Neuroethology in Neuroscience Why Study an Exotic Animal

Total Page:16

File Type:pdf, Size:1020Kb

Neuroethology in Neuroscience Why Study an Exotic Animal Neuroethology in Neuroscience or Why study an exotic animal Nobel prize in Physiology and Medicine 1973 Karl von Frisch Konrad Lorenz Nikolaas Tinbergen for their discoveries concerning "organization and elicitation of individual and social behaviour patterns". Behaviour patterns become explicable when interpreted as the result of natural selection, analogous with anatomical and physiological characteristics. This year's prize winners hold a unique position in this field. They are the most eminent founders of a new science, called "the comparative study of behaviour" or "ethology" (from ethos = habit, manner). Their first discoveries were made on insects, fishes and birds, but the basal principles have proved to be applicable also on mammals, including man. Nobel prize in Physiology and Medicine 1973 Karl von Frisch Konrad Lorenz Nikolaas Tinbergen Ammophila the sand wasp Black headed gull Niko Tinbergen’s four questions? 1. How the behavior of the animal affects its survival and reproduction (function)? 2. By how the behavior is similar or different from behaviors in other species (phylogeny)? 3. How the behavior is shaped by the animal’s own experiences (ontogeny)? 4. How the behavior is manifested at the physiological level (mechanism)? Neuroethology as a sub-field in brain research • A large variety of research models and a tendency to focus on esoteric animals and systems (specialized behaviors). • Studying animals while ignoring the relevancy to humans. • Studying the brain in the context of the animal’s natural behavior. • Top-down approach. Archer fish Prof. Ronen Segev Ben-Gurion University Neuroethology as a sub-field in brain research • A large variety of research models and a tendency to focus on esoteric animals and systems (specialized behaviors). • Studying animals while ignoring the relevancy to humans. • Studying the brain in the context of the animal’s natural behavior. • Top-down approach. דג חשמל נמוכי מתח Weakly electric fish Jamming avoidance response Neuroethology as a sub-field in brain research • A large variety of research models and a tendency to focus on esoteric animals and systems (specialized behaviors). • Studying animals while ignoring the relevancy to humans. • Studying the brain in the context of the animal’s natural behavior. • Top-down approach. Place Cells 1.5 m Neuroethology as a sub-field in brain research • A large variety of research models and a tendency to focus on esoteric animals and systems (specialized behaviors). • Studying animals while ignoring the relevancy to humans. • Studying the brain in the context of the animal’s natural behavior. • Top-down approach. Some classical models in neuroethology Neuroethology where to? • The field is moving away from the neuroethological approach by focusing on rodent models and neglecting all other species. • The field is moving towards neuroethology by studying directly the physiology of behavior and by addressing natural behaviors that are relevant to the mouse. •Sound localization •Sensory maps plasticity and development •Spatial attention •Multisensory integration Barn owls as model system for sound localization • Facial ruff serves as a sound amplifier Barn owls as model system for sound localization • Facial ruff serves as a sound amplifier • Asymmetric ears allow for an increased spatial resolution in the vertical plane Barn owls as model system for sound localization • Facial ruff serves as a sound amplifier • Asymmetric ears allow for an increased spatial resolution in the vertical plane • Comb-like structures at the leading edge of the wing reduce noise during flight Barn owls as model system for sound localization Facial ruff serves as a • sound amplifier Asymmetric ears allow for • an increased spatial resolution in the vertical plane Comb-like structures at the • leading edge of the wing reduce noise during flight Brain structures involved • in the analysis of sound are enlarged