Hyponatremia!!!

Total Page:16

File Type:pdf, Size:1020Kb

Hyponatremia!!! Hyponatremia!!! Sunil Agrawal, MD, FASN Disclosures • Employed by Nephrology Specialist of Oklahoma • Otsuka Speaker Bureau for Jynrque • Local DaVita Medical Director - In-Center and Home Dialysis HYPONATREMIA!!! Confused? PTSD from training!! NOW WHAT????? HYPONATREMIA!!! Natural Inclination: FLUID RESTRICTION THIS NOT THE ANSWER MOST OF THE TIME!!! (ignores causation) USUALLY HAVE TO RESITRICT: < 800 ml/Day!!! Outline • Introduction • Brief Physiology of Water Handling • Diagnosis • Special Cases of Hyponatremia • Treatment → Acute vs. Chronic • Summary Introduction • What is Hyponatremia? • Serum Sodium : <135 • Acute <48 hours • Chronic >48 hours or duration unkown • Why do we care? • 15-22% of Hospital Patients • Substantial Morbidity and Mortality • Growing Geriatric Population at Risk • “Companion Diagnosis” with many Disease States Introduction • Hyponetremia → Free water intake > water secretion • Serum [Na+]∝ Na + K / Total Body Water • Decrease in numerator • Increase in denominator Water Physiology Water Physiology • Concentrating and Diluting Capacity: • Concentration → 1200 mOsm/kg, UOP <1 L/ day • Diluting → 50 to 100 mOsm/kg, UOP ~ 14 L / day • Kangaroo Rat → concentration capacity of 6,000 mOsm/kg! Water Physiology • What is responsible for changes in urine volume and tonicity? • ADH → vasopressin • Made in hypothalamus • Cleaved to active ADH, neurophysin II, & copeptin • Stored in posterior pituitary Water Physiology Stimulated by: • ADH ✓ Hypertonicity • Releases due to ✓ Hypovolemia increase in Posm • >285 mOsm/kg • Acts on the collecting duct of the kidney (high permeability to water) • Passive water absorption Water Physiology • ADH receptors: • V1a – Vasoconstriction and Increase Prostaglandin release (E2 and prostacyclin), • Platelet aggregation • Cytokine Release • Glycogenolysis • V2 – Mediates ADH action • Free water absorption • V3 (V1b) – Acts on the pituitary, ACTH release Water Physiology • Actions of ADH: • Renal: • Water reabsorption via the Aquoprin 2 • Reabsorption of Urea • Renal Prostoglandin secretion • Na and K in the collecting duct? • Extrarenal: • Vasoconstriction • Release of factor VIII and von Willebrand's factor Water Physiology • Countercurrent Multiplication: • Active NaCl transport from ascending loop of Henle • Low water permeability of ascending loop of Henle • High water permeability of decending loop of Henle • Passive reabsorption of Urea in collecting duct Water Physiology • Aquaporin Water Channels • 16 known channels → likely more • Found in extrarenal locations • Aquaporin 1-4 most studied • Aquaporin 1 associated with proximal tubule • Aquaporin 2 associated with ADH • Aquaporin 4 associated with the blood-brain barrier Water Physiology • Why go through physiology? • ADH Derangement!!!! Diagnosis Diagnosis • The two most important diagnostic tests: • HISTORY • PHYSICAL EXAM • Typical Classifications: • Serum Osmolality • Volume Status Diagnosis What to order: ✓ Urine Sodium* ✓ Urine Creatinine ✓ Urine Potassium ✓ Urine Osmolality ✓ Serum Osmolality ✓ Serum Uric Acid ✓ TSH* Famous Renal Attending: Dr. Neph Ron ✓ Cortisol* ✓ Frequent Monitoring of Serum Sodium Quick Definitions • Difference between Osmolarity • What is Tonicity? and Osmolality: • the concentration of osmoles → (known as effective osmoles) • Osmolality → is the number of that do not freely cross cell osmoles of solute in a kilogram membranes. of solvent • Concentration of the particles that is dissolved in a fluid* • Osmolarity →is the number of osmoles of solute in a liter of solution. • Concentration of an osmotic solution *can be directly measured by osmometer Diagnosis • Step #1: • Serum Osmolarity: • Hypertonic (Posmo >290) • Isotonic (Normal Posmo 275-290) • Hypotonic (Posmo <275)* *Physical Exam → very important Diagnosis • Isotonic Hyponatremia: • Pseudo-hyponatremia • Secondary to increase lipids and proteins • Hyperlipidemia • Paraproteinemia • Plasma: 93% Water, 7% Proteins • Decrease in fraction of the plasma sample in aqueous • Can be avoided by using Direct Potentiometry (ISE) → no dilution of sample • To confirm Dx → check Lipid panel or Osmolar Gap Diagnosis • Special Cases of Isotonic Hyponatremia: • Transurethral prostate surgery • Endoscopic Intrauterine Surgery • Typically Due to Type of Irrigant: • Glycine → directly neurotoxic • Sorbitol • Why Isotonic? • Rapidly Absorbed with water • Expansion of space with fluid Diagnosis • Osmolar Gap → can be helpful det cal • OG = Plasmaosm – Plasmaosm cal • Plasmaosm = 2Na + BUN/2.8 + Glu/18 + EtOH/4.6 • Delta > 10 considered Abnormal Diagnosis • Hypertonic Hyponatremia • Increase Osmolar Gap > 10 • Typically Caused by: • Mannitol • Ig Infusion (sucrose) • Maltose • Hyperglycemia → corrected by 2.4 meq/L per 100 mg/dl of glucose Decision Tree of Serum Osmolality Diagnosis • Hypotonic Hyponatremia • Most common presentation of Hyponatremia • ADH typically the driving force • PHYSICAL EXAM VERY IMPORTANT! • Hypervolemic • Hypovolemic • Euvolemic Diagnosis • What to look for on exam: • Vitals • JVP • Skin Turgor • Mucous Membranes • Peripheral Edema Diagnosis • Urinary Indices: • Urinary Sodium: • Is the Kidney Sodium Avid? • Pre-Renal State → UNa <10 • Hypovolemic * • Extra-Renal Volume Loss • Hypervolemic • CHF, Cirrhosis, Nephrosis * Diuretic use → UNa, PNa, PK, ECV Diagnosis • Urine Sodium Continued: • What if the Urine sodium is > 20? • Hypovolemic → Renal loss of volume • Hypervolemic → Renal Failure • CONFUSED? Diagnosis • Remember: • Sodium Avid state → kidney fucntioning properly • Higher urine sodium in the face of hypovolemia and hypervolemia the kidney is to blame! Break Diagnosis • Urine Osmolarity: • Helpful only if <100 mOSm/L • Primary Polydipsia (Euvolemic Hyponatremia) • Low Solute “tea and toast” (Euvolemic Hyponatremia) • Not Helpful to decern states with elevated ADH all will have Uosmo > 100 mOsm/L Diagnosis • Euvolemic Hyponatremia: • To be SIADH, Or not to be SIADH, that is the question…. • Most misunderstood state • Clinical Exam of ECV not very sensitive Diagnosis • What to look for in SIADH: • Additional Data: ① Euvolemic by Exam • Fractional Excretion of uric acid >10% ② Serum Osmolarity <275 mOsm/kg • Uric Acid < 4 mg/dl (low BUN) ③ Urine Sodium > 40 meq/L • Worsening hyponatremia with Normal Saline ④ Urine Osmolarity > 100 mOsm/L • Plasma vasopressin level inappropriate relative to ⑤ Normal Adrenal, Thyroid, serum osmolality and Kidney Function ⑥ Absence of Advanced CKD, cirrhosis, or HF Diagnosis • Differential to SIADH that must be R/O: • Cerebral Salt Wasting • Decrease in EFV • increase in HCT/alb/BUN/creatinine • Reset Osmostat Diagnosis • Common Etiologies of • Drugs: SIADH • Ecstasy (MDMA) • Tumors: • Oxytocin • Pulmonary/mediastinal • Acei • Small Cell Lung CA • SSRI • Pancreatic CA • Opioids • Leukemia • Amiodarone • CNS disorders: • Pulmonary Disease: • Mass lesions • Infection • Inflammation • COPD • Gullian-Barre • Others: • Delirium Tremens • AIDS/HIV • ICH • Trauma Summary of Hypotonic Hyponatremia Hypervolemia Euvolemia Hypovolemia Heart Failure SIADH Thiazide diuretics Cirrhosis Adrenal Insufficiency Cerebral salt wasting (Glucocorticoid def) Nephrotic Syndrome Hypothyroidism Mineralocortcoid def Renal “Failure” Primary Polydipsia Slat-wasting nephropathy Pregnancy Glucosuria Sepsis Third space losses Sweat Losses Diagnosis Summary of Serum Osmolality Hypertonic Isontonic Hypotonic Hyponatremia Hponatremia Hyponatremia Serum Osmo: Serum Osmo: Serum Osmo: >295 msmo/kg 275-295 msmo/kg <275 msmo/kg Hyperglycemia Pseudohyponatremia Hypervolemia Mannitol