Current Progresses on Vaginal Microbiome, Bacterial Vaginosis and Biofilms

Total Page:16

File Type:pdf, Size:1020Kb

Current Progresses on Vaginal Microbiome, Bacterial Vaginosis and Biofilms Current progresses on vaginal microbiome, bacterial vaginosis and biofilms Gary Ventolini1, Abdul Hamood2 1 Professor and Regional Dean School of Medicine Texas Tech University Health Sciences Center Permian Basin 800 West, 4th Street. Odessa, Texas, 79705 USA; 2 Professor Department of Immunology and Molecular Microbiology Texas Tech University Health Sciences Center 3601 4th Street. Lub- bock, Texas, 79430 USA. ABSTRACT Recent advances in vaginal microbiome research have indicated that dysbiosis is a complex disorder involving not only cellular and bacterial metabolites, but also hormonal and environmental factors. With newly attained information, harmful gynecological conditions like Bacterial Vaginosis could be efficiently treated to restore health and enhance quality of life across women’s lifespan. Furthermore, newest discoveries on Lactobacilli products and biofilms will let us take care of serious medical conditions. Particularly, relating to antibiotic resistant pathogen biofilm producers like Pseudomonas aeruginosa and benefit patients with severe infected burns and sepsis. We scrutinize the significance of the current progresses on vaginal microbiome, bacterial vaginosis and biofilms. KEYWORDS Vaginal microbiome, bacterial vaginosis, biofilm. Introduction Article history Received 4 May 2020 – Accepted 6 Jun 2020 It is crucial to promote the integration of the available in- Contact formation from the bench (biomedical science with its physi- Gary Ventolini; [email protected] ologic pathways) to bed side (practical clinical application of School of Medicine Texas Tech University Health Sciences Center Permian scientific developments). Basin 800 West, 4th Street. Odessa, Texas, 79705 USA The genital tract microbiome represents 9% of the total women’s microbiome [1]. Recent advances in vaginal microbi- ome research have indicated that dysbiosis is a complex disor- permitted in-depth study of the vaginal microbiome. These der involving not only cellular and bacterial metabolites, but includes DNA fingerprinting, microarrays, quantitative pol- also hormonal and environmental factors. ymerase chain reaction (qPCR), genome sequencing (metagen- With newly acquired knowledge, bothersome and harmful omics), and bacteria specific sequencing 16S ribosome gene. gynecological conditions like Bacterial Vaginosis (BV) could Through these methods we have learned that the human vagina be successfully treated to restore health and enhance quality of is a vastly nutrient-rich cavity for microorganisms (approxi- life across women’s lifespan. mately 200 species has been reported) that bloom into a unique Additionally, newest discoveries on Lactobacilli products complex, dynamic, and diverse microbiome [5]. and biofilms will allow us to address serious medical condi- The vaginal microbiome is under the effect of genetic, ethnic, tions. Predominantly related to pathogen biofilm producers and hormonal, environmental, cultural and behavioral influences. antibiotic resistant microorganisms like Pseudomonas aerugi- This ecosystem in healthy women of childbearing age is habit- nosa which colonizes patients with severe infected burns and ually composed by 4 Lactobacilli that possess a specific vagi- causes fatal sepsis [2]. notropism: L. crispatus, L. jensenii, L. gasseri and L. iners [6]. Vaginotropism is facilitated by pili that act as ligands for at- tachment to glycolipid receptors on vaginal epithelia cells (Fig- Vaginal microbiome ure 1 recognizes the 4 most commonly Lactobacilli found in vagina in circles L. crispatus (blue), L. gasseri (white), L. iners Having a better understanding of the vaginal microbiome (red) and L. jensenii (yellow). It is a wet mount microscopic is required to discern