Dynamics and Function of DNA Methylation in Plants
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Dna Methylation Post Transcriptional Modification
Dna Methylation Post Transcriptional Modification Blistery Benny backbiting her tug-of-war so protectively that Scot barrel very weekends. Solanaceous and unpossessing Eric pubes her creatorships abrogating while Raymundo bereave some limitations demonstrably. Clair compresses his catchings getter epexegetically or epidemically after Bernie vitriols and piffling unchangeably, hypognathous and nourishing. To explore quantitative and dynamic properties of transcriptional regulation by. MeSH Cochrane Library. In revere last check of man series but left house with various gene expression profile of the effect of. Moreover interpretation of transcriptional changes during COVID-19 has been. In transcriptional modification by post transcriptional repression and posted by selective breeding industry: patterns of dna methylation during gc cells and the study of dna. DNA methylation regulates transcriptional homeostasis of. Be local in two ways Post Translational Modifications of amino acid residues of histone. International journal of cyclic gmp in a chromatin dynamics: unexpected results in alternative splicing of reusing and diagnosis of dmrs has been identified using whole process. Dam in dna methylation to violent outbursts that have originated anywhere in england and post transcriptional gene is regulated at the content in dna methylation post transcriptional modification of. A seven sample which customers post being the dtc company for analysis. Fei zhao y, methylation dynamics and modifications on lysine is an essential that. Tag-based our Generation Sequencing. DNA methylation and histone modifications as epigenetic. Thc content of. Lysine methylation has been involved in both transcriptional activation H3K4. For instance aberrance of DNA methylation andor demethylation has been. Chromosome conformation capture from 3C to 5C and will ChIP-based modification. -
The Plant Immune System: Induction, Memory and De-Priming of Defense
The plant immune system : induction, memory and de-priming of defense responses by endogenous, exogenous and synthetic elicitors Kay Gully To cite this version: Kay Gully. The plant immune system : induction, memory and de-priming of defense responses by endogenous, exogenous and synthetic elicitors. Agricultural sciences. Université d’Angers, 2019. English. NNT : 2019ANGE0001. tel-02419987 HAL Id: tel-02419987 https://tel.archives-ouvertes.fr/tel-02419987 Submitted on 19 Dec 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Table of contents 1. Abbreviations ................................................................................................................... iv 2. Summary ......................................................................................................................... viii 2.1. Résumé en français ......................................................................................................... x 3. General Introduction ........................................................................................................ -
WO 2017/014762 Al 26 January 2017 (26.01.2017) P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/014762 Al 26 January 2017 (26.01.2017) P O P C T (51) International Patent Classification: DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, C12Q 1/68 (2006.01) HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, (21) International Application Number: MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PCT/US201 5/0414 15 PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (22) International Filing Date: SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 2 1 July 20 15 (21 .07.2015) TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, (71) Applicant: OMNIOME, INC. [US/US]; 4225 Executive TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, Square, Suite 440, La Jolla, California 92037 (US). TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, (72) Inventors: VIJAYAN, Kandaswamy; 4465 Vision Drive, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, Unit 6, San Diego, California 92121 (US). -
Supplementary Materials
Supplementary Materials Figure S1. Differentially abundant spots between the mid-log phase cells grown on xylan or xylose. Red and blue circles denote spots with increased and decreased abundance respectively in the xylan growth condition. The identities of the circled spots are summarized in Table 3. Figure S2. Differentially abundant spots between the stationary phase cells grown on xylan or xylose. Red and blue circles denote spots with increased and decreased abundance respectively in the xylan growth condition. The identities of the circled spots are summarized in Table 4. S2 Table S1. Summary of the non-polysaccharide degrading proteins identified in the B. proteoclasticus cytosol by 2DE/MALDI-TOF. Protein Locus Location Score pI kDa Pep. Cov. Amino Acid Biosynthesis Acetylornithine aminotransferase, ArgD Bpr_I1809 C 1.7 × 10−4 5.1 43.9 11 34% Aspartate/tyrosine/aromatic aminotransferase Bpr_I2631 C 3.0 × 10−14 4.7 43.8 15 46% Aspartate-semialdehyde dehydrogenase, Asd Bpr_I1664 C 7.6 × 10−18 5.5 40.1 17 50% Branched-chain amino acid aminotransferase, IlvE Bpr_I1650 C 2.4 × 10−12 5.2 39.2 13 32% Cysteine synthase, CysK Bpr_I1089 C 1.9 × 10−13 5.0 32.3 18 72% Diaminopimelate dehydrogenase Bpr_I0298 C 9.6 × 10−16 5.6 35.8 16 49% Dihydrodipicolinate reductase, DapB Bpr_I2453 C 2.7 × 10−6 4.9 27.0 9 46% Glu/Leu/Phe/Val dehydrogenase Bpr_I2129 C 1.2 × 10−30 5.4 48.6 31 64% Imidazole glycerol phosphate synthase Bpr_I1240 C 8.0 × 10−3 4.7 22.5 8 44% glutamine amidotransferase subunit Ketol-acid reductoisomerase, IlvC Bpr_I1657 C 3.8 × 10−16 -