Paraproteins Euvolemia Glycine Hyperlipidemia Hypovolemia Special Cases Edematous Disorders Exercise Associated Hyponatremia Exercise Associated Hyponatremia • Incidence: variable ~ 0-2% (depending on source) • Typically seen in the following activities: • Intense Endurance: • Marathons • Triathlons • Ultradistance • Military Operations Exercise Associated Hyponatremia • Risk Factors: • Low BMI • High fluid intake during and • Female Gender* after • Athletic Drinks DO NOT • Less Experinced Runners reduce risk • All re hypotonic • NSAIDs* compared to Plasma Osmo • High sodium sweat concentration • Minimal Weight loss/Weight • Heat acclimation can gain during activity reduce Na in sweat • Longer race time (~ 5 h 10 min)* Exercise Associated Hyponatremia • Water Loading alone? • Need ADH surge • Possible eitologies on increased ADH: • Nausea and/or vomiting • Hypoglycemia • Plasma volume contraction • Angiotensin II • Nonspecific stresses such as pain and emotion Exercise Associated Hyponatremia • Other Possible Mechanisms: • IL-6 produced from contraction muscles* • Oxytocin (especially in women) • How to reduce risk: • Drink to thirst • Pre-weights • Education Post Operative Hyponatremia Post Operative Hyponatremia • ADH are increase ≥ 2 days after surgery • Hypotonic Fluid Administration can be risky • Seen in pediatric population • REMEMBER → Fluids are medications! Drug Induced Hyponatremia Drug Induced Hyponatremia • One the most common causes of hyponatremia • HCTZ → most common cause of community acquired hyponatremia • Those at risk: elderly, women, low BMI • Vasopressin Analogs: • Oxytocin • Desmopressin • Mood Disorder drugs: • TCA(s) • SSRI(s) • Especially Venlafaxine (Effexor) Drug Induced Hyponatremia • Vasopressin Analogs (continued): • Antiepileptic Drugs • Carbamazepine • Lamotrigine • Nicotine • Narcotics Drug Induced Hyponatremia • Drugs that potentiate renal vasopressin • NSAIDs • Tylenol • Cyclosphosphamide • Unknown Mechanism
Recommended publications
  • Risk Factors and Outcomes of Rapid Correction of Severe Hyponatremia
    Article Risk Factors and Outcomes of Rapid Correction of Severe Hyponatremia Jason C. George ,1 Waleed Zafar,2 Ion Dan Bucaloiu,1 and Alex R. Chang 1,2 Abstract Background and objectives Rapid correction of severe hyponatremia can result in serious neurologic complications, including osmotic demyelination. Few data exist on incidence and risk factors of rapid 1Department of correction or osmotic demyelination. Nephrology, Geisinger Medical Center, Design, setting, participants, & measurements In a retrospective cohort of 1490 patients admitted with serum Danville, , Pennsylvania; and sodium 120 mEq/L to seven hospitals in the Geisinger Health System from 2001 to 2017, we examined the 2 incidence and risk factors of rapid correction and osmotic demyelination. Rapid correction was defined as serum Kidney Health . Research Institute, sodium increase of 8 mEq/L at 24 hours. Osmotic demyelination was determined by manual chart review of Geisinger, Danville, all available brain magnetic resonance imaging reports. Pennsylvania Results Mean age was 66 years old (SD=15), 55% were women, and 67% had prior hyponatremia (last outpatient Correspondence: sodium ,135 mEq/L). Median change in serum sodium at 24 hours was 6.8 mEq/L (interquartile range, 3.4–10.2), Dr. Alexander R. Chang, and 606 patients (41%) had rapid correction at 24 hours. Younger age, being a woman, schizophrenia, lower Geisinger Medical , Center, 100 North Charlson comorbidity index, lower presentation serum sodium, and urine sodium 30 mEq/L were associated Academy Avenue, with greater risk of rapid correction. Prior hyponatremia, outpatient aldosterone antagonist use, and treatment at an Danville, PA 17822. academic center were associated with lower risk of rapid correction.