the pathogenesis of several ailments like image in normal saline solution at 200x magnification). Bacterial vaginosis [3]. Lactobacilli are obligate homo-fermenters of glucose from Accordingly, a multicenter epidemiological study started in which they produce lactic acid that helps maintain a stable vag- China to analyze the vaginal microbiome by means of the Vag- inal pH between 3.8 and 4.4. In addition, Lactobacilli produce inal Microecology Evaluation System (VMES) [4]. hydrogen peroxide that allied with host myeloperoxidase and Subsequently, innovative molecular techniques have chloride ions, forms very powerful lethal oxidants that halt 136 Licens terms Gynecological and Reproductive Endocrinology and Metabolism 2020; 1(3):136-140 Progresses on vaginal microbiome, BV, biofilms pathogenic bacteria from flourishing. Hydrogen peroxide also Figure 1 In this we are identifying the 4 most commonly Lactobacilli suppresses G. vaginalis and Mobiluncus. L. Crispatus and L. found in vagina: L. crispatus, L. gasseri, L. iners, L. jensenii. Wet mount microscopic image in normal saline solution at 200x magnification. Jensenii are known to be hydrogen peroxide producers [7]. Other products by Lactobacilli include organic acids, hy- droxy [1] radicals, bio surfactants, arginine deaminases and bi- ofilm. Lactobacilli are likewise known to produce bacteriocins (ribosomal-produced antimicrobial peptides) which likewise defend the vaginal milieu from pathogen bacteria [8]. Bacteriocins induce cell membrane permeabilization, alter- ing ATR amino acids and ion efflux; therefore, transmembrane potential and provoke pH gradient depletion. Lactic acid poten- tiates bacteriocins and hydrogen peroxide. Additionally, Bacteriocins express host cell immunity: NO hemolytic or cytotoxic activity. For instance, Lactocin 160A targets the cyto-membrane of G. vaginalis [9]. Bacterial vaginosis Bacterial Vaginosis (BV) is a vaginal disorder associated to a poly-microbial overgrowth of Gram-negative anaerobes and gram-positives bacteria, that displace most of Lactobacilli ex- cept sometimes L. iners. Historical synopsis It was in 1955, when Gardner and Dukes identified a small for its conciseness in describing the essential of their identified gram negative bacillus in over 90% of women suffering from vaginitis, today’s Bacterial Vaginosis [10] (Figure 2 Shows the vaginitis which was termed Hemophilus vaginalis, since it was typical “Clue Cells”: Bacteria obscuring the borders of vaginal thought that bacterium to be the etiologic agent of this condi- epithelial cells, giving them a stippled appearance. Wet mount tion [10]. In their original research article, Gardner and Dukes microscopic image in normal saline solution at 100x magnifi- also described in patients with this vaginitis, characteristic ep- cation with Gram Stain). ithelial cells that presented distinctive stippled borders appear- A few years later it was found that Hemophilus vagina- ance by being covered with bacteria [10,11]. lis was gram-positive, therefore the microbiologists suggest- Gardner and Dukes called them “Clue cells”, a name chosen ed that should be transferred to the genus Corynebacterium Figure 2 Clue Cells: Bacteria obscuring the borders of vaginal epithelial cells, giving them a stippled appearance. Wet mount microscopic image in normal saline solution at 100x magnification with Gram Stain. Gynecological and Reproductive Endocrinology and Metabolism 2020; 1(3):136-140 137 Ventolini G et al as Corynebacterium vaginalis (CV). Nevertheless, in 1977 is under the influence of sexual hormones although the repro- Greenwood and Pickell informed that CV was both gram-inter- ductive tract leukocytes do not have estrogen or progesterone mediate and unrelated to the previously described Corynebac- receptors [5,15,19]. terium genera. Hereafter they elected to place it in a new ge- The innate immune system recognizes molecular patterns