Ecosystem Engineers Drive Creek Formation in Salt Marshes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Evidence from Fossil Crustaceans in Cold-Water C
Klompmaker et al. BMC Evolutionary Biology (2016) 16:132 DOI 10.1186/s12862-016-0694-0 RESEARCH ARTICLE Open Access Evolution of body size, vision, and biodiversity of coral-associated organisms: evidence from fossil crustaceans in cold- water coral and tropical coral ecosystems Adiël A. Klompmaker1,2,3*, Sten L. Jakobsen4 and Bodil W. Lauridsen5 Abstract Background: Modern cold-water coral and tropical coral environments harbor a highly diverse and ecologically important macrofauna of crustaceans that face elevated extinction risks due to reef decline. The effect of environmental conditions acting on decapod crustaceans comparing these two habitats is poorly understood today and in deep time. Here, we compare the biodiversity, eye socket height as a proxy for eye size, and body size of decapods in fossil cold-water and tropical reefs that formed prior to human disturbance. Results: We show that decapod biodiversity is higher in fossiltropicalreefsfromTheNetherlands,Italy,and Spain compared to that of the exceptionally well-preserved Paleocene (Danian) cold-water reef/mound ecosystem from Faxe (Denmark), where decapod diversity is highest in a more heterogeneous, mixed bryozoan-coral habitat instead of in coral and bryozoan-dominated facies. The relatively low diversity at Faxe was not influenced substantially by the preceding Cretaceous/Paleogene extinction event that is not apparent in the standing diversity of decapods in our analyses, or by sampling, preservation, and/or a latitudinal diversity gradient. Instead, the lower availability of food and fewer hiding places for decapods may explain this low diversity. Furthermore, decapods from Faxe are larger than those from tropical waters for half of the comparisons, which may be caused by a lower number of predators, the delayed maturity, and the increased life span of crustaceans in deeper, colder waters. -
Species of Greatest Conservation Need 2015 Wildlife Action Plan
RHODE ISLAND SPECIES OF GREATEST CONSERVATION NEED 2015 WILDLIFE ACTION PLAN RI SGCN 2015 (454) Contents SGCN Mammals ............................................................................................................................. 2 SGCN Birds .................................................................................................................................... 3 SGCN Herptofauna ......................................................................................................................... 6 SGCN Fish ...................................................................................................................................... 7 SGCN Invertebrates ........................................................................................................................ 9 1 RHODE ISLAND SPECIES OF GREATEST CONSERVATION NEED 2015 WILDLIFE ACTION PLAN SGCN Mammals (21) Scientific Name Common Name Balaenoptera physalus Fin Whale Eptesicus fuscus Big Brown Bat Eubalaena glacialis North Atlantic Right Whale Lasionycteris noctivagans Silver-haired Bat Lasiurus borealis Eastern Red Bat Lasiurus cinereus Hoary Bat Lynx rufus Bobcat Megaptera novaeangliae Humpback Whale Microtus pennsylvanicus provectus Block Island Meadow Vole Myotis leibii Eastern Small-footed Myotis Myotis lucifugus Little Brown Myotis Myotis septentrionalis Northern Long-eared Bat Perimyotis subflavus Tri-colored Bat Phoca vitulina Harbor Seal Phocoena phocoena Harbor Porpoise Scalopus aquaticus Eastern Mole Sorex (Otisorex) fumeus Smoky -
Host-Plant Genotypic Diversity Mediates the Distribution of an Ecosystem Engineer