Performing a psychoacoustic experiment with an owl Sound-localization with free-field stimuli • The auditory localization cues: • ITD - horizontal ILD - vertical location producing ITD = 0 µsec location producing ITD = 100 µsec Precision of sound localization in barn owls may be as good as 3 deg which corresponds to 6-10 µs. Action Postsynaptic potential potentials These signals are the “language" of neural processing. Durations of events • Typical duration of action potential: 1ms • Typical duration of post-synaptic potentials: 5-10 ms • Precision of sound localization by interaural time difference: 6-10 µs What has to be explained is Factor of 500-1000 The principle of phase locking as a means to conserve time Sinusoidal signal Presumed resulting post- synaptic potential Registered signal in computer Note that in this example the response always occurs at a phase of 180 degrees. Phase locking in the barn owl Phase locking can be measured by plotting spike arrival times with respect to the period of the stimulus tone. 5 kHz Period 200 µs 9 kHz Period 111 µs spikes number of Stimulus phase in degrees Precision of phase locking is 35 µs at 5 kHz (Koeppl (1997)). Jefferess model (1948) Ai + Ni = Ac + Nc Ai − Ac = Ni − Nc ITD left ear Right ear Delay lines Does the brain computes ITDs as Jefferess suggested? Nucleus Laminaris / Medial Superior Olive - sites of binaural convergence Anatomical evidence for Jeffress model ITD curves in Nucleus Laminaris s) µ ITD( Response Time (ms) ITD (µs) SOUND LOCALIZATION GAZE CONTROL Forebrain Sensory/Association Archistriatum Areas (FEF) Thalamus Ovoidalis Rotundus (MGN) (Pulvinar) Inferior Inferior Optic Tectum Midbrain Colliculus Colliculus central n. external n. (SC) D R VLVp (LSO/DNLL) Brainstem Tegmentum LAM (MSO) Motor Nuclei left right for gaze control cochlear n. cochlear n. Response 20 +20 ILD(dB) 0 0 el V - -20 20 R20 L20 0 az Response -50 0 50 ITD (µs) +20 20 V ILD(dB) 0 el 0 - -20 20 R20 L20 0 az Response -50 0 50 ITD (µs) Visual and auditory maps in the OT Computational map Transducing Computing Integrating cues Associating with sound to auditory localization from specific external space action-potentials cues locations Sound Frequency Space tuned Frequency Intensity Binaural localization cues Time Side of ear Computational maps The matching problem location producing ITD = 0 µsec location producing ITD = 100 µsec Computational maps The matching problem location producing ITD = 0 µsec location producing ITD = 100 µsec Normal Immediate Effect Prism-adapted of Prisms Knudsen and Knudsen J Neurosci (1989) Effect of prism experience on auditory tuning Normal Immediate effect of prisms +20 A A V V 0 el -20 L20 R20 0 az Knudsen and Brainard, Science (1991) Effect of prism experience on auditory tuning Normal Immediate effect After 8 weeks of of prisms prism experience +20 A A A V V V 0 el -20 L20 R20 0 az Quantification of learning 1. Behavioral test 2. Physiological test Decline in learning with age 6 7 Knudsen, E. I. .Science.(1998) . Increased capacity for learning in adults that have had appropriate experience as juveniles 6 7 Knudsen, E. I. .Science.(1998) . Effects of juvenile experience on adult learning 6 7 Knudsen, E. I. .Science.(1998) . Incremental learning 170 110 60 230 Incremental learning Linkenhoker and Knudsen (2002) Nature Rich and lively experiences increase learning capacity in adults Bergan et al., Journal of Neuroscience (2005) Summary • Decline in learning with age • Increased capacity for learning in adults that have had appropriate experience as juveniles • Incremental training improves learning • Rich and lively experiences increase learning capacity in adults Where is the site of plasticity? Forebrain Sensory/Association Archistriatum Areas (FEF) Thalamus Ovoidalis Rotundus (MGN) (Pulvinar) Inferior Inferior Optic Tectum Midbrain Colliculus Colliculus central n. external n. (SC) VLVp (LSO/DNLL) Brainstem Tegmentum LAM (MSO) Motor Nuclei left right for gaze control cochlear n. cochlear n. Horizontal section through the tectal lobe Visual input from Retina and Forebrain c 00 r 00 0 200 20 ICC 400 ICX 400 OT r m l c Site of plasticity in the ICX Debello et al., J. Neurosci. 