Beyond the View of Plants As Mere Machines: on Plant Sensation, Perception, and Awareness
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
On Physical Heat Regulation and the Sense of Temperature In
ON PHYSICAL HEAT REGULATION AND THE SENSE OF TEMPERA TURE IN MAN BY T. H. BENZINGER NAVAL MEDICAL RESEARCH INSTITUTE, BETHESDA, MARYLAND Communicated by Sterling Hendricks, February 26, 1959 Human physiology has given much of its attention to those systems which control in a multicellular organism the essential internal conditions: to respiration as it provides optimal concentrations of carbon dioxide, hydrogen ions and oxygen, to circulation as it maintains adequate blood flowrates and pressures, and to produc- tion and loss of energy as they are balanced through a regulatory mechanism for the maintenance of optimal body temperature. For the purpose of analysis, three main components may be distinguished with any regulatory system in physiology: 1. Specific sensory-receptor organs register the physical or chemical quantity that is to be regulated. They produce nerve impulses commensurate with the magnitude of this stimulus. 2. One or more effector organs act in response to the stimulus. This results in a return of the physical or chemical quantity registered toward the optimal level whereby the stimulus is reduced or abolished at the site of registration and else- where. 3. A coordinating center in the central nervous system receives the afferent nerve impulses. It produces efferent impulses which initiate or maintain the regulatory action of the effector organs. A physiological control mechanism cannot be considered clarified until its effector organs, center of coordination, and receptor sensory structures have been identified, and until the quantitative relations between causes and effects, that is, between physical or chemical stimuli and physiological responses, have been demonstrated. In this paper an attempt is described to clarify experimentally one of these mecha- nisms: the so-called "physical heat regulation"* of man. -
The Plant Immune System: Induction, Memory and De-Priming of Defense
The plant immune system : induction, memory and de-priming of defense responses by endogenous, exogenous and synthetic elicitors Kay Gully To cite this version: Kay Gully. The plant immune system : induction, memory and de-priming of defense responses by endogenous, exogenous and synthetic elicitors. Agricultural sciences. Université d’Angers, 2019. English. NNT : 2019ANGE0001. tel-02419987 HAL Id: tel-02419987 https://tel.archives-ouvertes.fr/tel-02419987 Submitted on 19 Dec 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Table of contents 1. Abbreviations ................................................................................................................... iv 2. Summary ......................................................................................................................... viii 2.1. Résumé en français ......................................................................................................... x 3. General Introduction ........................................................................................................ -
Plant Responses to Abiotic Stresses and Rhizobacterial Biostimulants: Metabolomics and Epigenetics Perspectives
H OH metabolites OH Review Plant Responses to Abiotic Stresses and Rhizobacterial Biostimulants: Metabolomics and Epigenetics Perspectives Motseoa M. Lephatsi 1 , Vanessa Meyer 2 , Lizelle A. Piater 1 , Ian A. Dubery 1 and Fidele Tugizimana 1,3,* 1 Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa; [email protected] (M.M.L.); [email protected] (L.A.P.); [email protected] (I.A.D.) 2 School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, WITS, Johannesburg 2050, South Africa; [email protected] 3 International Research and Development Division, Omnia Group, Ltd., Johannesburg 2021, South Africa * Correspondence: [email protected]; Tel.: +27-011-559-7784 Abstract: In response to abiotic stresses, plants mount comprehensive stress-specific responses which mediate signal transduction cascades, transcription of relevant responsive genes and the accumulation of numerous different stress-specific transcripts and metabolites, as well as coordinated stress-specific biochemical and physiological readjustments. These natural mechanisms employed by plants are however not always sufficient to ensure plant survival under abiotic stress conditions. Biostimulants such as plant growth-promoting rhizobacteria (PGPR) formulation are emerging as novel strategies for improving crop quality, yield and resilience against adverse environmental conditions. However, to successfully formulate these microbial-based biostimulants and design efficient application programs, the understanding of molecular and physiological mechanisms that govern biostimulant-plant interactions is imperatively required. Systems biology approaches, such as Citation: Lephatsi, M.M.; Meyer, V.; metabolomics, can unravel insights on the complex network of plant-PGPR interactions allowing for Piater, L.A.; Dubery, I.A.; Tugizimana, the identification of molecular targets responsible for improved growth and crop quality. -
Thermoception