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Supervised Undergraduate Student Research Chancellor’s Honors Program Projects and Creative Work Spring 4-2006 Genotypic diversity mediates the distribution of an ecosystem engineer Kerri Margaret Crawford University of Tennessee-Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_chanhonoproj Recommended Citation Crawford, Kerri Margaret, "Genotypic diversity mediates the distribution of an ecosystem engineer" (2006). Chancellor’s Honors Program Projects. https://trace.tennessee.edu/utk_chanhonoproj/949 This is brought to you for free and open access by the Supervised Undergraduate Student Research and Creative Work at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Chancellor’s Honors Program Projects by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. • f" .1' I,'r· ... 4 ....., ' 1 Genotypic diversity mediates the distribution of an ecosystem engineer 2 3 4 5 6 7 Kerri M. Crawfordl, Gregory M. Crutsinger, and Nathan J. Sanders2 8 9 10 11 Department 0/Ecology and Evolutionary Biology, University o/Tennessee, Knoxville, Tennessee 12 37996 13 14 lAuthor for correspondence: email: [email protected]. phone: (865) 974-2976,/ax: (865) 974 15 3067 16 2Senior thesis advisor 17 18 19 20 21 22 23 24 25 26 27 28 29 30 12 April 2006 1 1 Abstract 2 Ecosystem engineers physically modify environments, but much remains to be learned about 3 both their effects on community structure and the factors that predict their occurrence. In this 4 study, we used experiments and observations to examine the effects of the bunch galling midge, 5 Rhopalomyia solidaginis, on arthropod species associated with Solidago altissima. -
Occupied and Abandoned Structures from Ecosystem Engineering Differentially Facilitate Stream Community Colonization 1, 1 1 BENJAMIN B
Occupied and abandoned structures from ecosystem engineering differentially facilitate stream community colonization 1, 1 1 BENJAMIN B. TUMOLO , LINDSEY K. ALBERTSON, WYATT F. CROSS, 2 3 MELINDA D. DANIELS, AND LEONARD S. SKLAR 1Department of Ecology, Montana State University, P.O. Box 173460, Bozeman, Montana 59717 USA 2Stroud Water Research Center, 970 Spencer Road, Avondale, Pennsylvania 19311 USA 3Department of Geography, Planning and Environment, Concordia University, 1455 De Maisonneuve Boulevard West, Montreal, Quebec, Canada Citation: Tumolo, B. B., L. K. Albertson, W. F. Cross, M. D. Daniels, and L. S. Sklar. 2019. Occupied and abandoned structures from ecosystem engineering differentially facilitate stream community colonization. Ecosphere 10(5):e02734. 10.1002/ecs2.2734 Abstract. Ecosystem engineers transform habitats in ways that facilitate a diversity of species; however, few investigations have isolated short-term effects of engineers from the longer-term legacy effects of their engineered structures. We investigated how initial presence of net-spinning caddisflies (Hydropsychidae) and their structures that provide and modify habitat differentially influence benthic community coloniza- tion in a headwater stream by conducting an in situ experiment that included three treatments: (1) initial engineering organism with its habitat modification structure occupied (hereafter caddisfly); (2) initial habi- tat modification structure alone (hereafter silk); and (3) a control with the initial absence of both engineer and habitat modification structure (hereafter control). Total invertebrate colonization density and biomass was higher in caddisfly and silk treatments compared to controls (~25% and 35%, respectively). However, finer-scale patterns of taxonomy revealed that density for one of the taxa, Chironomidae, was ~19% higher in caddisfly compared to silk treatments. -
Optimal Control of an Invasive Ecosystem Engineer by David Kling (Presenter), University of California, Davis James Sanchirico
Optimal Control of an Invasive Ecosystem Engineer By David Kling (presenter), University of California, Davis James Sanchirico, University of California, Davis Alan Hastings, University of California, Davis Managing natural systems in the face of global anthropogenic change poses an enormous challenge. Human-mediated changes can greatly complicate resource management by rendering ecosystems unable to return to their natural condition (hysteresis) or by shifting the ecosystem to an entirely new and possibly less beneficial state (regime shift) (Beisner et al. 2003; Scheffer and Carpenter 2003). One common and pervasive example of a complex management problem is the control of invasive introduced species. It is now well-known that nonnative species can have strong negative impacts on ecosystem function and services and on native biodiversity (Chapin et al. 2000; Olson 2006). Researchers have devoted considerable effort towards understanding the economics of invasion control. Previous theoretical work has identified circumstances where the eradication of an invader is optimal (Olson and Roy 2008). Recent work has also investigated the