Lecture Materials
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Five Topographically Organized Fields in the Somatosensory Cortex of the Flying Fox: Microelectrode Maps, Myeloarchitecture, and Cortical Modules
THE JOURNAL OF COMPARATIVE NEUROLOGY 317:1-30 (1992) Five Topographically Organized Fields in the Somatosensory Cortex of the Flying Fox: Microelectrode Maps, Myeloarchitecture, and Cortical Modules LEAH A. KRUBITZER AND MIKE B. CALFORD Vision, Touch and Hearing Research Centre, Department of Physiology and Pharmacology, The University of Queensland, Queensland, Australia 4072 ABSTRACT Five somatosensory fields were defined in the grey-headed flying fox by using microelec- trode mapping procedures. These fields are: the primary somatosensory area, SI or area 3b; a field caudal to area 3b, area 1/2; the second somatosensory area, SII; the parietal ventral area, PV; and the ventral somatosensory area, VS. A large number of closely spaced electrode penetrations recording multiunit activity revealed that each of these fields had a complete somatotopic representation. Microelectrode maps of somatosensory fields were related to architecture in cortex that had been flattened, cut parallel to the cortical surface, and stained for myelin. Receptive field size and some neural properties of individual fields were directly compared. Area 3b was the largest field identified and its topography was similar to that described in many other mammals. Neurons in 3b were highly responsive to cutaneous stimulation of peripheral body parts and had relatively small receptive fields. The myeloarchi- tecture revealed patches of dense myelination surrounded by thin zones of lightly myelinated cortex. Microelectrode recordings showed that myelin-dense and sparse zones in 3b were related to neurons that responded consistently or habituated to repetitive stimulation respectively. In cortex caudal to 3b, and protruding into 3b, a complete representation of the body surface adjacent to much of the caudal boundary of 3b was defined. -
On Physical Heat Regulation and the Sense of Temperature In
ON PHYSICAL HEAT REGULATION AND THE SENSE OF TEMPERA TURE IN MAN BY T. H. BENZINGER NAVAL MEDICAL RESEARCH INSTITUTE, BETHESDA, MARYLAND Communicated by Sterling Hendricks, February 26, 1959 Human physiology has given much of its attention to those systems which control in a multicellular organism the essential internal conditions: to respiration as it provides optimal concentrations of carbon dioxide, hydrogen ions and oxygen, to circulation as it maintains adequate blood flowrates and pressures, and to produc- tion and loss of energy as they are balanced through a regulatory mechanism for the maintenance of optimal body temperature. For the purpose of analysis, three main components may be distinguished with any regulatory system in physiology: 1. Specific sensory-receptor organs register the physical or chemical quantity that is to be regulated. They produce nerve impulses commensurate with the magnitude of this stimulus. 2. One or more effector organs act in response to the stimulus. This results in a return of the physical or chemical quantity registered toward the optimal level whereby the stimulus is reduced or abolished at the site of registration and else- where. 3. A coordinating center in the central nervous system receives the afferent nerve impulses. It produces efferent impulses which initiate or maintain the regulatory action of the effector organs. A physiological control mechanism cannot be considered clarified until its effector organs, center of coordination, and receptor sensory structures have been identified, and until the quantitative relations between causes and effects, that is, between physical or chemical stimuli and physiological responses, have been demonstrated. In this paper an attempt is described to clarify experimentally one of these mecha- nisms: the so-called "physical heat regulation"* of man. -
Local Field Potential Decoding of the Onset and Intensity of Acute Pain In
