Extensive Changes in DNA Methylation Are Associated with Expression of Mutant Huntingtin

Total Page:16

File Type:pdf, Size:1020Kb

Extensive Changes in DNA Methylation Are Associated with Expression of Mutant Huntingtin Extensive changes in DNA methylation are associated with expression of mutant huntingtin Christopher W. Nga, Ferah Yildirima, Yoon Sing Yapa, Simona Dalina, Bryan J. Matthewsa, Patricio J. Veleza, Adam Labadorfa, David E. Housmanb,1, and Ernest Fraenkela,1 Departments of aBiological Engineering and bBiology, Massachusetts Institute of Technology, Cambridge, MA 02142 Contributed by David E. Housman, December 6, 2012 (sent for review November 16, 2012) The earliest stages of Huntington disease are marked by changes directly influence DNA methylation. For example, NRSF/REST in gene expression that are caused in an indirect and poorly (16) is a neuronal repressor implicated in HD (7) that recruits re- understood manner by polyglutamine expansions in the huntingtin pressive complexes containing HDACs and the DNA methylation (HTT) protein. To explore the hypothesis that DNA methylation may reader MECP2 (17), and changes to NRSF/REST binding could be altered in cells expressing mutated HTT, we use reduced affect local DNA methylation levels. Because DNA methylation in fl – representation bisulfite sequencing (RRBS) to map sites of DNA the brain in uences a wide range of cognitive functions (18 20), fi methylation in cells carrying either wild-type or mutant HTT. We these epigenetic modi cations could have long-term consequences find that a large fraction of the genes that change in expression in on HD patients. the presence of mutant huntingtin demonstrate significant changes For our analysis, we used cell lines derived from mouse striatal neurons expressing full-length HTT with either the wild-type in DNA methylation. Regions with low CpG content, which have or expanded polyglutamine repeat (5). Derived from mouse previously been shown to undergo methylation changes in re- embryos, these cells serve as a highly reproducible model for sponse to neuronal activity, are disproportionately affected. On the earliest stages of the disease. Using reduced representation the basis of the sequence of regions that change in methylation, bisulfite sequencing (RRBS), we identified extensive changes in we identify AP-1 and SOX2 as transcriptional regulators associated DNA methylation. Regions with low CpG content are overrep- fi with DNA methylation changes, and we con rm these hypotheses resented among those that change in methylation. These regions using genome-wide chromatin immunoprecipitation sequencing are largely intergenic and transition from fully methylated in wild- (ChIP-Seq). Our findings suggest new mechanisms for the effects type cells to partially methylated in cells expressing mutant HTT. of polyglutamine-expanded HTT. These results also raise important As partially methylated regions have been shown to be occupied by questions about the potential effects of changes in DNA meth- transcription factors that influence methylation (14), we analyzed the ylation on neurogenesis and cognitive decline in patients with sequences of these sites to identify several potential DNA-binding Huntington disease. proteins. Using genome-wide chromatin immunoprecipitation se- quencing (ChIP-Seq), we confirmed that the binding of SOX2 and epigenomics | transcription | mRNA-Seq the AP-1 proteins FRA-2 and JUND are associated with changes in DNA methylation resulting from expression of mutant HTT. untington disease (HD) is a fatal, neurodegenerative disor- For many years, DNA methylation was believed to be an ex- Hder caused by an expanded CAG repeat in the huntingtin tremely stable epigenetic mark relevant mostly to developmental (HTT) gene, which encodes an abnormally long polyglutamine processes and, by extension, to tumor development. However, it is repeat in the HTT protein. In the early stages of the disease, becoming increasingly clear that DNA methylation has a role in a much wider range of biological processes, including neuronal ac- patients are largely asymptomatic, although they may suffer from – mild cognitive impairment and behavioral changes. With time, tivity, learning, and memory (18 22). Our analysis reveals that they develop severe motor dysfunction as well as more prono- polyglutamine-expanded HTT causes changes in DNA meth- unced cognitive and psychiatric symptoms. Transcriptional dys- ylation at both promoter proximal and distal regulatory regions. regulation is a major component of the early stages of HD, before These results shed new light on the etiology of HD and suggest fi a possible explanation for mild cognitive impairment that occurs at signi cant neuronal death. Changes in transcription have been fi detected in human postmortem tissue (1), mouse models (2–4), the early stages of the disease, before signi cant loss of neurons. and cell culture models (5). Genes reproducibly shown to be differentially expressed across HD models are associated with Results processes including neurotransmission, neurotrophin receptor Expression of Mutant huntingtin Is Associated with Large-Scale Changes signaling, signal