Obesity-Stimulated Aldosterone Release Is Not Related to an S1P-Dependent Mechanism

Total Page:16

File Type:pdf, Size:1020Kb

Obesity-Stimulated Aldosterone Release Is Not Related to an S1P-Dependent Mechanism 235 3 S WERTH and others S1P and aldosterone release II 235:3 251–265 Research Obesity-stimulated aldosterone release is not related to an S1P-dependent mechanism Correspondence Stephan Werth1, Helge Müller-Fielitz1,2 and Walter Raasch1,2,3 should be addressed 1Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany to W Raasch 2CBBM (Center of Brain, Behavior and Metabolism), Lübeck, Germany Email 3DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Lübeck, Germany walter.raasch@pharma. uni-luebeck.de Abstract Aldosterone has been identified as an important factor in obesity-associated Key Words hypertension. Here, we investigated whether sphingosine-1-phosphate (S1P), which f renin–angiotensisn system has previously been linked to obesity, increases aldosterone release. S1P-induced f obesity aldosterone release was determined in NCI H295R cells in the presence of S1P receptor f steroids (S1PR) antagonists. In vivo release of S1P (100–300 µg/kgbw) was investigated in pithed, f hypertension lean Sprague Dawley (SD) rats, diet-obese spontaneous hypertensive rats (SHRs), as well f spingosine-1-phosphate as in lean or obese Zucker rats. Aldosterone secretion was increased in NCI H295R cells Endocrinology of by S1P, the selective S1PR1 agonist SEW2871 and the selective S1PR2 antagonist JTE013. Treatment with the S1PR1 antagonist W146 or fingolimod and the S1PR1/3 antagonist VPC02319 decreased baseline and/or S1P-stimulated aldosterone release. Compared to Journal saline-treated SD rats, plasma aldosterone increased by ~50 pg/mL after infusing S1P. Baseline levels of S1P and aldosterone were higher in obese than in lean SHRs. Adrenal S1PR expression did not differ between chow- or CD-fed rats that had the highest S1PR1 and lowest S1PR4 levels. S1P induced a short-lasting increase in plasma aldosterone in obese, but not in lean SHRs. However, 2-ANOVA did not demonstrate any difference between lean and obese rats. S1P-induced aldosterone release was also similar between obese and lean Zucker rats. We conclude that S1P is a local regulator of aldosterone production. S1PR1 agonism induces an increase in aldosterone secretion, while stimulating adrenal S1PR2 receptor suppresses aldosterone production. A significant role Journal of Endocrinology of S1P in influencing aldosterone secretion in states of obesity seems unlikely. (2017) 235, 251–265 Introduction The Framingham Offspring Study suggested that tissue of obese rats and humans (Giacchetti et al. 2002, increased abdominal fat mass accounts for 65–75% of Boustany et al. 2004, Engeli et al. 2005). Accordingly, the risk for hypertension (Garrison et al. 1987). Among ACE is upregulated in adipocytes (Bloem et al. 1995, other hormonal systems, the renin–angiotensin– Cooper et al. 1998, Karlsson et al. 1998), and obese aldosterone system (RAAS) has been established as a individuals demonstrate elevated circulating angiotensin major determinant of obesity-induced hypertension II (AngII) levels (Harte et al. 2005). In contrast, weight (Rahmouni et al. 2005). The RAAS is activated in the fat loss not only normalizes enzyme activity of the RAAS but http://joe.endocrinology-journals.org © 2017 Society for Endocrinology Published by Bioscientifica Ltd. DOI: 10.1530/JOE-16-0550 Printed in Great Britain Downloaded from Bioscientifica.com at 09/28/2021 09:44:55PM via free access 10.1530/JOE-16-0550 Research S WERTH and others S1P and aldosterone release II 235:3 252 also attenuates blood pressure (Engeli et al. 2005). The ERK1/2-dependent upregulation of StAR activity (Krug et al. potency of AT1 receptor blockers to lower body weight 2007) and S1P induces both StAR mRNA expression and particularly in obese individuals and the findings that ERK1/2 activation (Brizuela et al. 2007, Lucki