www.nature.com/scientificreports OPEN Local feld potential decoding of the onset and intensity of acute pain in rats Received: 25 January 2018 Qiaosheng Zhang1, Zhengdong Xiao2,3, Conan Huang1, Sile Hu2,3, Prathamesh Kulkarni1,3, Accepted: 8 May 2018 Erik Martinez1, Ai Phuong Tong1, Arpan Garg1, Haocheng Zhou1, Zhe Chen 3,4 & Jing Wang1,4 Published: xx xx xxxx Pain is a complex sensory and afective experience. The current defnition for pain relies on verbal reports in clinical settings and behavioral assays in animal models. These defnitions can be subjective and do not take into consideration signals in the neural system. Local feld potentials (LFPs) represent summed electrical currents from multiple neurons in a defned brain area. Although single neuronal spike activity has been shown to modulate the acute pain, it is not yet clear how ensemble activities in the form of LFPs can be used to decode the precise timing and intensity of pain. The anterior cingulate cortex (ACC) is known to play a role in the afective-aversive component of pain in human and animal studies. Few studies, however, have examined how neural activities in the ACC can be used to interpret or predict acute noxious inputs. Here, we recorded in vivo extracellular activity in the ACC from freely behaving rats after stimulus with non-noxious, low-intensity noxious, and high-intensity noxious stimuli, both in the absence and chronic pain. Using a supervised machine learning classifer with selected LFP features, we predicted the intensity and the onset of acute nociceptive signals with high degree of precision. -
The Effect of Sensory Processing on the Work Performance of Call Centre Agents in a South African Context
The effect of sensory processing on the work performance of call centre agents in a South African context Annemarie Lombard Student Number: ARCANN002 e Town ap y of C SUBMITTED TO THE UNIVERSITY OF CAPE TOWN Department of Health & Rehabilitation Sciences In fulfilmentUniversit of the requirements for the degree of Doctor of Philosophy in Occupational Therapy February 2012 Supervisor: Emeritus Associate Professor R. Watson Co-supervisor: Associate Professor M. Duncan Department of Health & Rehabilitation Sciences The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgementTown of the source. The thesis is to be used for private study or non- commercial research purposes only. Cape Published by the University ofof Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University Declaration I, Annemarie Lombard, hereby declare that the work on which this dissertation/thesis is based is my original work (except where acknowledgements indicate otherwise), and that neither the whole work nor any part of it has been, is being, or is to be submitted for another degree at this or any other university. I empower the university to reproduce for the purpose of research either the whole or any portion of the contents in any manner whatsoever. Signature: e Town ap Date: 25th May 2012 y of C Universit Introduction Page i Acknowledgements This study was an epic journey made possible by the support of so many people to whom I am forever grateful: To God, our Heavenly Father who gave me the dream, allowed me the journey, and continues to give me the strength and courage to follow it. -
Thermoception
THE FOURTH VIRTUAL DIMENSION Stimulating the Human Senses to Create Virtual Atmospheric Qualities LIAM JORDAN SHEEHAN1, ANDRE BROWN2, MARC AUREL SCHNABEL3 and TANE MOLETA4 1,2,3,4Victoria University of Wellington [email protected] 2,3,4{Andre.Brown|MarcAurel.Schnabel| Tane.Moleta}@vuw.ac.nz Abstract. In a move away from the ubiquitous ocular-centric Virtual Environment, our paper introduces a novel approach to creating other atmospheric qualities within VR scenarios that can address the known shortcoming of the feeling of disembodiment. In particular, we focus on stimulating the human body’s sensory ability to detect temperature changes: thermoception. Currently, users’ perceptions of a 3D virtual environment are often limited by the general focus, in VR development for design, on the two senses of vision and spatialised audio. The processes that we have undertaken include developing individual sensory engagement techniques, refinement of sensory stimuli and the generation of virtual atmospheric qualities. We respond to Pallasmaa’s theoretical stance on the evolution of the human senses, and the western bias of vision in virtual engine development. Consequently, the paper investigates the role our senses, outside of the core ’five senses’, have in creating a ’fourth virtual dimension’. The thermoception dimension is explored in our research. A user can begin to understand and engage with space and the directionality within a virtual scenario, as a bodily response to the stimulation of the body’s thermoception sense. Keywords. Virtual Reality; thermoception; sensory experience; immersion; atmosphere. 1. Introduction Experience, more precisely Human Experience, is set against the backdrop of the perception of space. -