transduction, calcium ion transport, synaptic in DNA Methylation. On the basis of the importance of changes in organization, chromatin remodeling, G-protein receptor-coupled DNA methylation to development (23–26) and neuronal activity signaling, and metabolism (6). The polyglutamine expanded form (22), we sought to determine whether mutant HTT might perturb of HTT may have a direct role in causing these expression changes. this epigenetic mark. To examine this hypothesis, we used RRBS A number of DNA-binding proteins have been shown to physically to measure DNA methylation at base pair resolution in striatal interact with either wild-type or mutant HTT. These include cells carrying polyglutamine-expanded HTT (STHdhQ111/Q111) NRSF/REST, CBP, PGC1α, Sp1, BCL11b, p53, LXRα, polycomb- and wild-type cells (STHdhQ7/Q7) (see Dataset S1 for full list of group proteins, SIN3A, and NCOR1 (6). Any effect of HTT on the datasets in this study). We measured the degree of methylation subcellular localization, activity, or concentration of these proteins would be likely to directly change gene expression. Two lines of evidence suggest that alterations in HTT could also Author contributions: C.W.N., F.Y., D.E.H., and E.F. designed research; C.W.N., Y.S.Y., S.D., influence DNA methylation. First, histone marks are altered in B.J.M., and P.J.V. performed research; C.W.N., A.L., D.E.H., and E.F. analyzed data; and HD (7–11) and SETD2, a SET domain regulator of H3K36me3, C.W.N., F.Y., and E.F. wrote the paper. has been previously reported to interact with mutant HTT (12). The authors declare no conflict of interest. Due to biochemical interactions between DNA methyltransferases Data deposition: The data reported in this paper have been deposited in the Gene Ex- and SET domain histone methyltransferases (13), changes in re- pression Omnibus (GEO) database, www.ncbi.nlm.nih.gov/geo (accession no. GSE43433). pressive histone marks could result in changes in DNA methyla- 1To whom correspondence may be addressed. E-mail: [email protected] or tion. Second, recent findings show that DNA-bound transcription [email protected]. factors can alter DNA methylation patterns (14, 15), suggesting This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. that the effects of HTT on DNA-binding proteins could also 1073/pnas.1221292110/-/DCSupplemental. 2354–2359 | PNAS | February 5, 2013 | vol. 110 | no. 6 www.pnas.org/cgi/doi/10.1073/pnas.1221292110 Downloaded by guest on October 2, 2021 at 97,006 cytosines in both cell lines. The data were highly re- methylated regions (LMRs)]. During development, transcription producible between biological replicate experiments (R > 0.97; factors binding near FMRs can cause partial loss of DNA meth- Materials and Methods and Fig. S1A). Overall, 61,940 bases de- ylation and conversion to LMRs. creased in methylation in STHdhQ111 relative to STHdhQ7, and We therefore asked whether similar changes occur in response to 33,974 bases increased in methylation, using a multiple-hypoth- mutant HTT. Overall, sites that do not change in methylation be- esis corrected P-value cutoff of 1E-5 and difference in meth- tween mutant and wild-type cells are predominantly fully methyl- ylation cutoff of 15%. We confirmed these findings by sequen- ated or unmethylated, whereas those that change in methylation cing immunoprecipitated methylated DNA from both cell lines tend to be partially methylated (Fig. S2 C–E). To explore the effects (MeDIP-Seq) and by qPCR of specific loci (Fig. S1 B–E). We of mutant HTT in more detail, we plotted the fractional methyla- then concatenated the cytosines that were close in spatial prox- tion of genomic regions in wild-type cells vs. cells with mutant HTT imity to one another into 154,239 methylation regions (Mate- (Fig. 1 C and D). Many methylation changes lie close to the di- rials and Methods). Of these, 21,191 regions decreased in agonal, indicating a relatively small change in the fraction of methylationinSTHdhQ111relative to STHdhQ7, and 10,413 methylation. However, 4,804 CpG-poor regions that are fully regions increased in methylation, using a multiple-hypothesis methylated in wild-type cells are only partially methylated (10–80% corrected P-value cutoff of 1E-5 (see Fig. S2B for additional methylation) in the mutant cells. In addition, 10,396 CpG-poor thresholds) and difference in methylation cutoff of 15%. regions go from fully methylated in cells with mutant HTT to only As expected, methylated regions could be divided into those that partially methylated in wild-type cells. CpG-rich regions tend to occur in regions rich in the sequence cytosine followed by guanine show smaller changes in fractional methylation. (CpG) and those with low levels of CpGs. Differentially methyl- ated regions (DMRs) between the cell lines were predominantly Relationship of Changes in DNA Methylation and Transcription. To CpG-poor. Approximately 84% of sites increasing or decreasing determine whether changes in DNA methylation were associ- in methylation between the cell lines were CpG-poor, compared ated with changes in gene expression, we measured transcript with 70% of the regions that did not change in methylation (Fig.