    [Show full text]
  • Hyponatremia and Hypernatremia MICHAEL M
    This is a corrected version of the article that appeared in print. Diagnosis and Management of Sodium Disorders: Hyponatremia and Hypernatremia MICHAEL M. BRAUN, DO, Madigan Army Medical Center, Tacoma, Washington CRAIG H. BARSTOW, MD, Womack Army Medical Center, Fort Bragg, North Carolina NATASHA J. PYZOCHA, DO, Madigan Army Medical Center, Tacoma, Washington Hyponatremia and hypernatremia are common findings in the inpatient and outpatient settings. Sodium disorders are associated with an increased risk of morbidity and mortality. Plasma osmolality plays a critical role in the patho- physiology and treatment of sodium disorders. Hyponatremia and hypernatremia are classified based on volume status (hypovolemia, euvolemia, and hypervolemia). Sodium disorders are diagnosed by findings from the history, physical examination, laboratory studies, and evaluation of volume status. Treatment is based on symptoms and underlying causes. In general, hyponatremia is treated with fluid restriction (in the setting of euvolemia), isotonic saline (in hypovolemia), and diuresis (in hypervolemia). A combination of these therapies may be needed based on the presentation. Hypertonic saline is used to treat severe symptomatic hyponatremia. Medications such as vaptans may have a role in the treatment of euvolemic and hypervolemic hyponatremia. The treatment of hypernatremia involves correcting the underlying cause and correcting the free water deficit. Am( Fam Physician. 2015;91(5):299-307. Copy- right © 2015 American Academy of Family Physicians.) More online yponatremia is a common elec- a worse prognosis in patients with liver cir- at http://www. trolyte disorder defined as a rhosis, pulmonary hypertension, myocardial aafp.org/afp. serum sodium level of less than infarction, chronic kidney disease, hip frac- CME This clinical content 135 mEq per L.1-3 A Dutch sys- tures, and pulmonary embolism.1,8-10 conforms to AAFP criteria Htematic review of 53 studies showed that the for continuing medical Etiology and Pathophysiology education (CME).
    [Show full text]
  • CURRENT Essentials of Nephrology & Hypertension
    a LANGE medical book CURRENT ESSENTIALS: NEPHROLOGY & HYPERTENSION Edited by Edgar V. Lerma, MD Clinical Associate Professor of Medicine Section of Nephrology Department of Internal Medicine University of Illinois at Chicago College of Medicine Associates in Nephrology, SC Chicago, Illinois Jeffrey S. Berns, MD Professor of Medicine and Pediatrics Associate Dean for Graduate Medical Education The Perelman School of Medicine at the University of Pennsylvania Philadelphia, Pennsylvania Allen R. Nissenson, MD Emeritus Professor of Medicine David Geffen School of Medicine at UCLA Los Angeles, California Chief Medical Offi cer DaVita Inc. El Segundo, California New York Chicago San Francisco Lisbon London Madrid Mexico City Milan New Delhi San Juan Seoul Singapore Sydney Toronto Lerma_FM_p00i-xvi.indd i 4/27/12 10:33 AM Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher. ISBN: 978-0-07-180858-3 MHID: 0-07-180858-2 The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-144903-8, MHID: 0-07-144903-5. All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name, we use names in an editorial fashion only, and to the benefi t of the trademark owner, with no intention of infringement of the trademark.