Neural Mapping of Direction and Frequency in the Cricket Cercal Sensory System
The Journal of Neuroscience, March 1, 1999, 19(5):1771–1781 Neural Mapping of Direction and Frequency in the Cricket Cercal Sensory System Sussan Paydar,2 Caitlin A. Doan,2 and Gwen A. Jacobs1 1Center for Computational Biology, Montana State University, Bozeman, Montana 59717, and 2Department of Molecular and Cell Biology, University of California, Berkeley, California 94720 Primary mechanosensory receptors and interneurons in the segregation was investigated, by calculating the relative over- cricket cercal sensory system are sensitive to the direction and lap between the long and medium-length hair afferents with the frequency of air current stimuli. Receptors innervating long dendrites of two interneurons that are known to have different mechanoreceptor hairs (.1000 mm) are most sensitive to low- frequency sensitivities. Both interneurons were shown to have frequency air currents (,150 Hz); receptors innervating nearly equal anatomical overlap with long and medium hair medium-length hairs (900–500 mm) are most sensitive to higher afferents. Thus, the differential overlap of these interneurons frequency ranges (150–400 Hz). Previous studies demonstrated with the two different classes of afferents was not adequate to that the projection pattern of the synaptic arborizations of long explain the observed frequency selectivity of the interneurons. hair receptor afferents form a continuous map of air current Other mechanisms such as selective connectivity between direction within the terminal abdominal ganglion (Jacobs and subsets of afferents and interneurons and/or differences in Theunissen, 1996). We demonstrate here that the projection interneuron biophysical properties must play a role in establish- pattern of the medium-length hair afferents also forms a con- ing the frequency selectivities of these interneurons. -
Portia Perceptions: the Umwelt of an Araneophagic Jumping Spider
Portia Perceptions: The Umwelt of an Araneophagic Jumping 1 Spider Duane P. Harland and Robert R. Jackson The Personality of Portia Spiders are traditionally portrayed as simple, instinct-driven animals (Savory, 1928; Drees, 1952; Bristowe, 1958). Small brain size is perhaps the most compelling reason for expecting so little flexibility from our eight-legged neighbors. Fitting comfortably on the head of a pin, a spider brain seems to vanish into insignificance. Common sense tells us that compared with large-brained mammals, spiders have so little to work with that they must be restricted to a circumscribed set of rigid behaviors, flexibility being a luxury afforded only to those with much larger central nervous systems. In this chapter we review recent findings on an unusual group of spiders that seem to be arachnid enigmas. In a number of ways the behavior of the araneophagic jumping spiders is more comparable to that of birds and mammals than conventional wisdom would lead us to expect of an arthropod. The term araneophagic refers to these spiders’ preference for other spiders as prey, and jumping spider is the common English name for members of the family Saltici- dae. Although both their common and the scientific Latin names acknowledge their jumping behavior, it is really their unique, complex eyes that set this family of spiders apart from all others. Among spiders (many of which have very poor vision), salticids have eyes that are by far the most specialized for resolving fine spatial detail. We focus here on the most extensively studied genus, Portia. Before we discuss the interrelationship between the salticids’ uniquely acute vision, their predatory strategies, and their apparent cognitive abilities, we need to offer some sense of what kind of animal a jumping spider is; to do this, we attempt to offer some insight into what we might call Portia’s personality. -