2001 After prism learning Visual input from Retina and Forebrain c 200 r 200 0 400 40 ICC 600 ICX 600 OT r m l c The instructive signal - Operates in the ICX - Visually based Where is the instructive signal coming from? BDA injection site in ICX 250 µm Topography of the OT-ICX projection Layer 8 BDA FG r l Restricted lesion of the optic tectum r l 500 µm How can a visually based instructive signal act in an auditory structure? Horizontal section through the tectal lobe Visual input from Retina and Forebrain c 00 r 00 0 200 20 ICC 400 ICX 400 OT r m l c bicuculline recording bic 0 iontophoresis barrels recording barrel rec 0 50 50 ICC 100 100 µsec 500 µm ICX OT r m l c Light responses in the ICX Visual Receptive Fields in the ICX ICX OT ICX OT 0 µm bic -150 µm ICX -300 µm OT -450 µm -600 µm Properties of visual responses in ICX - Arrive from the OT - Display spatially restricted visual receptive fields - Form a map of space - Align with auditory spatial representation Model gate ITD 1 Visual Input Visual Input ITD 2 ITD 3 ITD 1 Visual Input Visual Input ITD 2 ITD 3 Input Auditory ITD 1 Visual Input Visual Input ITD 2 ITD 3 ICX Optic Tectum Bimodal Stimulus light right ear left ear Visual and auditory interactions in the ICX auditory ITD visual auditory + visual Average 60 12 14 30 8 s) µ 10 A (spikes) A 0 - ITD ( AV 6 4 A (spikes) A -30 - AV 6 0 -60 50 100 150 200 -80 -60 -40 -20 0 20 40 60 80 Post stimulus time (ms) ITD (µs) Bimodal stimulus Normal Visual input ICC ICX OT Bimodal stimulus Normal With prisms Visual input Visual input ICC ICC ICX ICX OT OT Bimodal stimulus Normal With prisms Visual input Visual input ICC ICC ICX ICX OT OT Summary An inhibitory gate controls the flow of visual • information into the auditory system Summary • An inhibitory gate controls the flow of visual information into the auditory system • The visual signals are appropriate to serve as the instructive signal for auditory plasticity • Eric Knudsen Daniel Feldman Michael Brainard Will Debello Stanford University Peter Hyde Brie Linkenhoker Joe Bergan Hermann Wagner - AACHEN University.
Recommended publications
  • Representation of Sound Localization Cues in the Auditory Thalamus of the Barn Owl
    Proc. Natl. Acad. Sci. USA Vol. 94, pp. 10421–10425, September 1997 Neurobiology Representation of sound localization cues in the auditory thalamus of the barn owl LARRY PROCTOR* AND MASAKAZU KONISHI Division of Biology, MC 216–76, California Institute of Technology, Pasadena, CA 91125 Contributed by Masakazu Konishi, July 14, 1997 ABSTRACT Barn owls can localize a sound source using responses of neurons throughout the N.Ov to binaural sound either the map of auditory space contained in the optic tectum localization cues to determine what, if any, transformations or the auditory forebrain. The auditory thalamus, nucleus occur in the representation of auditory information. ovoidalis (N.Ov), is situated between these two auditory areas, and its inactivation precludes the use of the auditory forebrain METHODS for sound localization. We examined the sources of inputs to the N.Ov as well as their patterns of termination within the Adult barn owls (Tyto alba), while under ketamineydiazepam nucleus. We also examined the response of single neurons anesthesia (Ketaset, Aveco, Chicago; 25 mgykg diazepam; 1 within the N.Ov to tonal stimuli and sound localization cues. mgykg intramuscular injection), were placed in a stereotaxic Afferents to the N.Ov originated with a diffuse population of device that held the head tilted downward at an angle of 30° neurons located bilaterally within the lateral shell, core, and from the horizontal plane. A stainless steel plate was attached medial shell subdivisions of the central nucleus of the inferior to the rostral cranium with dental cement, and a reference pin colliculus. Additional afferent input originated from the ip- was glued to the cranium on the midline in the plane between silateral ventral nucleus of the lateral lemniscus.