spatial-dynamics of control and characterized how landscape features can drive optimal policies (Epanchin-Niell and Wilen 2009). A key finding from this research is that early intervention, when the population of the invader is small, is a pivotal determinant of the cost- effectiveness of eradication. Despite this progress, a persistent gap in theoretical work by economists on invasions has been left by a reliance on simple models of invader population dynamics that ignore a number of ecological processes that can accompany invasions and that may call for substantially different control strategies. Ecosystem engineers are organisms that have significant impacts on ecosystems through changing key physical characteristics of the system (Cuddington et al. -
Ecosystem Engineering — Moving Away from 'Just-So' Stories
BERKENBUSCH, ROWDEN: BURROWING SHRIMP AS ECOSYSTEM ENGINEERS 67 FORUM ARTICLE Ecosystem engineering — moving away from ‘just-so’ stories K. Berkenbusch1,2,* and A.A. Rowden2 1Department of Marine Science, University of Otago, P.O. Box 56, Dunedin, New Zealand 2National Institute of Water and Atmospheric Research, P.O. Box 14-901, Wellington, New Zealand *Address for correspondence: Environmental Protection Agency, 2111 SE Marine Science Drive, Newport, Oregon 97365, U.S.A. (E-mail: [email protected]) __________________________________________________________________________________________________________________________________ Abstract: The concept of ecosystem engineering has been proposed recently to account for key processes between organisms and their environment which are not directly trophic or competitive, and which result in the modification, maintenance and/or creation of habitats. Since the initial reporting of the idea, little work has been undertaken to apply the proposed concept to potential ecosystem engineers in the marine environment. Biological and ecological data for the burrowing ghost shrimp Callianassa filholi (Decapoda: Thalassinidea) allowed for a formal assessment of this species as an ecosystem engineer, in direct accordance with published criteria. Despite a low population density and the short durability of its burrow structures, Callianassa filholi affected a number of resource flows by its large lifetime per capita activity. Ecosystem effects were evident in significant changes in macrofauna community composition over small spatial and temporal scales. Seasonal variation in the effects of ghost shrimp activity were associated with changes in seagrass (Zostera novazelandica) biomass, which revealed the probability of interactions between antagonistic ecosystem engineers. The formal assessment of Callianassa filholi provides the opportunity to aid discussion pertaining to the development of the ecosystem engineering concept. -
Sound Production and Reception in Mangrove Crabs Perisesarma Spp
Vol. 5: 107–116, 2009 AQUATIC BIOLOGY Printed May 2009 doi: 10.3354/ab00136 Aquat Biol Published online March 10, 2009 OPEN ACCESS Sound production and reception in mangrove crabs Perisesarma spp. (Brachyura: Sesarmidae) P. Y. Boon*, D. C. J. Yeo, P. A. Todd Department of Biological Sciences, Marine Biology Laboratory, National University of Singapore, 14 Science Drive 4, Blk S1, #02–05, Singapore, 117543 ABSTRACT: Acoustic signalling and sound production structures in the sesarmid crabs Perisesarma eumolpe (De Man) and P. indiarum (Tweedie) from Mandai mangroves, Singapore, were examined using 40 to 20 000 Hz sound recordings and scanning electron microscopy. The sound receptor, Barth’s myochordotonal organ, was identified in both species. Only male crabs were found to display acoustically, and only during agonistic interactions. The present study also revealed key species- specific differences in the morphology of the stridulatory organs, stridulatory movements and result- ing sounds produced. The findings show that acoustic signalling may be a significant component in the social behaviour of mangrove sesarmid crabs. KEY WORDS: Sound · Mangroves · Crab · Crustacea · Brachyura · Sesarmidae · Perisesarma spp. · Stridulation · Singapore Resale or republication not permitted without written consent of the publisher INTRODUCTION vibration or quivering of appendages; (3) percussion or rapping, the striking of a body part on the substrate; Relatively little research has been conducted on and (4) stridulation or rasping, a file-and-scraper the social interactions of mangrove-dwelling sesarmid mechanism involving the appendages and/or the crabs (Mulstay 1980, Seiple & Salmon 1982), despite cephalothorax (Guinot-Dumortier & Dumortier 1960, their important ecological role in this habitat (Smith Salmon & Horch 1972) where the file (pars stridens), et al. -