Identification of Human Gustatory Cortex by Activation Likelihood Estimation
r Human Brain Mapping 32:2256–2266 (2011) r Identification of Human Gustatory Cortex by Activation Likelihood Estimation Maria G. Veldhuizen,1,2 Jessica Albrecht,3 Christina Zelano,4 Sanne Boesveldt,3 Paul Breslin,3,5 and Johan N. Lundstro¨m3,6,7* 1Affective Sensory Neuroscience, John B. Pierce Laboratory, New Haven, Connecticut 2Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 3Monell Chemical Senses Center, Philadelphia, Pennsylvania 4Department of Neurology, Northwestern University, Chicago, Illinois 5Department of Nutritional Sciences, Rutgers University School of Environmental and Biological Sciences, New Brunswick, New Jersey 6Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania 7Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden r r Abstract: Over the last two decades, neuroimaging methods have identified a variety of taste-responsive brain regions. Their precise location, however, remains in dispute. For example, taste stimulation activates areas throughout the insula and overlying operculum, but identification of subregions has been inconsistent. Furthermore, literature reviews and summaries of gustatory brain activations tend to reiterate rather than resolve this ambiguity. Here, we used a new meta-analytic method [activation likelihood estimation (ALE)] to obtain a probability map of the location of gustatory brain activation across 15 studies. The map of activa- tion likelihood values can also serve as a source of independent coordinates for future region-of-interest anal- yses. We observed significant cortical activation probabilities in: bilateral anterior insula and overlying frontal operculum, bilateral mid dorsal insula and overlying Rolandic operculum, and bilateral posterior insula/parietal operculum/postcentral gyrus, left lateral orbitofrontal cortex (OFC), right medial OFC, pre- genual anterior cingulate cortex (prACC) and right mediodorsal thalamus. -
“Lacking Warmth” Alexithymia Trait Is Related to Warm-Specific Thermal Somatosensory Processing
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UCL Discovery Biological Psychology 128 (2017) 132–140 Contents lists available at ScienceDirect Biological Psychology journal homepage: www.elsevier.com/locate/biopsycho “Lacking warmth”: Alexithymia trait is related to warm-specific thermal MARK somatosensory processing ⁎ Khatereh Borhania,b,c,d, Elisabetta Làdavasb,c, Aikaterini Fotopouloue, Patrick Haggarda, a Institute of Cognitive Neuroscience, University College London, London, UK b Department of Psychology, University of Bologna, Viale Berti Pichat 5, 40127 Bologna, Italy c CSRNC, Centre for Studies and Research in Cognitive Neuroscience, University of Bologna, Viale Europa 980, 47521 Cesena, Italy d Institute of Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran e Division of Psychology and Language Sciences, University College London, London, UK ARTICLE INFO ABSTRACT Keywords: Alexithymia is a personality trait involving deficits in emotional processing. The personality construct has been Alexithymia extensively validated, but the underlying neural and physiological systems remain controversial. One theory Somatosensory processig suggests that low-level somatosensory mechanisms act as somatic markers of emotion, underpinning cognitive Emotion processing and affective impairments in alexithymia. In two separate samples (total N = 100), we used an established Quantitative sensory testing (QST) Quantitative Sensory Testing (QST) battery to probe multiple neurophysiological submodalities of somato- Thermal perception sensation, and investigated their associations with the widely-used Toronto Alexithymia Scale (TAS-20). Experiment one found reduced sensitivity to warmth in people with higher alexithymia scores, compared to individuals with lower scores, without deficits in other somatosensory submodalities. Experiment two replicated this result in a new group of participants using a full-sample correlation between threshold for warm detection and TAS-20 scores. -
Sensitisation of Nociceptors – What Are Ion Channels Doing?