nus, Gardnerella, as Gardnerella vaginalis [12]. associated with pathogens (PAMP). When PAMP is recog- nized, it activates lymphocytes T and B causing pro-inflam- Bacterial vaginosis account matory cytokines release and the start of cellular and humoral BV is a syndrome caused by communities of bacteria that in- immunity. The innate immune system acts rapidly but the ac- clude uncultivated species. BV could be clinically asympto- quired immunity system requires days. matic or be characterized by an increased thin gray or whitish Factors active in the vagina are mannose-binding lectin vaginal discharge, with a foul, fishy like odor. Emotionally (MBL), complement and the membrane-associated compo- could be associated with embarrassment, uneasiness, and dis- nents called Toll-like receptors (TLRs). MBL are antimicrobial tress. There is a rise in vaginal pH from normal to 4.5 and over protein synthesized in the liver. MBL binds to bacterial man- 5.5. Any or several of the more than the 180 species of bacteria nose-containing polysaccharide surfaces activate complement present in the vagina may generate dysbiosis and BV. Especial- and cause bacteriolysis. The vagina also contains Defensins ly when conditions alter, reduce, blocked, or deplete the domi- which are nonspecific antimicrobial activity molecules. More- nant Lactobacilli [13]. over, Secretory Leukocyte Protease Inhibitor (SLPI) destroys The most commonly cultured bacteria in BV include: Gram-positive and Gram-negative bacteria. These proteins are Gardnerella vaginalis, Mycoplasma hominis, Atopobium va- reduced in patients with BV [5,15,19]. ginae, Mobiluncus spp, Bacteroides spp, Clostridiales spp, Vaginal Epithelial Cells (VEC) provide an exclusive mi- Peptostreptococcus spp, Prevotela spp, Fusobacterium, and croenvironment that preserves vaginal health by nurturing en- Porphyromonas spp amongst others [7,14]. dogenous
Recommended publications
  • Vaginal Probiotics for Reproductive Health and Related Dysbiosis: Systematic Review and Meta-Analysis
    Journal of Clinical Medicine Review Vaginal Probiotics for Reproductive Health and Related Dysbiosis: Systematic Review and Meta-Analysis Ana López-Moreno 1,2,* and Margarita Aguilera 1,2,3,* 1 Department of Microbiology, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain 2 Instituto de Nutrición y Tecnología de los Alimentos, INYTA-Granada, 18100 Granada, Spain 3 Instituto de Investigación Biosanitaria, Ibs-Granada, 18012 Granada, Spain * Correspondence: [email protected] (A.L.-M.); [email protected] (M.A.); Tel.: +34-9-5824-5129 (M.A.); Fax: +34-958-246235 (M.A.) Abstract: The use of probiotics in reproductive-related dysbiosis is an area of continuous progress due to the growing interest from clinicians and patients suffering from recurrent reproductive microbiota disorders. An imbalance in the natural colonization sites related to reproductive health—vaginal, cervicovaginal, endometrial, and pregnancy-related altered microbiota—could play a decisive role in reproductive outcomes. Oral and vaginal administrations are in continuous discussion regarding the clinical effects pursued, but the oral route is used and studied more often despite the need for further transference to the colonization site. The aim of the present review was to retrieve the standard- ized protocols of vaginal probiotics commonly used for investigating their microbiota modulation capacities. Most of the studies selected focused on treating bacterial vaginosis (BV) as the most common dysbiosis; a few studies focused on vulvovaginal candidiasis (VVC) and on pretreatment during in vitro fertilization (IVF). Vaginal probiotic doses administered were similar to oral probiotics Citation: López-Moreno, A.; 7 10 Aguilera, M. Vaginal Probiotics for protocols, ranging from ≥10 CFU/day to 2.5 × 10 CFU/day, but were highly variable regarding Reproductive Health and Related the treatment duration timing.