This Article Is from the October 2014 Issue of Published by the American
This article is from the October 2014 issue of published by The American Phytopathological Society For more information on this and other topics related to plant pathology, we invite you to visit the APS website at www.apsnet.org Ecology and Epidemiology e-Xtra* A Tripartite Interaction Between Spartina alterniflora, Fusarium palustre, and the Purple Marsh Crab (Sesarma reticulatum) Contributes to Sudden Vegetation Dieback of Salt Marshes in New England Wade H. Elmer The Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, P.O. Box 1106, New Haven 06504. Accepted for publication 17 March 2014. ABSTRACT Elmer, W. H. 2014. A tripartite interaction between Spartina alterniflora, plants. When the drought treatment was combined with inoculation with Fusarium palustre, and the purple marsh crab (Sesarma reticulatum) F. palustre, plants were significantly more stunted and symptomatic, had contributes to sudden vegetation dieback of salt marshes in New England. less fresh weight, more diseased roots, and a greater number of Fusarium Phytopathology 104:1070-1077. colonies growing from the roots (P < 0.001) than noninoculated plants. The effects were additive, and statistical interactions were not detected Tripartite interactions are common and occur when one agent (an between drought and inoculation. Estimates of herbivory (number of arthropod or pathogen) changes the host plant in a manner that alters the grass blades cut or biomass consumption) by the purple marsh crab were attack of the challenging agent. We examined herbivory from the purple significantly greater on drought-stressed, diseased plants than on healthy marsh crab (Sesarma reticulatum) on Spartina alterniflora following plants irrigated normally. -
Integrating Ecosystem Engineering and Food Webs
i t o r ’ Oikos 123: 513–524, 2014 d s E doi: 10.1111/j.1600-0706.2013.01011.x OIKOS © 2014 The Authors. Oikos © 2014 Nordic Society Oikos Subject Editor: James D. Roth. Accepted 27 November 2013 C h o i c e Integrating ecosystem engineering and food webs Dirk Sanders, Clive G. Jones, Elisa Thébault, Tjeerd J. Bouma, Tjisse van der Heide, Jim van Belzen and Sébastien Barot D. Sanders ([email protected]), Centre for Ecology and Conservation, College of Life and Environmental Sciences, Univ. of Exeter, Cornwall Campus, Penryn, TR10 9EZ, UK. – C. G. Jones, Cary Inst. of Ecosystem Studies, PO Box AB, Millbrook, NY 12545, USA. – E. Thébault, Inst. of Ecology and Environmental Sciences iEES (CNRS, UMPC, IRD, INRA), Univ. Pierre et Marie Curie, Batiment A, 7 quai St Bernard, FR-75252 Paris Cedex 05, France. – S. Barot, Inst. of Ecology and Environmental Science-Paris (CNRS, UMPC, IRD, INRA), Ecole Normale Supérieure, 46 Rue d’Ulm, FR-75230 Paris Cedex 05, France. – T. J. Bouma and J. van Belzen, Dept of Spatial Ecology, Royal Netherlands Inst. for Sea Research, PO Box 140, NL-4400 AC Yerseke, the Netherlands. – T. van der Heide, Dept. od Aquatic Ecology and Environmental Biology, Inst. for Water and Wetland Research, Radboud Univ. Nijmegen, Heyendaalsweg 135, NL-6525 AJ Nijmegen, the Netherlands, and: Centre for Ecological and Evolutionary Studies (CEES), Univ. of Groningen, PO Box 11103, NL-9700 CC Groningen, the Netherlands. Ecosystem engineering, the physical modification of the environment by organisms, is a common and often influential process whose significance to food web structure and dynamics is largely unknown. -
Genotypic Diversity Mediates the Distribution of an Ecosystem Engineer Kerri Margaret Crawford University of Tennessee-Knoxville