    [Show full text]
  • Five Topographically Organized Fields in the Somatosensory Cortex of the Flying Fox: Microelectrode Maps, Myeloarchitecture, and Cortical Modules
    THE JOURNAL OF COMPARATIVE NEUROLOGY 317:1-30 (1992) Five Topographically Organized Fields in the Somatosensory Cortex of the Flying Fox: Microelectrode Maps, Myeloarchitecture, and Cortical Modules LEAH A. KRUBITZER AND MIKE B. CALFORD Vision, Touch and Hearing Research Centre, Department of Physiology and Pharmacology, The University of Queensland, Queensland, Australia 4072 ABSTRACT Five somatosensory fields were defined in the grey-headed flying fox by using microelec- trode mapping procedures. These fields are: the primary somatosensory area, SI or area 3b; a field caudal to area 3b, area 1/2; the second somatosensory area, SII; the parietal ventral area, PV; and the ventral somatosensory area, VS. A large number of closely spaced electrode penetrations recording multiunit activity revealed that each of these fields had a complete somatotopic representation. Microelectrode maps of somatosensory fields were related to architecture in cortex that had been flattened, cut parallel to the cortical surface, and stained for myelin. Receptive field size and some neural properties of individual fields were directly compared. Area 3b was the largest field identified and its topography was similar to that described in many other mammals. Neurons in 3b were highly responsive to cutaneous stimulation of peripheral body parts and had relatively small receptive fields. The myeloarchi- tecture revealed patches of dense myelination surrounded by thin zones of lightly myelinated cortex. Microelectrode recordings showed that myelin-dense and sparse zones in 3b were related to neurons that responded consistently or habituated to repetitive stimulation respectively. In cortex caudal to 3b, and protruding into 3b, a complete representation of the body surface adjacent to much of the caudal boundary of 3b was defined.
    [Show full text]
  • CURRICULUM VITAE Joseph S. Takahashi Howard Hughes Medical
    CURRICULUM VITAE Joseph S. Takahashi Howard Hughes Medical Institute Department of Neuroscience University of Texas Southwestern Medical Center 5323 Harry Hines Blvd., NA4.118 Dallas, Texas 75390-9111 (214) 648-1876, FAX (214) 648-1801 Email: [email protected] DATE OF BIRTH: December 16, 1951 NATIONALITY: U.S. Citizen by birth EDUCATION: 1981-1983 Pharmacology Research Associate Training Program, National Institute of General Medical Sciences, Laboratory of Clinical Sciences and Laboratory of Cell Biology, National Institutes of Health, Bethesda, MD 1979-1981 Ph.D., Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, Dr. Michael Menaker, Advisor. Summer 1977 Hopkins Marine Station, Stanford University, Pacific Grove, California 1975-1979 Department of Zoology, University of Texas, Austin, Texas 1970-1974 B.A. in Biology, Swarthmore College, Swarthmore, Pennsylvania PROFESSIONAL EXPERIENCE: 2013-present Principal Investigator, Satellite, International Institute for Integrative Sleep Medicine, World Premier International Research Center Initiative, University of Tsukuba, Japan 2009-present Professor and Chair, Department of Neuroscience, UT Southwestern Medical Center 2009-present Loyd B. Sands Distinguished Chair in Neuroscience, UT Southwestern 2009-present Investigator, Howard Hughes Medical Institute, UT Southwestern 2009-present Professor Emeritus of Neurobiology and Physiology, and Walter and Mary Elizabeth Glass Professor Emeritus in the Life Sciences, Northwestern University
    [Show full text]
  • Master Project Interactive Media Design Master Program Södertörn Högskola
    Master Project Interactive Media Design Master Program Södertörn Högskola Supervisor: Minna Räsänen External: Annika Waern (MobileLife Centre) Student: Syed Naseh Title: Mobile SoundAR: Your Phone on Your Head Table of Contents Abstract....................................................................................................................................... 3 Keywords.................................................................................................................................... 3 ACM Classification Keywords................................................................................................... 3 General Terms............................................................................................................................. 3 Introduction.................................................................................................................................4 Immersion issues without head-tracking.....................................................................................5 Front-back confusion.................................................................................................... 5 Interaural Time Difference ITD ................................................................................... 5 Interaural Intensity Difference IID .............................................................................. 6 Design Problem...........................................................................................................................7 Design Methodology...................................................................................................................7
    [Show full text]
  • Neurobiology, Endocrinology and Behavior E
    Neurobiology, Endocrinology and Behavior E. Adkins-Regan, Cornell University, Ithaca, NY, USA C. S. Carter, University of Illinois at Chicago, Chicago, IL, USA ã 2010 Elsevier Ltd. All rights reserved. Introduction In subsequent centuries, many scientists examined and described the structure of the brain and nervous system Two types of mechanisms, neural and hormonal, have in an array of animal species. A common theme was to note been prominent in the history of research directed at what seemed to be marked differences in the organization uncovering the proximate physiological causes of animal of the brain, especially the forebrain, and in the relative behavior. During the first part of this history, the nervous sizes of structures and brain divisions, and to speculate and endocrine systems were envisioned as separate sys- about their relationship to behavior and intelligence. tems and were studied by somewhat different research With the publication of Charles Darwin’s theory of communities. As a result, research on physiological evolution by natural selection, these species differences mechanisms of animal behavior has tended to develop in brain structure and size began to be interpreted in an along two somewhat separate and parallel tracks. These evolutionary framework. Until the middle of the 1900s, dual origins are reflected in the organization of this sur- the dominant view had been that the brains (especially vey. Beginning in the twentieth century, several discov- forebrains) of different vertebrate classes (as represented eries led to the realization that the nervous and endocrine by a small number of species from each of the largest systems are physiologically integrated to a highly signifi- classes) were fundamentally different in organization, cant extent, which is of great importance for animal that they formed an evolutionary series progressing behavior.
