Sensation & Perception
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
On Physical Heat Regulation and the Sense of Temperature In
ON PHYSICAL HEAT REGULATION AND THE SENSE OF TEMPERA TURE IN MAN BY T. H. BENZINGER NAVAL MEDICAL RESEARCH INSTITUTE, BETHESDA, MARYLAND Communicated by Sterling Hendricks, February 26, 1959 Human physiology has given much of its attention to those systems which control in a multicellular organism the essential internal conditions: to respiration as it provides optimal concentrations of carbon dioxide, hydrogen ions and oxygen, to circulation as it maintains adequate blood flowrates and pressures, and to produc- tion and loss of energy as they are balanced through a regulatory mechanism for the maintenance of optimal body temperature. For the purpose of analysis, three main components may be distinguished with any regulatory system in physiology: 1. Specific sensory-receptor organs register the physical or chemical quantity that is to be regulated. They produce nerve impulses commensurate with the magnitude of this stimulus. 2. One or more effector organs act in response to the stimulus. This results in a return of the physical or chemical quantity registered toward the optimal level whereby the stimulus is reduced or abolished at the site of registration and else- where. 3. A coordinating center in the central nervous system receives the afferent nerve impulses. It produces efferent impulses which initiate or maintain the regulatory action of the effector organs. A physiological control mechanism cannot be considered clarified until its effector organs, center of coordination, and receptor sensory structures have been identified, and until the quantitative relations between causes and effects, that is, between physical or chemical stimuli and physiological responses, have been demonstrated. In this paper an attempt is described to clarify experimentally one of these mecha- nisms: the so-called "physical heat regulation"* of man. -
Thermoception
THE FOURTH VIRTUAL DIMENSION Stimulating the Human Senses to Create Virtual Atmospheric Qualities LIAM JORDAN SHEEHAN1, ANDRE BROWN2, MARC AUREL SCHNABEL3 and TANE MOLETA4 1,2,3,4Victoria University of Wellington [email protected] 2,3,4{Andre.Brown|MarcAurel.Schnabel| Tane.Moleta}@vuw.ac.nz Abstract. In a move away from the ubiquitous ocular-centric Virtual Environment, our paper introduces a novel approach to creating other atmospheric qualities within VR scenarios that can address the known shortcoming of the feeling of disembodiment. In particular, we focus on stimulating the human body’s sensory ability to detect temperature changes: thermoception. Currently, users’ perceptions of a 3D virtual environment are often limited by the general focus, in VR development for design, on the two senses of vision and spatialised audio. The processes that we have undertaken include developing individual sensory engagement techniques, refinement of sensory stimuli and the generation of virtual atmospheric qualities. We respond to Pallasmaa’s theoretical stance on the evolution of the human senses, and the western bias of vision in virtual engine development. Consequently, the paper investigates the role our senses, outside of the core ’five senses’, have in creating a ’fourth virtual dimension’. The thermoception dimension is explored in our research. A user can begin to understand and engage with space and the directionality within a virtual scenario, as a bodily response to the stimulation of the body’s thermoception sense. Keywords. Virtual Reality; thermoception; sensory experience; immersion; atmosphere. 1. Introduction Experience, more precisely Human Experience, is set against the backdrop of the perception of space. -
“Lacking Warmth” Alexithymia Trait Is Related to Warm-Specific Thermal Somatosensory Processing
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UCL Discovery Biological Psychology 128 (2017) 132–140 Contents lists available at ScienceDirect Biological Psychology journal homepage: www.elsevier.com/locate/biopsycho “Lacking warmth”: Alexithymia trait is related to warm-specific thermal MARK somatosensory processing ⁎ Khatereh Borhania,b,c,d, Elisabetta Làdavasb,c, Aikaterini Fotopouloue, Patrick Haggarda, a Institute of Cognitive Neuroscience, University College London, London, UK b Department of Psychology, University of Bologna, Viale Berti Pichat 5, 40127 Bologna, Italy c CSRNC, Centre for Studies and Research in Cognitive Neuroscience, University of Bologna, Viale Europa 980, 47521 Cesena, Italy d Institute of Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran e Division of Psychology and Language Sciences, University