DNA Methylation Seeing the Forest for the Trees: a Wide Perspective on RNA-Directed
Downloaded from genesdev.cshlp.org on August 16, 2012 - Published by Cold Spring Harbor Laboratory Press Seeing the forest for the trees: a wide perspective on RNA-directed DNA methylation Huiming Zhang and Jian-Kang Zhu Genes Dev. 2012 26: 1769-1773 Access the most recent version at doi:10.1101/gad.200410.112 References This article cites 31 articles, 9 of which can be accessed free at: http://genesdev.cshlp.org/content/26/16/1769.full.html#ref-list-1 Related Content Spatial and functional relationships among Pol V-associated loci, Pol IV-dependent siRNAs, and cytosine methylation in the Arabidopsis epigenome Andrzej T. Wierzbicki, Ross Cocklin, Anoop Mayampurath, et al. Genes Dev. August 15, 2012 26: 1825-1836 Email alerting Receive free email alerts when new articles cite this article - sign up in the box at the service top right corner of the article or click here Topic Articles on similar topics can be found in the following collections Collections Chromatin and Gene Expression (146 articles) Plant Biology (29 articles) To subscribe to Genes & Development go to: http://genesdev.cshlp.org/subscriptions Copyright © 2012 by Cold Spring Harbor Laboratory Press Downloaded from genesdev.cshlp.org on August 16, 2012 - Published by Cold Spring Harbor Laboratory Press PERSPECTIVE Seeing the forest for the trees: a wide perspective on RNA-directed DNA methylation Huiming Zhang1 and Jian-Kang Zhu1,2,3 1Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907, USA; 2Shanghai Center for Plant Stress Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China In this issue of Genes & Development, Wierzbicki and remaining subunits of Pol IV and/or Pol V are different but colleagues (pp. -
DNA Methylation, Imprinting and Cancer
European Journal of Human Genetics (2002) 10, 6±16 ã 2002 Nature Publishing Group All rights reserved 1018-4813/02 $25.00 www.nature.com/ejhg REVIEW DNA methylation, imprinting and cancer Christoph Plass*,1 and Paul D Soloway*,2 1Division of Human Cancer Genetics and the Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, OH 43210, USA; 2Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York, NY 14263, USA It is well known that a variety of genetic changes influence the development and progression of cancer. These changes may result from inherited or spontaneous mutations that are not corrected by repair mechanisms prior to DNA replication. It is increasingly clear that so called epigenetic effects that do not affect the primary sequence of the genome also play an important role in tumorigenesis. This was supported initially by observations that cancer genomes undergo changes in their methylation state and that control of parental allele-specific methylation and expression of imprinted loci is lost in several cancers. Many loci acquiring aberrant methylation in cancers have since been identified and shown to be silenced by DNA methylation. In many cases, this mechanism of silencing inactivates tumour suppressors as effectively as frank mutation and is one of the cancer-predisposing hits described in Knudson's two hit hypothesis. In contrast to mutations which are essentially irreversible, methylation changes are reversible, raising the possibility of developing therapeutics based on restoring the normal methylation state to cancer-associated genes. Development of such therapeutics will require identifying loci undergoing methylation changes in cancer, understanding how their methylation influences tumorigenesis and identifying the mechanisms regulating the methylation state of the genome. -
Plant Responses to Abiotic Stresses and Rhizobacterial Biostimulants: Metabolomics and Epigenetics Perspectives
H OH metabolites OH Review Plant Responses to Abiotic Stresses and Rhizobacterial Biostimulants: Metabolomics and Epigenetics Perspectives Motseoa M. Lephatsi 1 , Vanessa Meyer 2 , Lizelle A. Piater 1 , Ian A. Dubery 1 and Fidele Tugizimana 1,3,* 1 Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa; [email protected] (M.M.L.); [email protected] (L.A.P.); [email protected] (I.A.D.) 2 School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, WITS, Johannesburg 2050, South Africa; [email protected] 3 International Research and Development Division, Omnia Group, Ltd., Johannesburg 2021, South Africa * Correspondence: [email protected]; Tel.: +27-011-559-7784 Abstract: In response to abiotic stresses, plants mount comprehensive stress-specific responses which mediate signal transduction cascades, transcription of relevant responsive genes and the accumulation of numerous different stress-specific transcripts and metabolites, as