THE FOURTH VIRTUAL DIMENSION Stimulating the Human Senses to Create Virtual Atmospheric Qualities LIAM JORDAN SHEEHAN1, ANDRE BROWN2, MARC AUREL SCHNABEL3 and TANE MOLETA4 1,2,3,4Victoria University of Wellington [email protected] 2,3,4{Andre.Brown|MarcAurel.Schnabel| Tane.Moleta}@vuw.ac.nz Abstract. In a move away from the ubiquitous ocular-centric Virtual Environment, our paper introduces a novel approach to creating other atmospheric qualities within VR scenarios that can address the known shortcoming of the feeling of disembodiment. In particular, we focus on stimulating the human body’s sensory ability to detect temperature changes: thermoception. Currently, users’ perceptions of a 3D virtual environment are often limited by the general focus, in VR development for design, on the two senses of vision and spatialised audio. The processes that we have undertaken include developing individual sensory engagement techniques, refinement of sensory stimuli and the generation of virtual atmospheric qualities. We respond to Pallasmaa’s theoretical stance on the evolution of the human senses, and the western bias of vision in virtual engine development. Consequently, the paper investigates the role our senses, outside of the core ’five senses’, have in creating a ’fourth virtual dimension’. The thermoception dimension is explored in our research. A user can begin to understand and engage with space and the directionality within a virtual scenario, as a bodily response to the stimulation of the body’s thermoception sense. Keywords. Virtual Reality; thermoception; sensory experience; immersion; atmosphere. 1. Introduction Experience, more precisely Human Experience, is set against the backdrop of the perception of space. -
Segregation of an MSH1 Rnai Transgene Produces Heritable Non-Genetic Memory in Association with Methylome Reprogramming
ARTICLE https://doi.org/10.1038/s41467-020-16036-8 OPEN Segregation of an MSH1 RNAi transgene produces heritable non-genetic memory in association with methylome reprogramming Xiaodong Yang 1,4, Robersy Sanchez 1,4, Hardik Kundariya 1,2,4, Tom Maher1, Isaac Dopp1, ✉ Rosemary Schwegel1, Kamaldeep Virdi 2, Michael J. Axtell3 & Sally A. Mackenzie 1 fi MSH1 1234567890():,; MSH1 is a plant-speci c protein. RNAi suppression of results in phenotype variability for developmental and stress response pathways. Segregation of the RNAi transgene pro- duces non-genetic msh1 ‘memory’ with multi-generational inheritance. First-generation memory versus non-memory comparison, and six-generation inheritance studies, identifies gene-associated, heritable methylation repatterning. Genome-wide methylome analysis integrated with RNAseq and network-based enrichment studies identifies altered circadian clock networks, and phytohormone and stress response pathways that intersect with circa- dian control. A total of 373 differentially methylated loci comprising these networks are sufficient to discriminate memory from nonmemory full sibs. Methylation inhibitor 5- azacytidine diminishes the differences between memory and wild type for growth, gene expression and methylation patterning. The msh1 reprogramming is dependent on functional HISTONE DEACETYLASE 6 and methyltransferase MET1, and transition to memory requires the RNA-directed DNA methylation pathway. This system of phenotypic plasticity may serve as a potent model for defining accelerated plant adaptation during environmental change. 1 Departments of Biology and Plant Science, The Pennsylvania State University, University Park, PA, USA. 2 Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, USA. 3 Department of Biology, The Pennsylvania State University, University Park, PA, USA. -
“Lacking Warmth” Alexithymia Trait Is Related to Warm-Specific Thermal Somatosensory Processing
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UCL Discovery Biological Psychology 128 (2017) 132–140 Contents lists available at ScienceDirect Biological Psychology journal homepage: www.elsevier.com/locate/biopsycho “Lacking warmth”: Alexithymia trait is related to warm-specific thermal MARK somatosensory processing ⁎ Khatereh Borhania,b,c,d, Elisabetta Làdavasb,c, Aikaterini Fotopouloue, Patrick Haggarda, a Institute of Cognitive Neuroscience, University College London, London, UK b Department of Psychology, University of Bologna, Viale Berti Pichat 5, 40127 Bologna, Italy c CSRNC, Centre for Studies and Research in Cognitive Neuroscience, University of Bologna, Viale Europa 980, 47521 Cesena, Italy d Institute of Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran e Division of Psychology and Language Sciences, University College London, London, UK ARTICLE INFO ABSTRACT Keywords: Alexithymia is a personality trait involving deficits in emotional processing. The personality construct has been Alexithymia extensively validated, but the underlying neural and physiological systems remain controversial. One theory Somatosensory processig suggests that low-level somatosensory mechanisms act as somatic markers of emotion, underpinning cognitive Emotion processing and affective impairments in alexithymia. In two separate samples (total N = 100), we used an established Quantitative sensory testing (QST) Quantitative Sensory Testing (QST) battery to probe multiple neurophysiological submodalities of somato- Thermal perception sensation, and investigated their associations with the widely-used Toronto Alexithymia Scale (TAS-20). Experiment one found reduced sensitivity to warmth in people with higher alexithymia scores, compared to individuals with lower scores, without deficits in other somatosensory submodalities. Experiment two replicated this result in a new group of participants using a full-sample correlation between threshold for warm detection and TAS-20 scores. -
Sensitisation of Nociceptors – What Are Ion Channels Doing?