Recommended publications
  • Regulation of SETD2 Stability Is Important for the Fidelity Of
    Bhattacharya and Workman Epigenetics & Chromatin (2020) 13:40 Epigenetics & Chromatin https://doi.org/10.1186/s13072-020-00362-8 RESEARCH Open Access Regulation of SETD2 stability is important for the fdelity of H3K36me3 deposition Saikat Bhattacharya and Jerry L. Workman* Abstract Background: The histone H3K36me3 mark regulates transcription elongation, pre-mRNA splicing, DNA methylation, and DNA damage repair. However, knowledge of the regulation of the enzyme SETD2, which deposits this function- ally important mark, is very limited. Results: Here, we show that the poorly characterized N-terminal region of SETD2 plays a determining role in regulat- ing the stability of SETD2. This stretch of 1–1403 amino acids contributes to the robust degradation of SETD2 by the proteasome. Besides, the SETD2 protein is aggregate prone and forms insoluble bodies in nuclei especially upon proteasome inhibition. Removal of the N-terminal segment results in the stabilization of SETD2 and leads to a marked increase in global H3K36me3 which, uncharacteristically, happens in a Pol II-independent manner. Conclusion: The functionally uncharacterized N-terminal segment of SETD2 regulates its half-life to maintain the requisite cellular amount of the protein. The absence of SETD2 proteolysis results in a Pol II-independent H3K36me3 deposition and protein aggregation. Keywords: Chromatin, Proteasome, Histone, Methylation, Aggregation Background In yeast, the SET domain-containing protein Set2 Te N-terminal tails of histones protrude from the nucle- (ySet2) is the sole H3K36 methyltransferase [10]. ySet2 osome and are hotspots for the occurrence of a variety interacts with the large subunit of the RNA polymerase II, of post-translational modifcations (PTMs) that play key Rpb1, through its SRI (Set2–Rpb1 Interaction) domain, roles in regulating epigenetic processes.
    [Show full text]
  • The Huntington's Disease Protein Interacts with P53 and CREB
    The Huntington’s disease protein interacts with p53 and CREB-binding protein and represses transcription Joan S. Steffan*, Aleksey Kazantsev†, Olivera Spasic-Boskovic‡, Marilee Greenwald*, Ya-Zhen Zhu*, Heike Gohler§, Erich E. Wanker§, Gillian P. Bates‡, David E. Housman†, and Leslie M. Thompson*¶ *Department of Biological Chemistry, D240 Medical Sciences I, University of California, Irvine, CA 92697-1700; †Department of Biology Center for Cancer Research, Massachusetts Institute of Technology, Building E17-543, Cambridge, MA 02139; ‡Medical and Molecular Genetics, GKT School of Medicine, King’s College, 8th Floor Guy’s Tower, Guy’s Hospital, London SE1 9RT, United Kingdom; and §Max-Planck-Institut fur Molekulare Genetik, Ihnestraße 73, Berlin D-14195, Germany Contributed by David E. Housman, March 14, 2000 Huntington’s Disease (HD) is caused by an expansion of a poly- The amino-terminal portion of htt that remains after cyto- glutamine tract within the huntingtin (htt) protein. Pathogenesis in plasmic cleavage and can localize to the nucleus appears to HD appears to include the cytoplasmic cleavage of htt and release include the polyglutamine repeat and a proline-rich region which of an amino-terminal fragment capable of nuclear localization. We have features in common with a variety of proteins involved in have investigated potential consequences to nuclear function of a transcriptional regulation (22). Therefore, htt is potentially pathogenic amino-terminal region of htt (httex1p) including ag- capable of direct interactions with transcription factors or the gregation, protein–protein interactions, and transcription. httex1p transcriptional apparatus and of mediating alterations in tran- was found to coaggregate with p53 in inclusions generated in cell scription.