well as coordinated stress-specific biochemical and physiological readjustments. These natural mechanisms employed by plants are however not always sufficient to ensure plant survival under abiotic stress conditions. Biostimulants such as plant growth-promoting rhizobacteria (PGPR) formulation are emerging as novel strategies for improving crop quality, yield and resilience against adverse environmental conditions. However, to successfully formulate these microbial-based biostimulants and design efficient application programs, the understanding of molecular and physiological mechanisms that govern biostimulant-plant interactions is imperatively required. Systems biology approaches, such as Citation: Lephatsi, M.M.; Meyer, V.; metabolomics, can unravel insights on the complex network of plant-PGPR interactions allowing for Piater, L.A.; Dubery, I.A.; Tugizimana, the identification of molecular targets responsible for improved growth and crop quality. -
Targets TFIID and TFIIA to Prevent Activated Transcription
Downloaded from genesdev.cshlp.org on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press The mammalian transcriptional repressor RBP (CBF1) targets TFIID and TFIIA to prevent activated transcription Ivan Olave, Danny Reinberg,1 and Lynne D. Vales2 Department of Biochemistry and 1Howard Hughes Medical Institute, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854 USA RBP is a cellular protein that functions as a transcriptional repressor in mammalian cells. RBP has elicited great interest lately because of its established roles in regulating gene expression, in Drosophila and mouse development, and as a component of the Notch signal transduction pathway. This report focuses on the mechanism by which RBP represses transcription and thereby regulates expression of a relatively simple, but natural, promoter. The results show that, irrespective of the close proximity between RBP and other transcription factors bound to the promoter, RBP does not occlude binding by these other transcription factors. Instead, RBP interacts with two transcriptional coactivators: dTAFII110, a subunit of TFIID, and TFIIA to repress transcription. The domain of dTAFII110 targeted by RBP is the same domain that interacts with TFIIA, but is disparate from the domain that interacts with Sp1. Repression can be thwarted when stable transcription preinitiation complexes are formed before RBP addition, suggesting that RBP interaction with TFIIA and TFIID perturbs optimal interactions between these coactivators. Consistent with this, interaction between RBP and TFIIA precludes interaction with dTAFII110. This is the first report of a repressor specifically targeting these two coactivators to subvert activated transcription. [Key Words: RBP; transcriptional repression; TFIIA/TFIID targeting] Received November 17, 1997; revised version accepted April 1, 1998. -
Polycomb Repressor Complex 2 Function in Breast Cancer (Review)
INTERNATIONAL JOURNAL OF ONCOLOGY 57: 1085-1094, 2020 Polycomb repressor complex 2 function in breast cancer (Review) COURTNEY J. MARTIN and ROGER A. MOOREHEAD Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G2W1, Canada Received July 10, 2020; Accepted September 7, 2020 DOI: 10.3892/ijo.2020.5122 Abstract. Epigenetic modifications are important contributors 1. Introduction to the regulation of genes within the chromatin. The poly- comb repressive complex 2 (PRC2) is a multi‑subunit protein Epigenetic modifications, including DNA methylation complex that is involved in silencing gene expression through and histone modifications, play an important role in gene the trimethylation of lysine 27 at histone 3 (H3K27me3). The regulation. The dysregulation of these modifications can dysregulation of this modification has been associated with result in pathogenicity, including tumorigenicity. Research tumorigenicity through the increased repression of tumour has indicated an important influence of the trimethylation suppressor genes via condensing DNA to reduce access to the modification at lysine 27 on histone H3 (H3K27me3) within transcription start site (TSS) within tumor suppressor gene chromatin. This methylation is involved in the repression promoters. In the present review, the core proteins of PRC2, as of multiple genes within the genome by condensing DNA well as key accessory proteins, will be described. In addition, to reduce access to the transcription start site (TSS) within mechanisms controlling the recruitment of the PRC2 complex gene promoter sequences (1). The recruitment of H1.2, an H1 to H3K27 will be outlined. Finally, literature identifying the histone subtype, by the H3K27me3 modification has been a role of PRC2 in breast cancer proliferation, apoptosis and suggested as a mechanism for mediating this compaction (1). -
Functional Implications of DNA Methylation in Adipose Biology