82 The Open Pain Journal, 2010, 3, 82-96 Open Access Sensitisation of Nociceptors – What are Ion Channels Doing? Michael J.M. Fischer*, Stephanie W.Y. Mak and Peter A. McNaughton Department of Pharmacology, University of Cambridge, UK Abstract: Nociceptors are peripheral sensory neurones which respond to painful (noxious) stimuli. The terminals of nociceptors, which have a high threshold to stimulation in their native state, undergo a process known as sensitisation, or lowering of threshold, following injury or inflammation. Amongst sensory receptors, sensitisation is a property unique to nociceptors. A shift in the stimulus-response function of nociceptors renders them more sensitive, resulting in both a reduction in the activation threshold, such that previously non-noxious stimuli are perceived as noxious (allodynia) and an increased response to suprathreshold stimuli (hyperalgesia). Sensitisation protects us from harm and is essential for survival, but it can be disabling in conditions of chronic inflammation. This review focuses on three stages in sensitisation: 1) Inflammatory mediators, which are released from damaged resident cells and from others that invade in response to inflammation, and include bradykinin, prostaglandins, serotonin, low pH, ATP, neurotrophins, nitric oxide and cytokines; 2) Intracellular signalling molecules which are important in transmitting the actions of inflammatory mediators and include protein kinase A and C, Src kinase, mitogen-activated protein kinases and the membrane lipid PIP2; and 3) Ion channel targets of intracellular signalling which ultimately cause sensitisation and include the temperature- sensitive transient receptor potential channels, acid-sensitive ion channels, purinoceptor-gated channels, and the voltage- sensitive sodium, potassium, calcium and HCN channels. -
Cortical Feedback and Gating in Olfactory Pattern Completion and Separation
bioRxiv preprint doi: https://doi.org/10.1101/2020.11.05.370494; this version posted November 6, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Cortical feedback and gating in olfactory pattern completion and separation Gaia Tavonia,b,1,2, David E. Chen Kersena,c,1, and Vijay Balasubramaniana,b,c aComputational Neuroscience Initiative; bDepartment of Physics and Astronomy; cDepartment of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104 A central question in neuroscience is how context changes percep- reflect coordination between the OB and cortical areas during tion of sensory stimuli. In the olfactory system, for example, exper- learning. However, the precise mechanism by which centrifu- iments show that task demands can drive merging and separation gal feedback to the OB can effect change in cortical odor of cortical odor responses, which underpin olfactory generalization representation remains unclear. and discrimination. Here, we propose a simple statistical mecha- Interestingly, the structural organization of these feedfor- nism for this effect, based on unstructured feedback from the cen- ward and feedback projections is highly disordered. MC/TCs tral brain to the olfactory bulb, representing the context associated project to the cortex in an apparently random fashion (22, 56– with an odor, and sufficiently selective cortical gating of sensory in- 58), while centrifugal feedback fibers are distributed dif- puts. Strikingly, the model predicts that both pattern separation and fusely over the OB without any discernible spatial segregation completion should increase when odors are initially more similar, an (25, 30). -
Early Events in Olfactory Processing
ANRV278-NE29-06 ARI 8 May 2006 15:38 Early Events in Olfactory Processing Rachel I. Wilson1 and Zachary F. Mainen2 1Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115; email: rachel [email protected] 2Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724; email: [email protected] Annu. Rev. Neurosci. Key Words 2006. 29:163–201 olfactory bulb, antennal lobe, chemotopy, temporal coding, The Annual Review of Neuroscience is online at synchrony, concentration, segmentation by HARVARD UNIVERSITY on 07/17/06. For personal use only. neuro.annualreviews.org Abstract doi: 10.1146/ annurev.neuro.29.051605.112950 Olfactory space has a higher dimensionality than does any other class Annu. Rev. Neurosci. 2006.29:163-201. Downloaded from arjournals.annualreviews.org Copyright c 2006 by of sensory stimuli, and the olfactory system receives input from an Annual Reviews. All rights unusually large number of unique information channels. This sug- reserved gests that aspects of olfactory processing may differ fundamentally 0147-006X/06/0721- from processing in other sensory modalities. This review summa- 0163$20.00 rizes current understanding of early events in olfactory processing. We focus on how odors are encoded by the activity of primary olfac- tory receptor neurons, how odor codes may be transformed in the olfactory bulb, and what relevance these codes may have for down- stream neurons in higher brain centers. Recent findings in synaptic physiology, neural coding, and psychophysics are discussed, with ref- erence to both vertebrate and insect model systems. 163 ANRV278-NE29-06 ARI 8 May 2006 15:38 Contents CHALLENGES TO Systematic Progression in UNDERSTANDING Molecular Feature OLFACTORY PROCESSING .