    [Show full text]
  • Cerebral Salt Wasting Syndrome and Systemic Lupus Erythematosus: Case Report
    Elmer ress Case Report J Med Cases. 2016;7(9):399-402 Cerebral Salt Wasting Syndrome and Systemic Lupus Erythematosus: Case Report Filipe Martinsa, c, Carolina Ouriquea, Jose Faria da Costaa, Joao Nuakb, Vitor Braza, Edite Pereiraa, Antonio Sarmentob, Jorge Almeidaa Abstract disorders, that results in hyponatremia and a decrease in ex- tracellular fluid volume. It is characterized by a hypotonic hy- Cerebral salt wasting (CSW) is a rare cause of hypoosmolar hypona- ponatremia with inappropriately elevated urine sodium con- tremia usually associated with acute intracranial disease character- centration in the setting of a normal kidney function [1-3]. ized by extracellular volume depletion due to inappropriate sodium The onset of this disorder is typically seen within the first wasting in the urine. We report a case of a 46-year-old male with 10 days following a neurological insult and usually lasts no recently diagnosed systemic lupus erythematosus (SLE) initially pre- more than 1 week [1, 2]. Pathophysiology is not completely senting with neurological involvement and an antiphospholipid syn- understood but the major mechanism might be the inappropri- drome (APS) who was admitted because of chronic asymptomatic ate and excessive release of natriuretic peptides which would hyponatremia previously assumed as secondary to syndrome of inap- result in natriuresis and volume depletion. A secondary neu- propriate antidiuretic hormone secretion (SIADH). Initial evaluation rohormonal response would result in an increase in the renin- revealed a hypoosmolar hyponatremia with high urine osmolality angiotensin system and consequently in antidiuretic hormone and elevated urinary sodium concentration. Clinically, the patient’s (ADH) production. Since the volume stimulus is more potent extracellular volume status was difficult to define accurately.
    [Show full text]
  • Electrolyte and Acid-Base
    Special Feature American Society of Nephrology Quiz and Questionnaire 2013: Electrolyte and Acid-Base Biff F. Palmer,* Mark A. Perazella,† and Michael J. Choi‡ Abstract The Nephrology Quiz and Questionnaire (NQ&Q) remains an extremely popular session for attendees of the annual meeting of the American Society of Nephrology. As in past years, the conference hall was overflowing with interested audience members. Topics covered by expert discussants included electrolyte and acid-base disorders, *Department of Internal Medicine, glomerular disease, ESRD/dialysis, and transplantation. Complex cases representing each of these categories University of Texas along with single-best-answer questions were prepared by a panel of experts. Prior to the meeting, program Southwestern Medical directors of United States nephrology training programs answered questions through an Internet-based ques- Center, Dallas, Texas; † tionnaire. A new addition to the NQ&Q was participation in the questionnaire by nephrology fellows. To review Department of Internal Medicine, the process, members of the audience test their knowledge and judgment on a series of case-oriented questions Yale University School prepared and discussed by experts. Their answers are compared in real time using audience response devices with of Medicine, New the answers of nephrology fellows and training program directors. The correct and incorrect answers are then Haven, Connecticut; ‡ briefly discussed after the audience responses, and the results of the questionnaire are displayed. This article and Division of recapitulates the session and reproduces its educational value for the readers of CJASN. Enjoy the clinical cases Nephrology, Department of and expert discussions. Medicine, Johns Clin J Am Soc Nephrol 9: 1132–1137, 2014.