    [Show full text]
  • Transglutaminase-Catalyzed Inactivation Of
    Proc. Natl. Acad. Sci. USA Vol. 94, pp. 12604–12609, November 1997 Medical Sciences Transglutaminase-catalyzed inactivation of glyceraldehyde 3-phosphate dehydrogenase and a-ketoglutarate dehydrogenase complex by polyglutamine domains of pathological length ARTHUR J. L. COOPER*†‡§, K.-F. REX SHEU†‡,JAMES R. BURKE¶i,OSAMU ONODERA¶i, WARREN J. STRITTMATTER¶i,**, ALLEN D. ROSES¶i,**, AND JOHN P. BLASS†‡,†† Departments of *Biochemistry, †Neurology and Neuroscience, and ††Medicine, Cornell University Medical College, New York, NY 10021; ‡Burke Medical Research Institute, Cornell University Medical College, White Plains, NY 10605; and Departments of ¶Medicine, **Neurobiology, and iDeane Laboratory, Duke University Medical Center, Durham, NC 27710 Edited by Louis Sokoloff, National Institutes of Health, Bethesda, MD, and approved August 28, 1997 (received for review April 24, 1997) ABSTRACT Several adult-onset neurodegenerative dis- Q12-containing peptide (16). In the work of Kahlem et al. (16) the eases are caused by genes with expanded CAG triplet repeats largest Qn domain studied was Q18. We found that both a within their coding regions and extended polyglutamine (Qn) nonpathological-length Qn domain (n 5 10) and a longer, patho- domains within the expressed proteins. Generally, in clinically logical-length Qn domain (n 5 62) are excellent substrates of affected individuals n > 40. Glyceraldehyde 3-phosphate dehy- tTGase (17, 18). drogenase binds tightly to four Qn disease proteins, but the Burke et al. (1) showed that huntingtin, huntingtin-derived significance of this interaction is unknown. We now report that fragments, and the dentatorubralpallidoluysian atrophy protein purified glyceraldehyde 3-phosphate dehydrogenase is inacti- bind selectively to glyceraldehyde 3-phosphate dehydrogenase vated by tissue transglutaminase in the presence of glutathione (GAPDH) in human brain homogenates and to immobilized S-transferase constructs containing a Qn domain of pathological rabbit muscle GAPDH.
    [Show full text]
  • Targets TFIID and TFIIA to Prevent Activated Transcription
    Downloaded from genesdev.cshlp.org on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press The mammalian transcriptional repressor RBP (CBF1) targets TFIID and TFIIA to prevent activated transcription Ivan Olave, Danny Reinberg,1 and Lynne D. Vales2 Department of Biochemistry and 1Howard Hughes Medical Institute, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854 USA RBP is a cellular protein that functions as a transcriptional repressor in mammalian cells. RBP has elicited great interest lately because of its established roles in regulating gene expression, in Drosophila and mouse development, and as a component of the Notch signal transduction pathway. This report focuses on the mechanism by which RBP represses transcription and thereby regulates expression of a relatively simple, but natural, promoter. The results show that, irrespective of the close proximity between RBP and other transcription factors bound to the promoter, RBP does not occlude binding by these other transcription factors. Instead, RBP interacts with two transcriptional coactivators: dTAFII110, a subunit of TFIID, and TFIIA to repress transcription. The domain of dTAFII110 targeted by RBP is the same domain that interacts with TFIIA, but is disparate from the domain that interacts with Sp1. Repression can be thwarted when stable transcription preinitiation complexes are formed before RBP addition, suggesting that RBP interaction with TFIIA and TFIID perturbs optimal interactions between these coactivators. Consistent with this, interaction between RBP and TFIIA precludes interaction with dTAFII110. This is the first report of a repressor specifically targeting these two coactivators to subvert activated transcription. [Key Words: RBP; transcriptional repression; TFIIA/TFIID targeting] Received November 17, 1997; revised version accepted April 1, 1998.