    [Show full text]
  • Vaginal Microbiota and the Potential of Lactobacillus Derivatives in Maintaining Vaginal Health Wallace Jeng Yang Chee , Shu Yih Chew and Leslie Thian Lung Than*
    Chee et al. Microb Cell Fact (2020) 19:203 https://doi.org/10.1186/s12934-020-01464-4 Microbial Cell Factories REVIEW Open Access Vaginal microbiota and the potential of Lactobacillus derivatives in maintaining vaginal health Wallace Jeng Yang Chee , Shu Yih Chew and Leslie Thian Lung Than* Abstract Human vagina is colonised by a diverse array of microorganisms that make up the normal microbiota and mycobiota. Lactobacillus is the most frequently isolated microorganism from the healthy human vagina, this includes Lactobacil- lus crispatus, Lactobacillus gasseri, Lactobacillus iners, and Lactobacillus jensenii. These vaginal lactobacilli have been touted to prevent invasion of pathogens by keeping their population in check. However, the disruption of vaginal ecosystem contributes to the overgrowth of pathogens which causes complicated vaginal infections such as bacterial vaginosis (BV), sexually transmitted infections (STIs), and vulvovaginal candidiasis (VVC). Predisposing factors such as menses, pregnancy, sexual practice, uncontrolled usage of antibiotics, and vaginal douching can alter the microbial community. Therefore, the composition of vaginal microbiota serves an important role in determining vagina health. Owing to their Generally Recognised as Safe (GRAS) status, lactobacilli have been widely utilised as one of the alterna- tives besides conventional antimicrobial treatment against vaginal pathogens for the prevention of chronic vaginitis and the restoration of vaginal ecosystem. In addition, the efectiveness of Lactobacillus as prophylaxis has also been well-founded in long-term administration. This review aimed to highlight the benefcial efects of lactobacilli deriva- tives (i.e. surface-active molecules) with anti-bioflm, antioxidant, pathogen-inhibition, and immunomodulation activi- ties in developing remedies for vaginal infections.
    [Show full text]
  • Aerobic Vaginitis: Abnormal Vaginal Flora That Is Distinct from Bacterial Vaginosis
    Aerobic Vaginitis: Abnormal Vaginal Flora That Is Distinct From Bacterial Vaginosis. Aerobic vaginitis (AV) is a state of abnormal vaginal flora that is distinct from the more common bacterial vaginosis (BV) (Table 1). AV is caused by a displacement to respond to therapy at one week and will experience of the healthy vaginal Lactobacillus species with aerobic persistent symptoms. (4, 5) It is believed that a subset of pathogens such as Escherichia coli, Group B Streptococcus these patients may have been misdiagnosed and actually (GBS), Staphylococcus aureus, and Enterococcus faecalis suffer from AV, which requires an antibiotic therapy with that trigger a localized vaginal inflammatory immune intrinsic activity against specific aerobic bacteria. AV has response. Clinical signs and symptoms include vaginal been implicated in complications of pregnancy such as inflammation, an itching or burning sensation, dyspareunia, ascending chorioamnionitis, premature rupture of the yellowish discharge, and an increase in vaginal pH > 4.5, membranes, and preterm delivery. and inflammation with leukocyte infiltration. (1) Severe, persistent, or chronic forms of AV can also be referred to as Epidemiology desquamative inflammatory vaginitis (DIV). (2, 3) In a study of 631 patients attending routine prenatal care BV is a common vaginal disorder associated with the from a vaginitis clinic, 7.9% had moderate to severe AV overgrowth of anaerobic bacteria, a distinct vaginal signs and symptoms and 6% had ‘full-blown’ BV. (1) malodorous discharge, but is not usually associated with a strong vaginal inflammatory immune response. Like AV, In a study of 3,000 women, 4.3% were found to have severe BV also includes an elevation of the vaginal pH > 4.5 and AV, also called DIV.