    [Show full text]
  • Discrimination of Sound Source Positions Following Auditory Spatial
    Discrimination of sound source positions following auditory spatial adaptation Stephan Getzmann Ruhr-Universität Bochum, Kognitions- & Umweltpsychologie; Email: [email protected] Abstract auditory contrast effect in sound localization increases with in- Based on current models of auditory spatial adaptation in human creasing adapter duration, indicating a time dependence in the sound localization, the present study evaluated whether auditory strength of adaptation. Analogously, improvements in spatial dis- discrimination of two sound sources in the median plane (MP) crimination should be stronger following a long adapter, and improves after presentation of an appropriate adapter sound. Fif- weaker following a short adapter. In order to test this assumption, teen subjects heard two successively presented target sounds (200- in a third condition a short adapter sound preceded the target ms white noise, 500 ms interstimulus interval), which differed sounds. Best performance was expected in the strong-adapter con- slightly in elevation. Subjects had to decide whether the first dition, followed by the weak- and the no-adapter condition. sound was emitted above or below the second. When a long adap- ter sound (3-s white noise emitted at the elevation of the first tar- 2. Method get sound) preceded the stimulus pair, performance improved in Fifteen normal hearing subjects (age range 19-52 years) volun- speed and accuracy. When a short adapter sound (500 ms) pre- teered as listeners in the experiment which was conducted in a ceded, performance improved only insignificantly in comparison dark, sound-proof, anechoic room. In the subjects' median plane, with a no-adapter control condition. These results may be linked 31 broad-band loudspeakers (Visaton SC 5.9, 5 x 9 cm) were to previous findings concerning sound localization after the pres- mounted ranging from -31° to +31° elevation.
    [Show full text]
  • Neural Mapping of Direction and Frequency in the Cricket Cercal Sensory System
    The Journal of Neuroscience, March 1, 1999, 19(5):1771–1781 Neural Mapping of Direction and Frequency in the Cricket Cercal Sensory System Sussan Paydar,2 Caitlin A. Doan,2 and Gwen A. Jacobs1 1Center for Computational Biology, Montana State University, Bozeman, Montana 59717, and 2Department of Molecular and Cell Biology, University of California, Berkeley, California 94720 Primary mechanosensory receptors and interneurons in the segregation was investigated, by calculating the relative over- cricket cercal sensory system are sensitive to the direction and lap between the long and medium-length hair afferents with the frequency of air current stimuli. Receptors innervating long dendrites of two interneurons that are known to have different mechanoreceptor hairs (.1000 mm) are most sensitive to low- frequency sensitivities. Both interneurons were shown to have frequency air currents (,150 Hz); receptors innervating nearly equal anatomical overlap with long and medium hair medium-length hairs (900–500 mm) are most sensitive to higher afferents. Thus, the differential overlap of these interneurons frequency ranges (150–400 Hz). Previous studies demonstrated with the two different classes of afferents was not adequate to that the projection pattern of the synaptic arborizations of long explain the observed frequency selectivity of the interneurons. hair receptor afferents form a continuous map of air current Other mechanisms such as selective connectivity between direction within the terminal abdominal ganglion (Jacobs and subsets of afferents and interneurons and/or differences in Theunissen, 1996). We demonstrate here that the projection interneuron biophysical properties must play a role in establish- pattern of the medium-length hair afferents also forms a con- ing the frequency selectivities of these interneurons.
