Plant Responses to Heat Stress: Physiology, Transcription, Noncoding Rnas, and Epigenetics
International Journal of Molecular Sciences Review Plant Responses to Heat Stress: Physiology, Transcription, Noncoding RNAs, and Epigenetics Jianguo Zhao 1,2,†, Zhaogeng Lu 1,†, Li Wang 1 and Biao Jin 1,* 1 College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; zhaojg@yzu.edu.cn (J.Z.); d160068@yzu.edu.cn (Z.L.); liwang@yzu.edu.cn (L.W.) 2 Guangling College of Yangzhou University, Yangzhou University, Yangzhou 225009, China * Correspondence: bjin@yzu.edu.cn † These authors contributed equally to this work. Abstract: Global warming has increased the frequency of extreme high temperature events. High temperature is a major abiotic stress that limits the growth and production of plants. Therefore, the plant response to heat stress (HS) has been a focus of research. However, the plant response to HS involves complex physiological traits and molecular or gene networks that are not fully understood. Here, we review recent progress in the physiological (photosynthesis, cell membrane thermostability, oxidative damage, and others), transcriptional, and post-transcriptional (noncoding RNAs) regulation of the plant response to HS. We also summarize advances in understanding of the epigenetic regulation (DNA methylation, histone modification, and chromatin remodeling) and epigenetic memory underlying plant–heat interactions. Finally, we discuss the challenges and opportunities of future research in the plant response to HS. Keywords: heat stress; physiological; molecular; non-coding RNA; epigenetics 1. Introduction Plants as sessile organisms cannot move to favorable environments upon encountering Citation: Zhao, J.; Lu, Z.; Wang, L.; abiotic or biotic stresses; consequently, plant growth, development, and productivity are Jin, B. Plant Responses to Heat Stress: markedly affected [1].
[Show full text]