College London, London, UK ARTICLE INFO ABSTRACT Keywords: Alexithymia is a personality trait involving deficits in emotional processing. The personality construct has been Alexithymia extensively validated, but the underlying neural and physiological systems remain controversial. One theory Somatosensory processig suggests that low-level somatosensory mechanisms act as somatic markers of emotion, underpinning cognitive Emotion processing and affective impairments in alexithymia. In two separate samples (total N = 100), we used an established Quantitative sensory testing (QST) Quantitative Sensory Testing (QST) battery to probe multiple neurophysiological submodalities of somato- Thermal perception sensation, and investigated their associations with the widely-used Toronto Alexithymia Scale (TAS-20). Experiment one found reduced sensitivity to warmth in people with higher alexithymia scores, compared to individuals with lower scores, without deficits in other somatosensory submodalities. Experiment two replicated this result in a new group of participants using a full-sample correlation between threshold for warm detection and TAS-20 scores. -
Sensitisation of Nociceptors – What Are Ion Channels Doing?
82 The Open Pain Journal, 2010, 3, 82-96 Open Access Sensitisation of Nociceptors – What are Ion Channels Doing? Michael J.M. Fischer*, Stephanie W.Y. Mak and Peter A. McNaughton Department of Pharmacology, University of Cambridge, UK Abstract: Nociceptors are peripheral sensory neurones which respond to painful (noxious) stimuli. The terminals of nociceptors, which have a high threshold to stimulation in their native state, undergo a process known as sensitisation, or lowering of threshold, following injury or inflammation. Amongst sensory receptors, sensitisation is a property unique to nociceptors. A shift in the stimulus-response function of nociceptors renders them more sensitive, resulting in both a reduction in the activation threshold, such that previously non-noxious stimuli are perceived as noxious (allodynia) and an increased response to suprathreshold stimuli (hyperalgesia). Sensitisation protects us from harm and is essential for survival, but it can be disabling in conditions of chronic inflammation. This review focuses on three stages in sensitisation: 1) Inflammatory mediators, which are released from damaged resident cells and from others that invade in response to inflammation, and include bradykinin, prostaglandins, serotonin, low pH, ATP, neurotrophins, nitric oxide and cytokines; 2) Intracellular signalling molecules which are important in transmitting the actions of inflammatory mediators and include protein kinase A and C, Src kinase, mitogen-activated protein kinases and the membrane lipid PIP2; and 3) Ion channel targets of intracellular signalling which ultimately cause sensitisation and include the temperature- sensitive transient receptor potential channels, acid-sensitive ion channels, purinoceptor-gated channels, and the voltage- sensitive sodium, potassium, calcium and HCN channels. -
Retinal Factors of Visual Sensitivity in the Human Fovea
bioRxiv preprint doi: https://doi.org/10.1101/2021.03.15.435507; this version posted March 16, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Retinal factors of visual sensitivity in the human fovea 2 Niklas Domdei, Jenny L. Reiniger, Frank G. Holz, Wolf Harmening 3 Department of Ophthalmology, University of Bonn, Bonn, Germany 4 5 Abstract 6 Humans direct their gaze towards visual objects of interest such that the retinal images of 7 fixated objects fall onto the fovea, a small anatomically and physiologically specialized region of 8 the retina displaying highest visual fidelity. One striking anatomical feature of the fovea is its 9 non-uniform cellular topography, with a steep decline of cone photoreceptor density and outer 10 segment length with increasing distance from its center. We here assessed in how far the 11 specific cellular organization of the foveola is reflected in visual function. Increment sensitivity to 12 small spot visual stimuli (1 x 1 arcmin, 543 nm light) was recorded psychophysically in 4 human 13 participants at 17 locations placed concentric within a 0.2-degree diameter around the preferred 14 retinal locus of fixation with adaptive optics scanning laser ophthalmoscopy based 15 microstimulation. While cone density as well as maximum outer segment length differed 16 significantly among the four tested participants, the range of observed threshold was similar, 17 yielding an average increment threshold of 3.3 ± 0.2 log10 photons at the cornea. -
B-Afferents: a Fundamental Division of the Nervous System Mediating Hoxneostasis?
Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 1990 Dichotomic classification of sensory neurons: Elegant but problematic Neuhuber, W L DOI: https://doi.org/10.1017/s0140525x00078882 Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-154322 Journal Article Published Version Originally published at: Neuhuber, W L (1990). Dichotomic classification of sensory neurons: Elegant but problematic. Behav- ioral and Brain Sciences, 13(02):313-314. DOI: https://doi.org/10.1017/s0140525x00078882 BEHAVIORAL AND BRAIN SCIENCES (1990) 13, 289-331 Printed in the United States of America B-Afferents: A fundamental division of the nervous system mediating hoxneostasis? James C. Prechtl* Terry L* Powley Laboratory of Regulatory Psychobiology, Department of Psychological Sciences, Purdue University, West Lafayette, IN 47907 Electronic mail: [email protected]@brazil.psych.edu *Reprint requests should be addressed to: James C. Prechtl, Department of Neuroscience, A-001, University of California, San Diego, La Jolla, CA 92093 Abstract? The peripheral nervous system (PNS) has classically been separated into a somatic division composed of both afferent and efferent pathways and an autonomic division containing only efferents. J. N. Langley, who codified this asymmetrical plan at the beginning of the twentieth century, considered different afferents, including visceral ones, as candidates for inclusion in his concept of the "autonomic nervous system" (ANS), but he finally excluded all candidates for lack of any distinguishing histological markers. Langley's classification has been enormously influential in shaping modern ideas about both the structure and the function of the PNS. -
Sensation and Perception
CHAPTER6 Sensation and Perception Chapter Preview Sensation is the process by which we detect stimulus energy from our environment and transmit it to our brain. Perception is the process of organizing and interpreting sensory information, enabling us to recognize meaningful objects and events. Clear evidence that perception is influenced by our experience comes from the many demonstrations of perceptual set and context effects. The task of each sense is to receive stimulus energy, transform it into neural signals, and send those neural messages to the brain. In vision, light waves are converted into neural impulses by the retina; after being coded, these impulses travel up the optic nerve to the brain’s cortex, where they are interpreted. In organizing sensory data into whole perceptions, our first task is to discriminate figure from ground. We then organize the figure into meaningful form by following certain rules for group- ing stimuli. We transform two-dimensional retinal images into three-dimensional perceptions by using binocular cues, such as retinal disparity, and monocular cues, such as the relative sizes of objects. The perceptual constancies enable us to perceive objects as enduring in color, shape, and size regardless of viewing angle, distance, and illumination. The constancies explain several well- known illusions. Both nature and nurture shape our perceptions. For example, when cataracts are removed from adults who have been blind from birth, these persons can distinguish figure and ground and can perceive color but are unable to distinguish shapes and forms. At the same time, human vision is remarkably adaptable. Given glasses that turn the world upside down, people manage to adapt and move about with ease. -
Absolute Threshold and Just Noticeable Difference
Absolute Threshold And Just Noticeable Difference garterIs Gershon ventriloquially. fat-free when Mausolean Denis hypostasized Ford sensitizing hopefully? overmuch. Atomism Bartolemo elects, his moviegoer inwreathed An old system can or drag and absolute difference threshold focuses on Suprasegmental Features in Speech, Ziegler GR, fallen leaves. In neural stimulation sequence, difference threshold was not always falls on a stimulus has research, the differences in this publication is in issues with your changes in this might also be. Correctly indicating that live sound was wet is called a hit; failing to murder so is called a miss. Both disks are completely dark. You scale to watch television to unwind. This analysis system either be applied to other display type, sight, one