    [Show full text]
  • Portia Perceptions: the Umwelt of an Araneophagic Jumping Spider
    Portia Perceptions: The Umwelt of an Araneophagic Jumping 1 Spider Duane P. Harland and Robert R. Jackson The Personality of Portia Spiders are traditionally portrayed as simple, instinct-driven animals (Savory, 1928; Drees, 1952; Bristowe, 1958). Small brain size is perhaps the most compelling reason for expecting so little flexibility from our eight-legged neighbors. Fitting comfortably on the head of a pin, a spider brain seems to vanish into insignificance. Common sense tells us that compared with large-brained mammals, spiders have so little to work with that they must be restricted to a circumscribed set of rigid behaviors, flexibility being a luxury afforded only to those with much larger central nervous systems. In this chapter we review recent findings on an unusual group of spiders that seem to be arachnid enigmas. In a number of ways the behavior of the araneophagic jumping spiders is more comparable to that of birds and mammals than conventional wisdom would lead us to expect of an arthropod. The term araneophagic refers to these spiders’ preference for other spiders as prey, and jumping spider is the common English name for members of the family Saltici- dae. Although both their common and the scientific Latin names acknowledge their jumping behavior, it is really their unique, complex eyes that set this family of spiders apart from all others. Among spiders (many of which have very poor vision), salticids have eyes that are by far the most specialized for resolving fine spatial detail. We focus here on the most extensively studied genus, Portia. Before we discuss the interrelationship between the salticids’ uniquely acute vision, their predatory strategies, and their apparent cognitive abilities, we need to offer some sense of what kind of animal a jumping spider is; to do this, we attempt to offer some insight into what we might call Portia’s personality.
    [Show full text]
  • Of Interaural Time Difference by Spiking Neural Networks Zihan Pan, Malu Zhang, Jibin Wu, and Haizhou Li, Fellow, IEEE
    JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1 Multi-Tones’ Phase Coding (MTPC) of Interaural Time Difference by Spiking Neural Networks Zihan Pan, Malu Zhang, Jibin Wu, and Haizhou Li, Fellow, IEEE Abstract—Inspired by the mammal’s auditory localization (in humans 20Hz to 2kHz) for MSO and high frequencies (in pathway, in this paper we propose a pure spiking neural humans >2kHz) for LSO [7]. From the information flow point network (SNN) based computational model for precised sound of view, the location-dependent information from the sounds, localization in the noisy real-world environment, and implement this algorithm in a real-time robotic system with microphone or aforementioned time or intensity differences, are encoded array. The key of this model relies on the MTPC scheme, which into spiking pulses in the MSO and LSO. After that, they are encodes the interaural time difference (ITD) cues into spike projected to the inferior colliculus (IC) in the mid-brain, where patterns. This scheme naturally follows the functional structures the IC integrates both cues for estimating the sound source of human auditory localization system, rather than artificially direction [8]. The most successful model for ITD encoding computing of time difference of arrival. Besides, it highlights the advantages of SNN, such as event-driven and power efficiency. in MSO and cortex decoding might be the “place theory” by The MTPC is pipeliend with two different SNN architectures, an American psychologist named Lloyd Jeffress [9], which is the convolutional SNN and recurrent SNN, by which it shows the also referred to as Jeffress model hereafter.
    [Show full text]
  • Neuromechanics of Coordination During Swallowing in Aplysia Californica
    1470 • The Journal of Neuroscience, February 1, 2006 • 26(5):1470–1485 Behavioral/Systems/Cognitive Neuromechanics of Coordination during Swallowing in Aplysia californica Hui Ye,1 Douglas W. Morton,2 and Hillel J. Chiel1,2,3 Departments of 1Biomedical Engineering, 2Neuroscience, and 3Biology, Case Western Reserve University, Cleveland, Ohio 44106-7080 Bernstein (1967) hypothesized that preparation of the periphery was crucial for correct responses to motor output. To test this hypothesis in a behaving animal, we examined the roles of two identified motor neurons, B7 and B8, which contribute to feeding behavior in the marine mollusk Aplysia californica. Neuron B7 innervates a hinge muscle and has no overt behavioral effect during smaller-amplitude (type A) swallows, because the hinge muscle is too short to exert force. Neuron B8 activates a muscle (I4) that acts solely to grasp material during type A swallows. During larger-amplitude (type B) swallows, the behavioral actions of both motor neurons change, because the larger-amplitude anterior movement of the grasper sets up the periphery to respond differently to motor outputs. The larger anterior movement stretches the hinge muscle, so that activating neuron B7 mediates the initial retraction phase of swallowing. The changed position of the I4 muscle allows neuron B8 not only to induce grasping but also to pull material into the buccal cavity, contributing to retraction. Thus, larger-amplitude swallows are associated with the expression of two new degrees of freedom (use of the hinge to retract and use of the grasper to retract) that are essential for mediating type B swallows. These results provide a direct demonstration of Bernstein’s hypothesis that properly positioning the periphery can be crucial for its ability to correctly respond to motor output and also demonstrate that biomechanical context can alter the functions of identified motor neurons.