    [Show full text]
  • The Vaginal Microbiome of Sub-Saharan African Women: Revealing Important Gaps in the Era of Next-Generation Sequencing
    The vaginal microbiome of sub-Saharan African women: revealing important gaps in the era of next-generation sequencing Nkechi Martina Odogwu1, Oladapo O. Olayemi2 and Akinyinka O. Omigbodun2 1 Pan African University of Life and Earth Science Institute, Department of Obstetrics and Gynecology, University College Hospital, University of Ibadan, Ibadan, Oyo, Nigeria 2 Department of Obstetrics and Gynecology, College of Medicine, University College Hospital, University of Ibadan, Ibadan, Oyo, Nigeria ABSTRACT Accurate characterization of the vaginal microbiome remains a fundamental goal of the Human Microbiome project (HMP). For over a decade, this goal has been made possible deploying high-throughput next generation sequencing technologies (NGS), which indeed has revolutionized medical research and enabled large-scale genomic studies. The 16S rRNA marker-gene survey is the most commonly explored approach for vaginal microbial community studies. With this approach, prior studies have elucidated substantial variations in the vaginal microbiome of women from different ethnicities. This review provides a comprehensive account of studies that have deployed this approach to describe the vaginal microbiota of African women in health and disease. On the basis of published data, the few studies reported from the African population are mainly in non-pregnant post pubertal women and calls for more detailed studies in pregnant and postnatal cohorts. We provide insight on the use of more sophisticated cutting-edge technologies in characterizing the vaginal microbiome. These technologies offer high-resolution detection of vaginal microbiome variations and community functional capabilities, which can shed light into several discrepancies observed in the vaginal microbiota of African women in an African population versus women of African descent in the diaspora.
    [Show full text]
  • The Vaginal Microbiome Related to Reproductive Traits in Beef Heifers
    University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 5-2018 The aV ginal Microbiome Related to Reproductive Traits in Beef Heifers Maryanna Wells McClure University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/etd Part of the Animal Studies Commons Recommended Citation McClure, Maryanna Wells, "The aV ginal Microbiome Related to Reproductive Traits in Beef Heifers" (2018). Theses and Dissertations. 2799. http://scholarworks.uark.edu/etd/2799 This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. The Vaginal Microbiome Related to Reproductive Traits in Beef Heifers A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Animal Science by Maryanna W. McClure University of Tennessee at Martin Bachelor of Science in Animal Science, 2016 May 2018 University of Arkansas This thesis is approved for recommendation to the Graduate Council _______________________________ Jiangchao Zhao, Ph. D. Thesis Director ________________________________ ________________________________ Rick Rorie, Ph. D. Charles Rosenkrans, Ph. D. Committee Member Committee Member _______________________________ Michael Looper, Ph. D. Committee Member ABSTRACT The greatest impact on profitability of a commercial beef operation is reproduction. In the human vaginal microbiome, dominance by Lactobacillus is a sign of reproductive health and fit- ness. In other species (non-human primates and ewes), Lactobacillus is found in low amounts and dominators of these microbial communities are considered to be pathogenic in humans.
    [Show full text]
  • The Vaginal Microbiota, Bacterial Biofilms and Polymeric Drug
    pharmaceutics Review The Vaginal Microbiota, Bacterial Biofilms and Polymeric Drug-Releasing Vaginal Rings Louise Carson 1, Ruth Merkatz 2, Elena Martinelli 2, Peter Boyd 1, Bruce Variano 2 , Teresa Sallent 2 and Robert Karl Malcolm 1,* 1 School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; [email protected] (L.C.); [email protected] (P.B.) 2 Population Council, One Dag Hammarskjold Plaza, New York, NY 10017, USA; [email protected] (R.M.); [email protected] (E.M.); [email protected] (B.V.); [email protected] (T.S.) * Correspondence: [email protected] Abstract: The diversity and dynamics of the microbial species populating the human vagina are increasingly understood to play a pivotal role in vaginal health. However, our knowledge about the potential interactions between the vaginal microbiota and vaginally administered drug delivery systems is still rather limited. Several drug-releasing vaginal ring products are currently marketed for hormonal contraception and estrogen replacement therapy, and many others are in preclinical and clinical development for these and other clinical indications. As with all implantable polymeric devices, drug-releasing vaginal rings are subject to surface bacterial adherence and biofilm formation, mostly associated with endogenous microorganisms present in the vagina. Despite more than Citation: Carson, L.; Merkatz, R.; 50 years since the vaginal ring concept was first described, there has been only limited study and Martinelli, E.; Boyd, P.; Variano, B.; reporting around bacterial adherence and biofilm formation on rings. With increasing interest in the Sallent, T.; Malcolm, R.K. The Vaginal vaginal microbiome and vaginal ring technology, this timely review article provides an overview Microbiota, Bacterial Biofilms and of: (i) the vaginal microbiota, (ii) biofilm formation in the human vagina and its potential role in Polymeric Drug-Releasing Vaginal Rings.