    [Show full text]
  • Polycomb Repressor Complex 2 Function in Breast Cancer (Review)
    INTERNATIONAL JOURNAL OF ONCOLOGY 57: 1085-1094, 2020 Polycomb repressor complex 2 function in breast cancer (Review) COURTNEY J. MARTIN and ROGER A. MOOREHEAD Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G2W1, Canada Received July 10, 2020; Accepted September 7, 2020 DOI: 10.3892/ijo.2020.5122 Abstract. Epigenetic modifications are important contributors 1. Introduction to the regulation of genes within the chromatin. The poly- comb repressive complex 2 (PRC2) is a multi‑subunit protein Epigenetic modifications, including DNA methylation complex that is involved in silencing gene expression through and histone modifications, play an important role in gene the trimethylation of lysine 27 at histone 3 (H3K27me3). The regulation. The dysregulation of these modifications can dysregulation of this modification has been associated with result in pathogenicity, including tumorigenicity. Research tumorigenicity through the increased repression of tumour has indicated an important influence of the trimethylation suppressor genes via condensing DNA to reduce access to the modification at lysine 27 on histone H3 (H3K27me3) within transcription start site (TSS) within tumor suppressor gene chromatin. This methylation is involved in the repression promoters. In the present review, the core proteins of PRC2, as of multiple genes within the genome by condensing DNA well as key accessory proteins, will be described. In addition, to reduce access to the transcription start site (TSS) within mechanisms controlling the recruitment of the PRC2 complex gene promoter sequences (1). The recruitment of H1.2, an H1 to H3K27 will be outlined. Finally, literature identifying the histone subtype, by the H3K27me3 modification has been a role of PRC2 in breast cancer proliferation, apoptosis and suggested as a mechanism for mediating this compaction (1).
    [Show full text]
  • A Dissertation Entitled the Androgen Receptor
    A Dissertation entitled The Androgen Receptor as a Transcriptional Co-activator: Implications in the Growth and Progression of Prostate Cancer By Mesfin Gonit Submitted to the Graduate Faculty as partial fulfillment of the requirements for the PhD Degree in Biomedical science Dr. Manohar Ratnam, Committee Chair Dr. Lirim Shemshedini, Committee Member Dr. Robert Trumbly, Committee Member Dr. Edwin Sanchez, Committee Member Dr. Beata Lecka -Czernik, Committee Member Dr. Patricia R. Komuniecki, Dean College of Graduate Studies The University of Toledo August 2011 Copyright 2011, Mesfin Gonit This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of The Androgen Receptor as a Transcriptional Co-activator: Implications in the Growth and Progression of Prostate Cancer By Mesfin Gonit As partial fulfillment of the requirements for the PhD Degree in Biomedical science The University of Toledo August 2011 Prostate cancer depends on the androgen receptor (AR) for growth and survival even in the absence of androgen. In the classical models of gene activation by AR, ligand activated AR signals through binding to the androgen response elements (AREs) in the target gene promoter/enhancer. In the present study the role of AREs in the androgen- independent transcriptional signaling was investigated using LP50 cells, derived from parental LNCaP cells through extended passage in vitro. LP50 cells reflected the signature gene overexpression profile of advanced clinical prostate tumors. The growth of LP50 cells was profoundly dependent on nuclear localized AR but was independent of androgen. Nevertheless, in these cells AR was unable to bind to AREs in the absence of androgen.
    [Show full text]
  • The Isolation and Characterization of Huntingtin Interacting
    THE ISOLATION AND CHARACTERIZATION OF HUNTINGTIN INTERACTING PROTEINS By MICHAEL ANDREW KALCHMAN B.Sc. (Honor's Genetics), University of Western Ontario, 1992 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY In THE FACULTY OF GRADUATE STUDIES GENETICS GRADUATE PROGRAMME We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA JULY, 1998 © Michael Andrew Kalchman 1998 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of The University of British Columbia Vancouver, Canada DE-6 (2/88) ABSTRACT Huntington Disease (HD) is an autosomal dominant, neurodegenerative disorder with onset normally occurring at around 40 years of age. This devastating disease is the result of the expression of a polyglutamine tract greater than 35 in a protein with unknown function. The underlying mutation in HD places it in a category of neurodegenerative diseases along with seven other diseases, all of which have widespread expression of the protein with an abnormally long polyglutamine tract, but have disease specific neurodegeneration. Yeast two-hybrid screens were used in an attempt to further elucidate the function of the HD gene product, huntingtin.