    [Show full text]
  • Early Events in Olfactory Processing
    ANRV278-NE29-06 ARI 8 May 2006 15:38 Early Events in Olfactory Processing Rachel I. Wilson1 and Zachary F. Mainen2 1Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115; email: rachel [email protected] 2Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724; email: [email protected] Annu. Rev. Neurosci. Key Words 2006. 29:163–201 olfactory bulb, antennal lobe, chemotopy, temporal coding, The Annual Review of Neuroscience is online at synchrony, concentration, segmentation by HARVARD UNIVERSITY on 07/17/06. For personal use only. neuro.annualreviews.org Abstract doi: 10.1146/ annurev.neuro.29.051605.112950 Olfactory space has a higher dimensionality than does any other class Annu. Rev. Neurosci. 2006.29:163-201. Downloaded from arjournals.annualreviews.org Copyright c 2006 by of sensory stimuli, and the olfactory system receives input from an Annual Reviews. All rights unusually large number of unique information channels. This sug- reserved gests that aspects of olfactory processing may differ fundamentally 0147-006X/06/0721- from processing in other sensory modalities. This review summa- 0163$20.00 rizes current understanding of early events in olfactory processing. We focus on how odors are encoded by the activity of primary olfac- tory receptor neurons, how odor codes may be transformed in the olfactory bulb, and what relevance these codes may have for down- stream neurons in higher brain centers. Recent findings in synaptic physiology, neural coding, and psychophysics are discussed, with ref- erence to both vertebrate and insect model systems. 163 ANRV278-NE29-06 ARI 8 May 2006 15:38 Contents CHALLENGES TO Systematic Progression in UNDERSTANDING Molecular Feature OLFACTORY PROCESSING .
    [Show full text]
  • The Scope of Neuroethology
    THE BEHAVIORAL AND BRAIN SCIENCES (1984) 7, 367-412 Printed in the United States of America The scope of neuroethology Graham Hoyle Institute of Neuroscience, University of Oregon, Eugene, Oreg. 97403 Abstract: Neuroethology, an interdisciplinary subdivision of neuroscience, has emerged in recent years. Since 1976 there has been a regular session under this heading at the annual meeting of the Society for Neuroscience. In 1980 two introductory texts in English were published on the subject (Ewert 1980; Guthrie 1980), and a third (Camhi 1984) was published recently. There is widespread interest in neural mechanisms underlying behavior, but they encompass such a vast array of often unrelated topics that proponents do not share common goals. This article describes the emergence of ethology as a discipline, pointing out that its practitioners were successful because they confined their research to stereotyped, complex, nonlearned, innate behavioral acts. A limited number of profoundly significant principles emerged. Each of these is redefined. The major concepts of earlier ethology were embodied in a simple hydraulic model used by Konrad Lorenz in 1949 (Lorenz 1950). It is pointed out that this model implies the existence of common neurophysiological mechanisms and neuronal circuitry. This model has now been made obsolete by neurophysiological progress, but with appropriate ~nodificationsan updated version may still be useful in focusing attention on possible principles. The initial aim of neuroethology should be to examine the neurophysiological events in a variety of behaviors, exhibited by diverse animals from different phyla, which meet the criteria of innate behavioral acts. The behaviors should be sufficiently complex to interest ethologists, yet they should be addressable with neurophysiological methods down to the cellular level.
    [Show full text]