University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange University of Tennessee Honors Thesis Projects University of Tennessee Honors Program Spring 4-2006 Genotypic diversity mediates the distribution of an ecosystem engineer Kerri Margaret Crawford University of Tennessee-Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_chanhonoproj Recommended Citation Crawford, Kerri Margaret, "Genotypic diversity mediates the distribution of an ecosystem engineer" (2006). University of Tennessee Honors Thesis Projects. https://trace.tennessee.edu/utk_chanhonoproj/949 This is brought to you for free and open access by the University of Tennessee Honors Program at Trace: Tennessee Research and Creative Exchange. It has been accepted for inclusion in University of Tennessee Honors Thesis Projects by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. • f" .1' I,'r· ... 4 ....., ' 1 Genotypic diversity mediates the distribution of an ecosystem engineer 2 3 4 5 6 7 Kerri M. Crawfordl, Gregory M. Crutsinger, and Nathan J. Sanders2 8 9 10 11 Department 0/Ecology and Evolutionary Biology, University o/Tennessee, Knoxville, Tennessee 12 37996 13 14 lAuthor for correspondence: email: [email protected]. phone: (865) 974-2976,/ax: (865) 974 15 3067 16 2Senior thesis advisor 17 18 19 20 21 22 23 24 25 26 27 28 29 30 12 April 2006 1 1 Abstract 2 Ecosystem engineers physically modify environments, but much remains to be learned about 3 both their effects on community structure and the factors that predict their occurrence. In this 4 study, we used experiments and observations to examine the effects of the bunch galling midge, 5 Rhopalomyia solidaginis, on arthropod species associated with Solidago altissima. -
Marine Resource Monitoring Operations Manual
MARINE RESOURCE MONITORING OPERATIONS MANUAL Updated by: Fernando Martinez-Andrade, Program Leader 15 October 2015 TEXAS PARKS AND WILDLIFE DEPARTMENT Coastal Fisheries Division October 2015 i TABLE OF CONTENTS Page List of Tables ................................................................................................................ iii List of Figures .............................................................................................................. iv Introduction ....................................................................................................................1 Sample Design ......................................................................................................2 Sample Areas ........................................................................................................2 Sample Grids ..........................................................................................................3 Sample Gridlets ......................................................................................................4 Sampling Gear .......................................................................................................4 Number of Samples................................................................................................4 Data Sheets.............................................................................................................4 Duties of Field Staff ..............................................................................................9 -
Ecotone Formation Through Ecological Niche Construction: the Role of Biodiversity and Species Interactions. Kévin Liautaud, Matthieu Barbier, Michel Loreau
Ecotone formation through ecological niche construction: the role of biodiversity and species interactions. Kévin Liautaud, Matthieu Barbier, Michel Loreau To cite this version: Kévin Liautaud, Matthieu Barbier, Michel Loreau. Ecotone formation through ecological niche con- struction: the role of biodiversity and species interactions.. Ecography, Wiley, 2020, 45 (5), pp.714- 723. 10.1111/ecog.04902. hal-02491373 HAL Id: hal-02491373 https://hal.archives-ouvertes.fr/hal-02491373 Submitted on 26 Feb 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 43 1–10 ECOGRAPHY Research Ecotone formation through ecological niche construction: the role of biodiversity and species interactions Kevin Liautaud, Matthieu Barbier and Michel Loreau K. Liautaud (https://orcid.org/0000-0001-6164-8415) ✉ ([email protected]), M. Barbier and M. Loreau, Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, UMR 5321, CNRS and Paul Sabatier Univ., Moulis, France. Ecography Rapid changes in species composition, also known as ecotones, can result from vari- 43: 1–10, 2020 ous causes including rapid changes in environmental conditions, or physiological doi: 10.1111/ecog.04902 thresholds. The possibility that ecotones arise from ecological niche construction by ecosystem engineers has received little attention.