    [Show full text]
  • Phosphorylation of Huntingtin at Residue T3 Is Decreased In
    Phosphorylation of huntingtin at residue T3 is PNAS PLUS decreased in Huntington’s disease and modulates mutant huntingtin protein conformation Cristina Cariuloa,1, Lucia Azzollinia,1, Margherita Verania, Paola Martufia, Roberto Boggiob, Anass Chikic, Sean M. Deguirec, Marta Cherubinid,e, Silvia Ginesd,e, J. Lawrence Marshf, Paola Confortig,h, Elena Cattaneog,h, Iolanda Santimonei, Ferdinando Squitierii, Hilal A. Lashuelc,2, Lara Petriccaa,2,3, and Andrea Caricasolea,2,3 aDepartment of Neuroscience, IRBM Science Park, 00071 Pomezia, Rome, Italy; bIRBM Promidis, 00071 Pomezia, Rome, Italy; cLaboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland; dDepartamento de Biomedicina, Facultad de Medicina, Instituto de Neurociencias, Universidad de Barcelona, 08035 Barcelona, Spain; eInstitut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; fDepartment of Developmental and Cell Biology, University of California, Irvine, CA 92697; gLaboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122 Milan, Italy; hIstituto Nazionale Genetica Molecolare (INGM) Romeo ed Enrica Invernizzi, Milan 20122, Italy; and iHuntington and Rare Diseases Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy Edited by Solomon H. Snyder, Johns Hopkins University School of Medicine, Baltimore, MD, and approved October 25, 2017 (received for review April 10, 2017) Posttranslational modifications can have profound effects on the reviewed in ref. 13). The mutation leads to the production of biological and biophysical properties of proteins associated with huntingtin protein (HTT) bearing a polyglutamine expansion misfolding and aggregation.
    [Show full text]
  • Allele-Specific Regulation of Mutant Huntingtin by Wig1, a Downstream
    Human Molecular Genetics, 2016, Vol. 25, No. 12 2514–2524 doi: 10.1093/hmg/ddw115 Advance Access Publication Date: 19 May 2016 Original Article Downloaded from https://academic.oup.com/hmg/article-abstract/25/12/2514/2525740 by Univ of Connecticut user on 21 May 2019 ORIGINAL ARTICLE Allele-specific regulation of mutant Huntingtin by Wig1, a downstream target of p53 Sun-Hong Kim1,†, Neelam Shahani1,†,‡, Byoung-II Bae2,¶, Juan I. Sbodio2, Youjin Chung1, Kazuhiro Nakaso3, Bindu D. Paul2 and Akira Sawa1,2,* 1Department of Psychiatry and Behavioral Sciences, 2Neuroscience Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA and 3Division of Medical Biochemistry, Department of Pathophysiological and Therapeutic Science, Tottori University Faculty of Medicine, 86, Nishicho, Yonago, 683-8503, Japan *To whom correspondence should be addressed at: Tel: þ1 4109554726; Fax: þ1 4106141792; Email: [email protected] Abstract p53 has been implicated in the pathophysiology of Huntington’s disease (HD). Nonetheless, the molecular mechanism of how p53 may play a unique role in the pathology remains elusive. To address this question at the molecular and cellular biology levels, we initially screened differentially expressed molecules specifically dependent on p53 in a HD animal model. Among the candidate molecules, wild-type p53-induced gene 1 (Wig1) is markedly upregulated in the cerebral cortex of HD patients. Wig1 preferentially upregulates the level of mutant Huntingtin (Htt) compared with wild-type Htt. This allele-specific charac- teristic of Wig1 is likely to be explained by higher affinity binding to mutant Htt transcripts than normal counterpart for the stabilization. Knockdown of Wig1 level significantly ameliorates mutant Htt-elicited cytotoxicity and aggregate formation.