82 The Open Pain Journal, 2010, 3, 82-96 Open Access Sensitisation of Nociceptors – What are Ion Channels Doing? Michael J.M. Fischer*, Stephanie W.Y. Mak and Peter A. McNaughton Department of Pharmacology, University of Cambridge, UK Abstract: Nociceptors are peripheral sensory neurones which respond to painful (noxious) stimuli. The terminals of nociceptors, which have a high threshold to stimulation in their native state, undergo a process known as sensitisation, or lowering of threshold, following injury or inflammation. Amongst sensory receptors, sensitisation is a property unique to nociceptors. A shift in the stimulus-response function of nociceptors renders them more sensitive, resulting in both a reduction in the activation threshold, such that previously non-noxious stimuli are perceived as noxious (allodynia) and an increased response to suprathreshold stimuli (hyperalgesia). Sensitisation protects us from harm and is essential for survival, but it can be disabling in conditions of chronic inflammation. This review focuses on three stages in sensitisation: 1) Inflammatory mediators, which are released from damaged resident cells and from others that invade in response to inflammation, and include bradykinin, prostaglandins, serotonin, low pH, ATP, neurotrophins, nitric oxide and cytokines; 2) Intracellular signalling molecules which are important in transmitting the actions of inflammatory mediators and include protein kinase A and C, Src kinase, mitogen-activated protein kinases and the membrane lipid PIP2; and 3) Ion channel targets of intracellular signalling which ultimately cause sensitisation and include the temperature- sensitive transient receptor potential channels, acid-sensitive ion channels, purinoceptor-gated channels, and the voltage- sensitive sodium, potassium, calcium and HCN channels. -
THE INTELLIGENT PLANT Scientists Debate a New Way of Understanding Flora
Michael Pollan: How Smart Are Plants? : The New Yorker Page 1 of 21 A REPORTER AT LARGE THE INTELLIGENT PLANT Scientists debate a new way of understanding flora. by Michael Pollan DECEMBER 23, 2013 •Print •More Share Close ◦ ◦ Reddit ◦ Linked In ◦ Email ◦ ◦ StumbleUpon n 1973, a book claiming that plants were sentient Ibeings that feel emotions, prefer classical music to rock and roll, and can respond to the unspoken thoughts of humans hundreds of miles away landed on the New York Times best-seller list for nonfiction. “The Secret Life of Plants,” by Peter Tompkins and Christopher Bird, presented a beguiling mashup of legitimate plant science, quack experiments, and mystical nature worship that captured the public imagination at a time when New Age thinking was seeping into the mainstream. The most memorable passages described the experiments of a former C.I.A. polygraph expert named Cleve Backster, who, in Plants have electrical and chemical 1966, on a whim, hooked up a galvanometer to the signalling systems, may possess memory, and exhibit brainy behavior in the absence of leaf of a dracaena, a houseplant that he kept in his brains. Construction by Stephen Doyle. office. To his astonishment, Backster found that simply by imagining the dracaena being set on fire he could make it rouse the needle of the http://www.newyorker.com/reporting/2013/12/23/131223fa_fact_pollan?printable=true&... 09/01/2014 Michael Pollan: How Smart Are Plants? : The New Yorker Page 2 of 21 polygraph machine, registering a surge of electrical activity suggesting that the plant felt stress. “Could the plant have been reading his mind?” the authors ask. -
Are Plants Cognitive?
Studies in History and Philosophy of Science xxx (xxxx) xxx–xxx Contents lists available at ScienceDirect Studies in History and Philosophy of Science journal homepage: www.elsevier.com/locate/shpsa Are plants cognitive? A reply to Adams ∗ Miguel Segundo-Ortina, Paco Calvob, a Faculty of Law, Humanities and the Arts, University of Wollongong, Australia b Minimal Intelligence Lab (MINT Lab), Universidad de Murcia, Spain HIGHLIGHTS • Offers an empirically informed philosophical discussion of plant intelligence. • Discusses crucial aspects of the nervous-like vascular system of plants. • Explores important analogies between plant and animal behavior. ARTICLE INFO ABSTRACT Keywords: According to F. Adams [this journal, vol. 68, 2018] cognition cannot be realized in plants or bacteria. In his Adams view, plants and bacteria respond to the here-and-now in a hardwired, inflexible manner, and are therefore Plant cognition incapable of cognitive activity. This article takes issue with the pursuit of plant cognition from the perspective of Adaptive behavior an empirically informed philosophy of plant neurobiology. As we argue, empirical evidence shows, contra Anticipation Adams, that plant behavior is in many ways analogous to animal behavior. This renders plants suitable to be Learning described as cognitive agents in a non-metaphorical way. Sections two to four review the arguments offered by Enactivism Adams in light of scientific evidence on plant adaptive behavior, decision-making, anticipation, as well learning and memory. Section five introduces the ‘phyto-nervous’ system of plants. To conclude, section six resituates the quest for plant cognition into a broader approach in cognitive science, as represented by enactive and ecological schools of thought. -
B-Afferents: a Fundamental Division of the Nervous System Mediating Hoxneostasis?
Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 1990 Dichotomic classification of sensory neurons: Elegant but problematic Neuhuber, W L DOI: https://doi.org/10.1017/s0140525x00078882 Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-154322 Journal Article Published Version Originally published at: Neuhuber, W L (1990). Dichotomic classification of sensory neurons: Elegant but problematic. Behav- ioral and Brain Sciences, 13(02):313-314. DOI: https://doi.org/10.1017/s0140525x00078882 BEHAVIORAL AND BRAIN SCIENCES (1990) 13, 289-331 Printed in the United States of America B-Afferents: A fundamental division of the nervous system mediating hoxneostasis? James C. Prechtl* Terry L* Powley Laboratory of Regulatory Psychobiology, Department of Psychological Sciences, Purdue University, West Lafayette, IN 47907 Electronic mail: [email protected]@brazil.psych.edu *Reprint requests should be addressed to: James C. Prechtl, Department of Neuroscience, A-001, University of California, San Diego, La Jolla, CA 92093 Abstract? The peripheral nervous system (PNS) has classically been separated into a somatic division composed of both afferent and efferent pathways and an autonomic division containing only efferents. J. N. Langley, who codified this asymmetrical plan at the beginning of the twentieth century, considered different afferents, including visceral ones, as candidates for inclusion in his concept of the "autonomic nervous system" (ANS), but he finally excluded all candidates for lack of any distinguishing histological markers. Langley's classification has been enormously influential in shaping modern ideas about both the structure and the function of the PNS. -
Dynamics and Function of DNA Methylation in Plants
REVIEWS Dynamics and function of DNA methylation in plants Huiming Zhang1,2*, Zhaobo Lang1,2 and Jian- Kang Zhu 1,2,3* Abstract | DNA methylation is a conserved epigenetic modification that is important for gene regulation and genome stability. Aberrant patterns of DNA methylation can lead to plant developmental abnormalities. A specific DNA methylation state is an outcome of dynamic regulation by de novo methylation, maintenance of methylation and active demethylation, which are catalysed by various enzymes that are targeted by distinct regulatory pathways. In this Review, we discuss DNA methylation in plants, including methylating and demethylating enzymes and regulatory factors, and the coordination of methylation and demethylation activities by a so- called methylstat mechanism; the functions of DNA methylation in regulating transposon silencing, gene expression and chromosome interactions; the roles of DNA methylation in plant development; and the involvement of DNA methylation in plant responses to biotic and abiotic stress conditions. DNA methylation at the 5ʹ position of cytosine contrib- and regulatory factors are generally not lethal. However, utes to the epigenetic regulation of nuclear gene expres- DNA methylation appears to be more crucial for devel- sion and to genome stability1,2. Epigenetic changes, opment and environmental- stress responses in plants including DNA methylation, histone modifications and that have more complex genomes. Recent findings histone variants and some non- coding RNA (ncRNA) have uncovered important -
Epigenetic Memory and Growth Responses of the Clonal Plant Glechoma Longituba to Parental Recurrent UV-B Stress
CSIRO PUBLISHING Functional Plant Biology, 2021, 48, 827–838 https://doi.org/10.1071/FP20303 Epigenetic memory and growth responses of the clonal plant Glechoma longituba to parental recurrent UV-B stress Xiaoyin Zhang A, Cunxia Li A, Dan Tie A, Jiaxin Quan A, Ming Yue A and Xiao Liu A,B AKey Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China. BCorresponding author. Email: [email protected] Abstract. The responses of plants to recurrent stress may differ from their responses to a single stress event. In this study, we investigated whether clonal plants can remember past environments. Parental ramets of Glechoma longituba (Nakai) Kuprian were exposed to UV-B stress treatments either once or repeatedly (20 and 40 repetitions). Differences in DNA methylation levels and growth parameters among parents, offspring ramets and genets were analysed. Our results showed that UV-B stress reduced the DNA methylation level of parental ramets, and the reduction was enhanced by increasing the number of UV-B treatments. The epigenetic variation exhibited by recurrently stressed parents was maintained for a long time, but that of singly stressed parents was only short-term. Moreover, clonal plants responded to different UV-B stress treatments with different growth strategies. The one-time stress was a eustress that increased genet biomass by increasing offspring leaf allocation and defensive allocation in comparison to the older offspring. In contrast, recurring stress was a distress that reduced genet biomass, increased the biomass of storage stolons, and allocated more defensive substances to the younger ramets.