormal Vaginal Flora That Is Distinct From Bacterial Vaginosis. Aerobic vaginitis (AV) is a state of abnormal vaginal flora that is distinct from the more common bacterial vaginosis (BV) (Table 1). AV is caused by a displacement to respond to therapy at one week and will experience of the healthy vaginal Lactobacillus species with aerobic persistent symptoms. (4, 5) It is believed that a subset of pathogens such as Escherichia coli, Group B Streptococcus these patients may have been misdiagnosed and actually (GBS), Staphylococcus aureus, and Enterococcus faecalis suffer from AV, which requires an antibiotic therapy with that trigger a localized vaginal inflammatory immune intrinsic activity against specific aerobic bacteria. AV has response. Clinical signs and symptoms include vaginal been implicated in complications of pregnancy such as inflammation, an itching or burning sensation, dyspareunia, ascending chorioamnionitis, premature rupture of the yellowish discharge, and an increase in vaginal pH > 4.5, membranes, and preterm delivery. and inflammation with leukocyte infiltration. (1) Severe, persistent, or chronic forms of AV can also be referred to as Epidemiology desquamative inflammatory vaginitis (DIV). (2, 3) In a study of 631 patients attending routine prenatal care BV is a common vaginal disorder associated with the from a vaginitis clinic, 7.9% had moderate to severe AV overgrowth of anaerobic bacteria, a distinct vaginal signs and symptoms and 6% had ‘full-blown’ BV. (1) malodorous discharge, but is not usually associated with a strong vaginal inflammatory immune response. Like AV, In a study of 3,000 women, 4.3% were found to have severe BV also includes an elevation of the vaginal pH > 4.5 and AV, also called DIV. -
The Vaginal Microbiome of Sub-Saharan African Women: Revealing Important Gaps in the Era of Next-Generation Sequencing
The vaginal microbiome of sub-Saharan African women: revealing important gaps in the era of next-generation sequencing Nkechi Martina Odogwu1, Oladapo O. Olayemi2 and Akinyinka O. Omigbodun2 1 Pan African University of Life and Earth Science Institute, Department of Obstetrics and Gynecology, University College Hospital, University of Ibadan, Ibadan, Oyo, Nigeria 2 Department of Obstetrics and Gynecology, College of Medicine, University College Hospital, University of Ibadan, Ibadan, Oyo, Nigeria ABSTRACT Accurate characterization of the vaginal microbiome remains a fundamental goal of the Human Microbiome project (HMP). For over a decade, this goal has been made possible deploying high-throughput next generation sequencing technologies (NGS), which indeed has revolutionized medical research and enabled large-scale genomic studies. The 16S rRNA marker-gene survey is the most commonly explored approach for vaginal microbial community studies. With this approach, prior studies have elucidated substantial variations in the vaginal microbiome of women from different ethnicities. This review provides a comprehensive account of studies that have deployed this approach to describe the vaginal microbiota of African women in health and disease. On the basis of published data, the few studies reported from the African population are mainly in non-pregnant post pubertal women and calls for more detailed studies in pregnant and postnatal cohorts. We provide insight on the use of more sophisticated cutting-edge technologies in characterizing the vaginal microbiome. These technologies offer high-resolution detection of vaginal microbiome variations and community functional capabilities, which can shed light into several discrepancies observed in the vaginal microbiota of African women in an African population versus women of African descent in the diaspora. -
The Vaginal Microbiome Related to Reproductive Traits in Beef Heifers
University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 5-2018 The aV ginal Microbiome Related to Reproductive Traits in Beef Heifers Maryanna Wells McClure University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/etd Part of the Animal Studies Commons Recommended Citation McClure, Maryanna Wells, "The aV ginal Microbiome Related to Reproductive Traits in Beef Heifers" (2018). Theses and Dissertations. 2799. http://scholarworks.uark.edu/etd/2799 This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. The Vaginal Microbiome Related to Reproductive Traits in Beef Heifers A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Animal Science by Maryanna W. McClure University of Tennessee at Martin Bachelor of Science in Animal Science, 2016 May 2018 University of Arkansas This thesis is approved for recommendation to the Graduate Council _______________________________ Jiangchao Zhao, Ph. D. Thesis Director ________________________________ ________________________________ Rick Rorie, Ph. D. Charles Rosenkrans, Ph. D. Committee Member Committee Member _______________________________ Michael Looper, Ph. D. Committee Member ABSTRACT The greatest impact on profitability of a commercial beef operation is reproduction. In the human vaginal microbiome, dominance by Lactobacillus is a sign of reproductive health and fit- ness. In other species (non-human primates and ewes), Lactobacillus is found in low amounts and dominators of these microbial communities are considered to be pathogenic in humans.