    [Show full text]
  • A 27-Month-Old Boy with Polyuria and Polydipsia
    UC Davis UC Davis Previously Published Works Title A 27-Month-Old Boy with Polyuria and Polydipsia. Permalink https://escholarship.org/uc/item/8x24x4p2 Authors Lee, Yvonne Winnicki, Erica Butani, Lavjay et al. Publication Date 2018 DOI 10.1155/2018/4281217 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Hindawi Case Reports in Pediatrics Volume 2018, Article ID 4281217, 4 pages https://doi.org/10.1155/2018/4281217 Case Report A 27-Month-Old Boy with Polyuria and Polydipsia Yvonne Lee,1 Erica Winnicki,2 Lavjay Butani ,3 and Stephanie Nguyen 3 1Department of Pediatrics, Section of Endocrinology, Kaiser Permanente Oakland Medical Center, Oakland, CA, USA 2Department of Pediatrics, Section of Nephrology, University of California, San Francisco, San Francisco, CA, USA 3Department of Pediatrics, Section of Nephrology, University of California, Davis, Sacramento, CA, USA Correspondence should be addressed to Stephanie Nguyen; [email protected] Received 16 May 2018; Accepted 1 August 2018; Published 23 August 2018 Academic Editor: Anselm Chi-wai Lee Copyright © 2018 Yvonne Lee et al. )is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Psychogenic polydipsia is a well-described phenomenon in those with a diagnosed psychiatric disorder such as schizophrenia and anxiety disorders. Primary polydipsia is differentiated from psychogenic polydipsia by the lack of a clear psychotic disturbance. We present a case of a 27-month-old boy who presented with polyuria and polydipsia. Laboratory studies, imaging, and an observed water deprivation test were consistent with primary polydipsia.
    [Show full text]
  • Electrolyte and Acid-Base Disorders Triggered by Aminoglycoside Or Colistin Therapy: a Systematic Review
    antibiotics Review Electrolyte and Acid-Base Disorders Triggered by Aminoglycoside or Colistin Therapy: A Systematic Review Martin Scoglio 1,* , Gabriel Bronz 1, Pietro O. Rinoldi 1,2, Pietro B. Faré 3,Céline Betti 1,2, Mario G. Bianchetti 1, Giacomo D. Simonetti 1,2, Viola Gennaro 1, Samuele Renzi 4, Sebastiano A. G. Lava 5 and Gregorio P. Milani 2,6,7 1 Faculty of Biomedicine, Università della Svizzera Italiana, 6900 Lugano, Switzerland; [email protected] (G.B.); [email protected] (P.O.R.); [email protected] (C.B.); [email protected] (M.G.B.); [email protected] (G.D.S.); [email protected] (V.G.) 2 Department of Pediatrics, Pediatric Institute of Southern Switzerland, Ospedale San Giovanni, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland; [email protected] 3 Department of Internal Medicine, Ospedale La Carità, Ente Ospedaliero Cantonale, 6600 Locarno, Switzerland; [email protected] 4 Division of Hematology and Oncology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; [email protected] 5 Pediatric Cardiology Unit, Department of Pediatrics, Centre Hospitalier Universitaire Vaudois, and University of Lausanne, 1011 Lausanne, Switzerland; [email protected] 6 Pediatric Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy 7 Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy * Correspondence: [email protected] Citation: Scoglio, M.; Bronz, G.; Abstract: Aminoglycoside or colistin therapy may alter the renal tubular function without decreasing Rinoldi, P.O.; Faré, P.B.; Betti, C.; the glomerular filtration rate. This association has never been extensively investigated.