    [Show full text]
  • Association of Bacterial Vaginosis with Periodontitis in a Cross-Sectional
    www.nature.com/scientificreports OPEN Association of bacterial vaginosis with periodontitis in a cross‑sectional American nationwide survey Cláudia Escalda1, João Botelho1,2, José João Mendes1 & Vanessa Machado1,2* To explore the association between bacterial vaginosis (BV) and periodontitis (PD) and to determine whether PD and BV might be linked with systemic serum alterations. We used the National Health and Nutrition Examination Survey 2001–2004, with women aged 18–49 years old and diagnosed with or without BV according to Nugent’s method. PD was defned according to the 2012 case defnition. We compared serum counts according to the presence of PD and the presence of BV. Multivariable regression was used to explore and identify relevant variables towards the presence of BV. 961 women fulflled the inclusion criteria. In women with BV, PD was associated with higher infammation, characterized by increased white blood cells (p = 0.006) and lymphocyte (p = 0.009) counts. Predictive models presented a statistically signifcant association between PD and BV [Odds Ratio (OD) = 1.69, 95% Confdence Interval (CI): 1.09–2.61 for periodontitis; OD = 2.37, 95% CI: 1.30–4.29 for severe PD]. Fully adjusted models for age, smoking, body mass index, diabetes mellitus and number of systemic conditions reinforced this association [OD = 1.71, 95% CI: 1.06–2.76 for PD; OD = 2.21, 95% CI: 1.15– 4.25 for severe PD]. An association between BV and PD is conceivable. PD was associated with higher systemic markers of infammation in women with BV. Our data is novel and could serve as a foundation to guide future studies in the confrmation of this association and the underlying mechanisms.
    [Show full text]
  • A Clinical Pilot Study on the Effect of the Probiotic Lacticaseibacillus
    www.nature.com/scientificreports OPEN A clinical pilot study on the efect of the probiotic Lacticaseibacillus rhamnosus TOM 22.8 strain in women with vaginal dysbiosis Alessandra Pino1,4, Agnese Maria Chiara Rapisarda2,4, Salvatore Giovanni Vitale2, Stefano Cianci3, Cinzia Caggia1, Cinzia Lucia Randazzo1* & Antonio Cianci2 Lactobacilli with probiotic features play an essential role in maintaining a balanced vaginal microbiota and their administration has been suggested for the treatment and prevention of vaginal dysbiosis. The present study was aimed to in vitro and in vivo investigate the probiotic potential of the Lacticaseibacillus rhamnosus TOM 22.8 strain, isolated from the vaginal ecosystem of a healthy woman. For this purpose, safety and functional properties were in depth evaluated. The strain exhibited a broad spectrum of antagonistic activity against vaginal pathogens; adhesion capacity to both the vaginal VK2/E6E7 and the intestinal Caco-2 cells; anti-infammatory and antioxidant activities, suggesting its promising probiotic features. In addition, an in vivo pilot-study was planned. Based on both clinical and microbiological parameters, the oral or vaginal strain administration, determined a signifcant pathogens reduction after 10 days of administration and a maintenance of eubiosis up to 30 days after the end of the treatment. Therefore, the L. rhamnosus TOM 22.8 strain can be proposed as valuable oral and/or vaginal treatment for vaginal dysbiosis. Te vaginal microbiota of reproductive age healthy women is dominated by lactobacilli, which play an essential protecting role against genitourinary pathogens1,2. It is noteworthy that specifc lactobacilli are interesting for use as probiotics, which are defned, by the Food and Agriculture Organization of the United Nations and World Health Organization, as “live microorganisms which when administered in adequate amounts, confers health benefts to the host”3.