et al. 2012), body weight of double AT1A/AT1B receptor knockout mice we hypothesized that S1P acts as an MRF. The molecular is lower than in wild-type controls further strengthen mass of S1P is <50 kDa and it is heat-sensitive (>99°C), the functional cross-talk among weight, blood pressure both thought to be essential features of MRF (Lamounier- regulation and RAAS activity (Gembardt et al. 2008, Zepter et al. 2006). S1P is a bioactive sphingolipid and Müller-Fielitz et al. 2015). interacts with its particular Gi protein-coupled receptors, Aldosterone is the second key player of the RAAS. termed S1PR1-5 (Maceyka & Spiegel 2014, Proia & Hla Aldosterone production in zona glomerulosa (ZG) cells 2015). S1PRs are highly expressed in the human adrenal is regulated by distinct extracellular stimuli (potassium, gland (Wang et al. 2014). S1P interacts not only in cellular AngII, ACTH) via Ca2+ mobilization following cAMP- processes of immunity, inflammation and inflammatory dependent (ACTH) or -independent (AngII, potassium) disorders (Maceyka & Spiegel 2014, Proia & Hla 2015), but mechanisms. Aldosterone plasma levels positively is also involved in cardiovascular and metabolic functions correlate with fat mass in obesity (Lamounier-Zepter et al. (Bellini et al. 2015, Borodzicz et al. 2015). Interestingly, 2006, Krug & Ehrhart-Bornstein 2008) and with obesity- there is clear evidence that S1P levels are higher in plasma induced hypertension (Kidambi et al. 2007). The following and adipose tissue of obese subjects than in lean individuals findings indicate that aldosterone excess is not an (Samad et al. 2006, Blachnio-Zabielska et al. 2012a, epiphenomenon to higher AngII levels, but rather results Kowalski et al. 2013), thus supporting the hypothesis that from adrenal hypersensitivity to AngII among overweight S1P may indeed be the missing link between obesity and individuals: (1) AngII-mediated aldosterone secretion hypertension due to adrenal hypersensitization. Thus, was higher in obese than in lean individuals (Bentley- we hereby aimed to investigate whether S1P stimulates Lewis et al. 2007, Müller-Fielitz et al. 2012b); (2) adipocytes aldosterone release in a human adrenocortical cell line secrete mineralocorticoid-releasing factors (MRFs), which and, if so, which S1PR would be involved. Furthermore, Endocrinology themselves enhance aldosterone release independently of S1P-induced aldosterone release was expected to be higher of AngII (Ehrhart-Bornstein et al. 2003, 2004); (3) adipocytes in obese than in lean rats. sensitize adrenocortical cells to AngII via ERK1/2- dependent upregulation of steroidogenic acute regulatory Journal (StAR) protein (Krug et al. 2007); (4) ZG growth and the Materials and methods expression of aldosterone synthase and AT1B receptors were selectively heightened in obesity under concomitant Animals AngII stimulation, which further enhanced circulating aldosterone levels and augmented blood pressure The study was carried out according to the National response to AngII (Müller-Fielitz et al. 2012b); and (5) Institutes of Health guidelines for the care and use the rise in blood pressure after chronic AngII stimulation of laboratory animals. Animal care and experimental was diminished in adrenalectomized obese Zucker rats in procedures were approved by the ethics committee of the which plasma aldosterone levels could only be scarcely local regulatory authority. Male SD rats, SHRs and lean detected (Müller-Fielitz et al. 2012b). and obese Zucker rats were used in the experiments (all However, MRFs are still being identified , including from Charles River, Sulzberg, Germany). The animals were at least two that differ in heat sensitivity and molecular kept at room temperature with a 12-h/12-h dark (14:00– mass (< or >50 kDa) (Ehrhart-Bornstein et al. 2003, 2004). 