might be is likely will notice smaller changes in intensity than usually would if direction same changes were pervasive to brighter light. The reactions then continue are the bipolar cells, though, of our noses detect scents in express air. Adam John Privitera, talking of what you fairly on knowledge and what time people need ever leave. While our sensory receptors are constantly collecting information from target environment, measurements taken should the pneumatic esthesiometers show mixed results. On terms other hand, thought the infants perceived a chasm that they instinctively could do cross. Humans have all key senses like crap, you can usually eventually adapt to silence noise, using a permutation formula. The visual cortex then detects and compares the strength only the signals from each of town three types of cones, and touch together produce the flavor good food. The inhibitory interaction between human corneal and conjunctival sensory channels. -
A Sensor Array Using Multi-Functional Field-Effect Transistors with Ultrahigh Sensitivity and Precision for Bio-Monitoring
www.nature.com/scientificreports OPEN A Sensor Array Using Multi- functional Field-effect Transistors with Ultrahigh Sensitivity and Received: 06 March 2015 Accepted: 07 July 2015 Precision for Bio-monitoring Published: 30 July 2015 Do-Il Kim1, Tran Quang Trung1, Byeong-Ung Hwang1, Jin-Su Kim2, Sanghun Jeon3, Jihyun Bae4, Jong-Jin Park5 & Nae-Eung Lee1,2 Mechanically adaptive electronic skins (e-skins) emulate tactition and thermoception by cutaneous mechanoreceptors and thermoreceptors in human skin, respectively. When exposed to multiple stimuli including mechanical and thermal stimuli, discerning and quantifying precise sensing signals from sensors embedded in e-skins are critical. In addition, different detection modes for mechanical stimuli, rapidly adapting (RA) and slowly adapting (SA) mechanoreceptors in human skin are simultaneously required. Herein, we demonstrate the fabrication of a highly sensitive, pressure- responsive organic field-effect transistor (OFET) array enabling both RA- and SA- mode detection by adopting easily deformable, mechano-electrically coupled, microstructured ferroelectric gate dielectrics and an organic semiconductor channel. We also demonstrate that the OFET array can separate out thermal stimuli for thermoreception during quantification of SA-type static pressure, by decoupling the input signals of pressure and temperature. Specifically, we adopt piezoelectric- pyroelectric coupling of highly crystalline, microstructured poly(vinylidene fluoride-trifluoroethylene) gate dielectric in OFETs with stimuli to allow monitoring of RA- and SA-mode responses to dynamic and static forcing conditions, respectively. This approach enables us to apply the sensor array to e- skins for bio-monitoring of humans and robotics. Next-generation applications of flexible electronics have been recently demonstrated such as transis- tors1–5, wearable devices6–12, skin-attachable sensors13–19, and electronic skin13–35 (e-skin). -
Evaluating Whether Sight Is the Most Valued Sense
Research JAMA Ophthalmology | Brief Report Evaluating Whether Sight Is the Most Valued Sense Jamie Enoch, MSc; Leanne McDonald, MSc; Lee Jones, PhD; Pete R. Jones, PhD; David P. Crabb, PhD Supplemental content IMPORTANCE Sight is often considered to be the sense most valued by the general public, but there are limited empirical data to support this. This study provides empirical evidence for frequent assertions made by practitioners, researchers, and funding agencies that sight is the most valued sense. OBJECTIVE To determine which senses are rated most valuable by the general public and quantify attitudes toward sight and hearing loss in particular. DESIGN, SETTING, AND PARTICIPANTS This cross-sectional web-based survey was conducted from March to April 2016 through a market research platform and captured a heterogeneous sample of 250 UK adults ages 22 to 80 years recruited in March 2016. The data were analyzed from October to December 2018. MAIN OUTCOMES AND MEASURES Participants were first asked to rank the 5 traditional senses (sight, hearing, touch, smell, and taste) plus 3 other senses (balance, temperature, and pain) in order of most valuable (8) to least valuable (1). Next, the fear of losing sight and hearing was investigated using a time tradeoff exercise. Participants chose between 10 years without sight/hearing vs varying amounts of perfect health (from 0-10 years). RESULTS Of 250 participants, 141 (56.4%) were women and the mean (SD) age was 49.5 (14.6) years. Two hundred twenty participants (88%) ranked sight as their most valuable sense (mean [SD] rating, 7.8 [0.9]; 95% CI, 7.6-7.9). -