    [Show full text]
  • The Role of Microbial Insults in Chronic Inflammatory Diseases
    æREVIEW ARTICLE Genetic dysbiosis: the role of microbial insults in chronic inflammatory diseases Luigi Nibali1*, Brian Henderson2, Syed Tariq Sadiq3 and Nikos Donos1 1Periodontology Unit and Department of Clinical Research, UCL Eastman Dental Institute, University College London, London, United Kingdom; 2Division of Microbial Diseases, UCL Eastman Dental Institute, London, United Kingdom; 3Institute of Infection and Immunity, St George’s, University of London, London, United Kingdom Thousands of bacterial phylotypes colonise the human body and the host response to this bacterial challenge greatly influences our state of health or disease. The concept of infectogenomics highlights the importance of host genetic factors in determining the composition of human microbial biofilms and the response to this microbial challenge. We hereby introduce the term ‘genetic dysbiosis’ to highlight the role of human genetic variants affecting microbial recognition and host response in creating an environment conducive to changes in the normal microbiota. Such changes can, in turn, predispose to, and influence, diseases such as: cancer, inflammatory bowel disease, rheumatoid arthritis, psoriasis, bacterial vaginosis and periodontitis. This review presents the state of the evidence on host genetic factors affecting dysbiosis and microbial misrecognition (i.e. an aberrant response to the normal microbiota) and highlights the need for further research in this area. Keywords: genetic; dysbiosis; microbiome; inflammation Received: 2 October 2013; Revised: 22 December 2013; Accepted: 4 January 2014; Published: 25 February 2014 uring their evolution, vertebrates and their colo- individual human will, as a rule, have a subset of his or nising microbes have evolved mechanisms to live her own colonising bacteria in different body habitats, Din symbiosis with each other.
    [Show full text]
  • When a Neonate Is Born, So Is a Microbiota
    life Review When a Neonate Is Born, So Is a Microbiota Alessandra Coscia 1, Flaminia Bardanzellu 2,* , Elisa Caboni 2, Vassilios Fanos 2 and Diego Giampietro Peroni 3 1 Neonatology Unit, Department of Public Health and Pediatrics, Università degli Studi di Torino, 10124 Turin, Italy; [email protected] 2 Neonatal Intensive Care Unit, Department of Surgical Sciences, AOU and University of Cagliari, SS 554 km 4,500, 09042 Monserrato, Italy; [email protected] (E.C.); [email protected] (V.F.) 3 Clinical and Experimental Medicine Department, Section of Pediatrics, University of Pisa, Via Roma, 55, 56126 Pisa PI, Italy; [email protected] * Correspondence: bardanzellu.fl[email protected] Abstract: In recent years, the role of human microbiota as a short- and long-term health promoter and modulator has been affirmed and progressively strengthened. In the course of one’s life, each subject is colonized by a great number of bacteria, which constitute its specific and individual microbiota. Human bacterial colonization starts during fetal life, in opposition to the previous paradigm of the “sterile womb”. Placenta, amniotic fluid, cord blood and fetal tissues each have their own specific microbiota, influenced by maternal health and habits and having a decisive influence on pregnancy outcome and offspring outcome. The maternal microbiota, especially that colonizing the genital system, starts to influence the outcome of pregnancy already before conception, modulating fertility and the success rate of fertilization, even in the case of assisted reproduction techniques. During the perinatal period, neonatal microbiota seems influenced by delivery mode, drug administration and many other conditions. Special attention must be reserved for early neonatal nutrition, because breastfeeding allows the transmission of a specific and unique lactobiome able to modulate and positively affect the neonatal gut microbiota.