    [Show full text]
  • Dynamics and Function of DNA Methylation in Plants
    REVIEWS Dynamics and function of DNA methylation in plants Huiming Zhang1,2*, Zhaobo Lang1,2 and Jian- Kang Zhu 1,2,3* Abstract | DNA methylation is a conserved epigenetic modification that is important for gene regulation and genome stability. Aberrant patterns of DNA methylation can lead to plant developmental abnormalities. A specific DNA methylation state is an outcome of dynamic regulation by de novo methylation, maintenance of methylation and active demethylation, which are catalysed by various enzymes that are targeted by distinct regulatory pathways. In this Review, we discuss DNA methylation in plants, including methylating and demethylating enzymes and regulatory factors, and the coordination of methylation and demethylation activities by a so- called methylstat mechanism; the functions of DNA methylation in regulating transposon silencing, gene expression and chromosome interactions; the roles of DNA methylation in plant development; and the involvement of DNA methylation in plant responses to biotic and abiotic stress conditions. DNA methylation at the 5ʹ position of cytosine contrib- and regulatory factors are generally not lethal. However, utes to the epigenetic regulation of nuclear gene expres- DNA methylation appears to be more crucial for devel- sion and to genome stability1,2. Epigenetic changes, opment and environmental- stress responses in plants including DNA methylation, histone modifications and that have more complex genomes. Recent findings histone variants and some non- coding RNA (ncRNA) have uncovered important
    [Show full text]
  • Sequence Specificity Analysis of the SETD2 Protein Lysine Methyltransferase and Discovery of a SETD2 Super-Substrate
    ARTICLE https://doi.org/10.1038/s42003-020-01223-6 OPEN Sequence specificity analysis of the SETD2 protein lysine methyltransferase and discovery of a SETD2 super-substrate Maren Kirstin Schuhmacher1,4, Serap Beldar2,4, Mina S. Khella1,3,4, Alexander Bröhm1, Jan Ludwig1, ✉ ✉ 1234567890():,; Wolfram Tempel2, Sara Weirich1, Jinrong Min2 & Albert Jeltsch 1 SETD2 catalyzes methylation at lysine 36 of histone H3 and it has many disease connections. We investigated the substrate sequence specificity of SETD2 and identified nine additional peptide and one protein (FBN1) substrates. Our data showed that SETD2 strongly prefers amino acids different from those in the H3K36 sequence at several positions of its specificity profile. Based on this, we designed an optimized super-substrate containing four amino acid exchanges and show by quantitative methylation assays with SETD2 that the super-substrate peptide is methylated about 290-fold more efficiently than the H3K36 peptide. Protein methylation studies confirmed very strong SETD2 methylation of the super-substrate in vitro and in cells. We solved the structure of SETD2 with bound super-substrate peptide con- taining a target lysine to methionine mutation, which revealed better interactions involving three of the substituted residues. Our data illustrate that substrate sequence design can strongly increase the activity of protein lysine methyltransferases. 1 Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany. 2 Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada. 3 Biochemistry Department, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Abbassia, Cairo 11566, Egypt. 4These authors contributed equally: Maren Kirstin Schuhmacher, Serap Beldar, Mina S.
    [Show full text]
  • I = Chpt 15. Positive and Negative Transcriptional Control at Lac BMB
    BMB 400 Part Four - I = Chpt 15. Positive and Negative Transcriptional Control at lac B M B 400 Part Four: Gene Regulation Section I = Chapter 15 POSITIVE AND NEGATIVE CONTROL SHOWN BY THE lac OPERON OF E. COLI A. Definitions and general comments 1. Operons An operon is a cluster of coordinately regulated genes. It includes structural genes (generally encoding enzymes), regulatory genes (encoding, e.g. activators or repressors) and regulatory sites (such as promoters and operators). 2. Negative versus positive control a. The type of control is defined by the response of the operon when no regulatory protein is present. b. In the case of negative control, the genes in the operon are expressed unless they are switched off by a repressor protein. Thus the operon will be turned on constitutively (the genes will be expressed) when the repressor in inactivated. c. In the case of positive control, the genes are expressed only when an active regulator protein, e.g. an activator, is present. Thus the operon will be turned off when the positive regulatory protein is absent or inactivated. Table 4.1.1. Positive vs. negative control BMB 400 Part Four - I = Chpt 15. Positive and Negative Transcriptional Control at lac 3. Catabolic versus biosynthetic operons a. Catabolic pathways catalyze the breakdown of nutrients (the substrate for the pathway) to generate energy, or more precisely ATP, the energy currency of the cell. In the absence of the substrate, there is no reason for the catabolic enzymes to be present, and the operon encoding them is repressed. In the presence of the substrate, when the enzymes are needed, the operon is induced or de-repressed.
    [Show full text]