    [Show full text]
  • Information Sheet
    007 INFORMATION SHEET Pica (Eating Inedible Objects) and Polydipsia (Drinking Excessively) Introduction The following information sheet aims to All our information sheets are available to explain what causes pica and polydipsia, download free of charge. then offers some possible strategies to To enable us to continue our work please reduce these behaviours. support us or donate £3 by texting CBF to 70450. This sheet will focus on pica first, before exploring polydipsia (on page 7). Is this resource helpful? Please spend a few minutes giving us some feedback: www.surveymonkey.co.uk/r/cbfresources What is pica? Pica refers to eating objects that are inedible such as stones, coins, shampoo, clothing and cigarette butts. Children and adults may eat one specific inedible object, or lots of different ones. Research into the causes, assessment and strategies for pica is very limited. This information sheet is based on the available research and current clinical practice. What are the risks? Whilst some objects pass through the body without harm, pica can potentially be life threatening. Risks include vomiting, constipation, infections, blockages in the gut and intestines, choking and poisoning. Sometimes surgery is needed to remove objects from the gut or to repair damaged tissue. If you are worried about a child or adult who has eaten an inedible object it is vital that you contact their GP or your nearest accident and emergency department for medical advice. What causes pica? The specific causes of pica are not clear, but some conditions can increase the chance that a child or adult will develop pica.
    [Show full text]
  • Is There a Relationship Between COVID-19 and Hyponatremia?
    medicina Review Is There a Relationship between COVID-19 and Hyponatremia? Gina Gheorghe 1,2,†, Madalina Ilie 1,2, Simona Bungau 3,† , Anca Mihaela Pantea Stoian 4 , Nicolae Bacalbasa 5 and Camelia Cristina Diaconu 6,7,* 1 Department of Gastroenterology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; [email protected] (G.G.); [email protected] (M.I.) 2 Department of Gastroenterology, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania 3 Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania; [email protected] 4 Department of Diabetes, Nutrition and Metabolic Diseases, “Carol Davila” University of Medicine and Pharmacy, 020475 Bucharest, Romania; [email protected] 5 Department of Visceral Surgery, Center of Excellence in Translational Medicine, Fundeni Clinical Institute, 022328 Bucharest, Romania; [email protected] 6 Department of Internal Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania 7 Department of Internal Medicine, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania * Correspondence: [email protected]; Tel.: +40-0726-377-300 † This author has equal contribution to the paper as the first author. Abstract: Nowadays, humanity faces one of the most serious health crises, the severe acute respi- ratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. The severity of coronavirus disease 2019 (COVID-19) pandemic is related to the high rate of interhuman transmission of the virus, variability of clinical presentation, and the absence of specific therapeutic methods. COVID-19 can manifest with non-specific symptoms and signs, especially among the elderly. In some cases, the clinical manifestations of hyponatremia may be the first to appear.
    [Show full text]
  • Parenteral Nutrition Primer: Balance Acid-Base, Fluid and Electrolytes
    Parenteral Nutrition Primer: Balancing Acid-Base, Fluids and Electrolytes Phil Ayers, PharmD, BCNSP, FASHP Todd W. Canada, PharmD, BCNSP, FASHP, FTSHP Michael Kraft, PharmD, BCNSP Gordon S. Sacks, Pharm.D., BCNSP, FCCP Disclosure . The program chair and presenters for this continuing education activity have reported no relevant financial relationships, except: . Phil Ayers - ASPEN: Board Member/Advisory Panel; B Braun: Consultant; Baxter: Consultant; Fresenius Kabi: Consultant; Janssen: Consultant; Mallinckrodt: Consultant . Todd Canada - Fresenius Kabi: Board Member/Advisory Panel, Consultant, Speaker's Bureau • Michael Kraft - Rockwell Medical: Consultant; Fresenius Kabi: Advisory Board; B. Braun: Advisory Board; Takeda Pharmaceuticals: Speaker’s Bureau (spouse) . Gordon Sacks - Grant Support: Fresenius Kabi Sodium Disorders and Fluid Balance Gordon S. Sacks, Pharm.D., BCNSP Professor and Department Head Department of Pharmacy Practice Harrison School of Pharmacy Auburn University Learning Objectives Upon completion of this session, the learner will be able to: 1. Differentiate between hypovolemic, euvolemic, and hypervolemic hyponatremia 2. Recommend appropriate changes in nutrition support formulations when hyponatremia occurs 3. Identify drug-induced causes of hypo- and hypernatremia No sodium for you! Presentation Outline . Overview of sodium and water . Dehydration vs. Volume Depletion . Water requirements & Equations . Hyponatremia • Hypotonic o Hypovolemic o Euvolemic o Hypervolemic . Hypernatremia • Hypovolemic • Euvolemic • Hypervolemic Sodium and Fluid Balance . Helpful hint: total body sodium determines volume status, not sodium status . Examples of this concept • Hypervolemic – too much volume • Hypovolemic – too little volume • Euvolemic – normal volume Water Distribution . Total body water content varies from 50-70% of body weight • Dependent on lean body mass: fat ratio o Fat water content is ~10% compared to ~75% for muscle mass .