    [Show full text]
  • 528 1. ABSTRACT 2. INTRODUCTION Vaginal Microbiota Dysmicrobism
    [Frontiers In Bioscience, Elite, 10, 528-536, June 1, 2018] Vaginal microbiota dysmicrobism and role of biofilm-forming bacteria Giuseppina Campisciano1, Nunzia Zanotta1, Vincenzo Petix1, Lucia Corich1, Francesco De Seta1,2, Manola Comar1,2 1Institute for Maternal and Child Health - IRCCS Burlo Garofolo, Via dell’Istria 65/1, Trieste, 34137 Italy, 2Department of Medical Sciences - University of Trieste, Piazzale Europa 1, Trieste, 34127 Italy TABLE OF CONTENTS 1. Abstract 2. Introduction 3. Materials and methods 3.1. Patients and samples 3.2. Sample processing, Ion Torrent sequencing 3.3. Data analysis 4. Results 5. Discussion 6. Acknowledgment 7. References 1. ABSTRACT Bacterial vaginosis involves the presence pregnancy, breastfeeding and sexual practices (1–4). of a polymicrobial biofilm on the vaginal epithelium, A plethora of microbial species co-exists in the vaginal guaranteeing immune escape and spread of antibiotic niche, 70%–90% of which are Lactobacilli (5). Their resistance. To spot known biofilm-forming bacteria, dominance is pivotal in maintaining the vaginal health, we profiled the vaginal microbiome of sixty-four thanks to their production of hydroxyl radicals, lactic symptomatic women suffering from a different grade acid, bacteriocins, hydrogen peroxide and probiotics of vaginal disorders and sixty asymptomatic healthy (6). Indeed, Lactobacilli are reported to be significantly women. Specific microbial profiles distinguished decreased in bacterial vaginosis (BV) (7), which is a symptomatic from asymptomatic women and non-specific (predominantly anaerobic) polymicrobial characterized the grade of dysmicrobism within the biofilm infection, where the predominant bacteria in symptomatic group. Lactobacillus crispatus and iners the biofilm are not the resident Lactobacilli (8–11). predominated on the healthy vaginal mucosa, while Above all, the most effective mechanism by which the Lactobacillus gasseri predominated in the intermediate Lactobacilli protect the vaginal niche is the production dysmicrobism.
    [Show full text]
  • Vulvovaginal Contact Dermatitis: Why Biofilm Matters
    Vulvovaginal Contact Dermatitis: why Biofilm matters Paul Summers, M.D. Department of Obstetrics and Gynecology University of Utah School of Medicine Today’s Contact Dermatitis Message Characterized by itching, burning or pain without visible changes unless scratching or secondarily infected with staph, strep, or yeast Treatment with non irritating moisturizer and non irritating steroid moderates infection and cancer risk Chronicity of symptoms and failed treatment are related in part to biofilm formation Over time, activation of nerve growth factor as part of the inflammatory process results in an increased population of nerve endings Biofilm • A high population of microbes that adhere to the skin surface • Microbes join together in a mutually supportive cluster • A polysaccharide matrix coating is produced, restricting the entry of antibiotics • Substances that impede local immune defenses are produced Biofilm is visible on Clue Cells the cell cytoplasm No Mucus No Lactobacilli Lactobacilli disappear if the mucus is disrupted Normal flora, lactobacilli No biofilm Vulvovaginal contact dermatitis causes the skin to flake (scale formation) Flaking skin exposes • biofilm fibronectin, allowing yeast and staph aureus adherence, with risk of biofilm formation * Some lactobacilli, mucus present Vulvovaginal Levels of Defense 1. Vulvar and vaginal pH around 4.5 2. Lactobacillus and other commensals 3. Mucus (biofilm prevention) 4. Innate Immunity, antimicrobial peptides (AMPs) 5. Skin Barrier 6. Cell Mediated Immunity Levels of Defense 1. Vulvar and vaginal pH around 4.5 2. Lactobacillus and other commensals Concepts originating in the 1920’s and 1930’s are still presented as fact in our GYN textbooks No understanding in the 1920’s of mucosal immune defenses No understanding in the 1920’s of microbial pathologic mechanisms Levels of Defense Mainly research in the last 2 or 3 decades NOT currently addressed in Gynecology Textbooks 3.
    [Show full text]