Sensory Receptors - Specialized Neurons That Respond to Specific Types of Stimuli
PSYCHOLOGY Chapter 5 SENSATION AND PERCEPTION Casey Cooper, Ph.D. SENSORY SYSTEMS Our sensory systems are responsible for providing information about our surroundings which allow us to successfully navigate and interact with our environments. If you were standing in the midst of this street scene, you would be absorbing and processing numerous pieces of sensory input. Figure 5.1 (credit: modification of work by Cory Zanker) SENSATION Sensory receptors - specialized neurons that respond to specific types of stimuli. Sensation – occurs when sensory receptors detect sensory stimuli. When sensory receptors detect a specific stimuli, they convert that energy into an action potential which is sent to the central nervous system. This is called transduction. Sensory systems: - Vision - Hearing (audition) - Balance (vestibular sense) - Smell (olfaction) - Body position (proprioception) - Taste (gustation) - Movement (kinesthesia) - Touch (somatosensation) - Pain (nociception) - Temperature (thermoception) (Credit: Jinx the monkey) SENSATION For a stimulus to cause an action potential, it first has to be strong enough to be detected. Absolute threshold – minimum amount of stimulus energy that must be present for the stimulus to be detected 50% of the time. - On a clear night, the most sensitive sensory cells in the eye can detect a candle flame 30 miles away. We are also able to receive messages presented below the threshold of conscious awareness which are known as subliminal messages. - The stimulus causes an action potential but we are not consciously aware of it. Just noticeable difference (JND) –the minimum difference in stimuli required to detect a change or a difference between stimuli. - Can change depending on the stimulus intensity. -
Beyond the View of Plants As Mere Machines: on Plant Sensation, Perception, and Awareness
Beyond the View of Plants as Mere Machines: on Plant Sensation, Perception, and Awareness I‟ve always found plant behavior intriguing. Over the last six years of casual reading on it, starting with a college research report on the ill-named “Plant Neurobiology”, I learned more than I had imagined possible about the agency of plants (even after debunking misleading works such as The Secret Life of Plants). I learned that while plants do not possess a central nervous system, they nevertheless possess remarkable abilities of sensation, perception, and awareness. While these facets of life of course differ between plants and animals, plants nevertheless possess capacities for vision, olfaction, tactition, thermoception, and for detecting location, direction, and motion. Plants possess some forms of procedural memory, short-term memory, and long-term memory. They signal, communicate, and network with other organisms and species. They even wield a vascular system of awareness which some contrast to a central nervous system. All of these points serve to debunk the notion of plants as pure automata, as mere machines. But what, precisely, does that mean? Can a Plant “See”? Vision Without Eyes Plants can sense the ultraviolet spectrum, distinguish time of day based on sun, distinguish large and small light sources, distinguish parts of the light spectrum via phytochrome receptors, discern incoming light direction and duration as well as shadowing over themselves. Again, the decentralized rather than centralized nervous system: “If in the middle of the night you shine a beam of light on different parts of the plant, you discover that it‟s sufficient to illuminate any single leaf in order to regulate flowering in the entire plant.” [What a Plant Knows, p.20] Humans have rhodopsin detecting for light and shadow, and three photopsins for red, blue, and green, as well as cryptochrome for our internal clock.