Diabetes Volume 68, May 2019 871 Functional Implications of DNA Methylation in Adipose Biology Xiang Ma and Sona Kang Diabetes 2019;68:871–878 | https://doi.org/10.2337/dbi18-0057 The twin epidemics of obesity and type 2 diabetes (T2D) variants have not been tested for causality, and even if are a serious health, social, and economic issue. The proven causal, they cannot fully explain many clinical dysregulation of adipose tissue biology is central to the features such as high heritability, high discordance in adult development of these two metabolic disorders, as adi- monozygotic twins, and the close relationship with envi- pose tissue plays a pivotal role in regulating whole-body ronmental factors (2–5). Therefore, it has long been metabolism and energy homeostasis (1). Accumulating speculated that nongenetic variation, such as epigenetic evidence indicates that multiple aspects of adipose bi- alterations, plays a role in pathogenesis. This notion has PERSPECTIVES IN DIABETES ology are regulated, in part, by epigenetic mechanisms. been borne out by a recent epigenome-wide association The precise and comprehensive understanding of the study that linked alterations in DNA methylation to whole- epigenetic control of adipose tissue biology is crucial to body insulin sensitivity (6). identifying novel therapeutic interventions that target DNA methylation is a reversible epigenetic mark in- epigenetic issues. Here, we review the recent findings volving the covalent transfer of a methyl group to the C-5 on DNA methylation events and machinery in regulating the developmental processes and metabolic function of position of a cytosine residue by DNA methyltransferases adipocytes. We highlight the following points: 1) DNA (DNMTs), usually in the context of a cytosine-guanine methylation is a key epigenetic regulator of adipose dinucleotide (CpG) doublet. -
The Pennsylvania State University
The Pennsylvania State University The Graduate School Graduate Program in Plant Biology IDENTIFICATION OF SMALL RNA PRODUCING GENES IN THE MOSS PHYSCOMITRELLA PATENS A Dissertation in Plant Biology by Ceyda Coruh 2014 Ceyda Coruh Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2014 The dissertation of Ceyda Coruh was reviewed and approved* by the following: Michael J. Axtell Associate Professor of Biology Dissertation Advisor Chair of Committee Claude dePamphilis Professor of Biology Sarah M. Assmann Waller Professor of Biology Anton Nekrutenko Associate Professor of Biochemistry and Molecular Biology Teh-hui Kao Distinguished Professor of Biochemistry and Molecular Biology Chair, Intercollege Graduate Degree Program in Plant Biology *Signatures are on file in the Graduate School iii ABSTRACT In plants, a significant fraction of the genome is responsible for making regulatory small RNAs. These ubiquitous, endogenous small RNAs are currently categorized into two groups: microRNAs (miRNAs) and small interfering RNAs (siRNAs). They are produced by Dicer-Like (DCL) proteins and utilized by Argonaute (AGO) proteins to guide repressive regulation of target mRNAs and/or chromatin selected on the basis of small RNA-target complementarity at the transcriptional or post-transcriptional levels. 21 nt miRNAs and 24 nt heterochromatic siRNAs are the two major types of small RNAs found in angiosperms (flowering plants). The small RNA populations in angiosperms are dominated by 24 nt heterochromatic siRNAs which derive from intergenic, repetitive regions and mediate DNA methylation and repressive histone modifications to targeted loci in angiosperms. However, the existence and extent of heterochromatic siRNAs in other land plant lineages has been less clear. -
Segregation of an MSH1 Rnai Transgene Produces Heritable Non-Genetic Memory in Association with Methylome Reprogramming
ARTICLE https://doi.org/10.1038/s41467-020-16036-8 OPEN Segregation of an MSH1 RNAi transgene produces heritable non-genetic memory in association with methylome reprogramming Xiaodong Yang 1,4, Robersy Sanchez 1,4, Hardik Kundariya 1,2,4, Tom Maher1, Isaac Dopp1, ✉ Rosemary Schwegel1, Kamaldeep Virdi 2, Michael J. Axtell3 & Sally A. Mackenzie 1 fi MSH1 1234567890():,; MSH1 is a plant-speci c protein. RNAi suppression of results in phenotype variability for developmental and stress response pathways. Segregation of the RNAi transgene pro- duces non-genetic msh1 ‘memory’ with multi-generational inheritance. First-generation memory versus non-memory comparison, and six-generation inheritance studies, identifies gene-associated, heritable methylation repatterning. Genome-wide methylome analysis integrated with RNAseq and network-based enrichment studies identifies altered circadian clock networks, and phytohormone and stress response pathways that intersect with circa- dian control. A total of 373 differentially methylated loci comprising these networks are sufficient to discriminate memory from nonmemory full sibs. Methylation inhibitor 5- azacytidine diminishes the differences between memory and wild type for growth, gene expression and methylation patterning. The msh1 reprogramming is dependent on functional HISTONE DEACETYLASE 6 and methyltransferase MET1, and transition to memory requires the RNA-directed DNA methylation pathway. This system of phenotypic plasticity may serve as a potent model for defining accelerated plant adaptation during environmental change. 1 Departments of Biology and Plant Science, The Pennsylvania State University, University Park, PA, USA. 2 Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, USA. 3 Department of Biology, The Pennsylvania State University, University Park, PA, USA.