    [Show full text]
  • ACP NATIONAL ABSTRACTS COMPETITIONS MEDICAL STUDENTS 2019 Table of Contents
    ACP NATIONAL ABSTRACTS COMPETITIONS MEDICAL STUDENTS 2019 Table of Contents MEDICAL STUDENT RESEARCH PODIUM PRESENTATIONS ...................................................................... 8 COLOMBIA RESEARCH PODIUM PRESENTATION - Andrey Sanko ........................................................ 9 Clinical Factors Associated with High Glycemic Variability Defined by the Variation Coefficient in Patients with Type 2 Diabetes .......................................................................................................... 9 MARYLAND RESEARCH PODIUM PRESENTATION - Asmi Panigrahi ................................................... 11 Influence of Individual-Level Neighborhood Factors on Health Promoting and Risk Behaviors in the Hispanic Community Health Study/Study of Latinos (HCHS/SOL) ........................................... 11 NEW YORK RESEARCH PODIUM PRESENTATION - Kathryn M Linder ................................................ 13 Implementation of a Medical Student-Led Emergency Absentee Ballot Voting Initiative at an Urban Tertiary Care University Hospital ......................................................................................... 13 OREGON RESEARCH PODIUM PRESENTATION - Sherry Liang ............................................................ 15 A Novel Student-Led Improvement Science Curriculum for Pre-Clinical Medical Students .......... 15 TENNESSEE RESEARCH PODIUM PRESENTATION - Zara Latif ............................................................. 17 Impaired Brain Cells Response in Obesity
    [Show full text]
  • Serum Sodium Concentration [Na+] Less Than 135 Meq/L. INCIDENCE
    HYPONATREMIA DEFINITION: Serum sodium concentration [Na+] less than 135 mEq/L. INCIDENCE IN CRITICAL ILLNESS: 30%. (The most common electrolyte abnormality encountered in clinical medicine.) ETIOLOGY: Hypo-osmolar hyponatremia: Serum osmolality is low (< 280 mOsm/kg H2O). Hypovolemic: Total body water deficit + greater degree of total body sodium deficit. o Renal losses (urine [Na+] > 20 mmol/L): Diuretic excess; mineralocorticoid deficiency; cerebral salt wasting; bicarbonaturia (renal tubular acidosis and metabolic alkalosis); ketonuria; osmotic diuresis. o Extrarenal losses (urine [Na+] < 20 mmol/L): Vomiting; diarrhea; “third spacing” (burns, pancreatitis, trauma). Euvolemic: Total body water excess + normal total body sodium. o The most common subcategory of hyponatremia. o Includes dilutional hyponatremia. Excess of water relative to sodium; serum chloride concentration is usually normal. o Includes SIADH: Diagnosis of exclusion. Inclusion criteria are plasma osmolality < 270 mOsm/kg + H2O; urine osmolality > 100 mOsm/kg H2O; euvolemia; urine [Na ] elevated; adrenal, thyroid, pituitary, renal insufficiency absent; diuretic use absent. o Urine [Na+] is typically > 20 mmol/L. o Glucocorticoid deficiency; hypothyroidism; stress; medications (vasopressin analogs, drugs that enhance vasopressin release, drugs that potentiate renal action of vasopressin, haloperidol, amitriptyline, other psychotropic medications). Hypervolemic: Total body water excess >>> total body sodium excess. o Urine [Na+] > 20 mmol/L: Renal failure. o Urine
    [Show full text]