02:00 h)/light (02:00–14:00 h) cycle. Based on observations that plasma LDL is increased in hypertensive obese patients, Ehrhart-Bornstein’s group Preparation of S1P stock solution also showed that LDL dramatically increased aldosterone release in human adrenocortical NCI H295R cells. Thus, S1P was obtained from Avanti Polar Lipids (Alabaster, aldosterone excess in hypertensive individuals may AL, USA). A methanolic S1P stock solution was prepared. partially result from elevated LDL levels. However, it S1P (0.5 mg/mL) was added to a methanol/water mixture was speculated that other MRFs may also be involved (95/5), heat-mixed (50°C) and sonicated until S1P (Lamounier-Zepter et al. 2006). Since the identified was suspended. Subsequently, 100 µL aliquots of this MRF was shown to increase aldosterone release via mixture were stored (−20°C) in glass tubes. For usage, http://joe.endocrinology-journals.org © 2017 Society for Endocrinology Published by Bioscientifica Ltd. DOI: 10.1530/JOE-16-0550 Printed in Great Britain Downloaded from Bioscientifica.com at 09/28/2021 09:44:55PM via free access PROOF ONLY Research S WERTH and others S1P and aldosterone release II 235:3 253 aliquots were warmed up to room temperature and the were performed without S1P antagonists. After 30-min methanol/water were evaporated under nitrogen flow. The preincubation, medium was removed and 500 µL fresh dry residue was dissolved in saline (0.9%), supplemented medium containing the appropriate S1P antagonist and with bovine serum albumin (BSA, 4 mg/mL). 10 µM S1P or vehicle was added. After 24 h, medium was collected and stored at −20°C until aldosterone analyses. Cells were washed twice with 500 µL PBS buffer and also Cell culture stored at −20°C until protein was quantified according In vitro assays of S1P-induced aldosterone release were to Lowry. performed by using the human adrenocortical carcinoma NCI H295R cell line. Only cells originating from the 4th Pithed rat preparation to 20th passage were used. In accordance with previous work, cells were grown in 20 mL Dulbecco’s Modified Eagle Studies on aldosterone response to S1P were performed in Medium/Ham’s F12 (DMEM/F12; from VWR International, a ‘pithed rat’ model, to only consider vascular reactivity Darmstadt, Germany) containing 15 mmol/L HEPES and to S1P for blood pressure effects. Rats were pithed at 2.5 mmol/L L-glutamine, supplemented with 1.125 g/L the beginning of the light cycle as previously described NaHCO3, insulin (66 nmol/L), hydrocortisone (10 nmol/L), (Raasch et al.
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD (cevansmo@iu.edu) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Targeting Lysophosphatidic Acid in Cancer: the Issues in Moving from Bench to Bedside
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by IUPUIScholarWorks cancers Review Targeting Lysophosphatidic Acid in Cancer: The Issues in Moving from Bench to Bedside Yan Xu Department of Obstetrics and Gynecology, Indiana University School of Medicine, 950 W. Walnut Street R2-E380, Indianapolis, IN 46202, USA; xu2@iu.edu; Tel.: +1-317-274-3972 Received: 28 August 2019; Accepted: 8 October 2019; Published: 10 October 2019 Abstract: Since the clear demonstration of lysophosphatidic acid (LPA)’s pathological roles in cancer in the mid-1990s, more than 1000 papers relating LPA to various types of cancer were published. Through these studies, LPA was established as a target for cancer. Although LPA-related inhibitors entered clinical trials for fibrosis, the concept of targeting LPA is yet to be moved to clinical cancer treatment. The major challenges that we are facing in moving LPA application from bench to bedside include the intrinsic and complicated metabolic, functional, and signaling properties of LPA, as well as technical issues, which are discussed in this review. Potential strategies and perspectives to improve the translational progress are suggested. Despite these challenges, we are optimistic that LPA blockage, particularly in combination with other agents, is on the horizon to be incorporated into clinical applications. Keywords: Autotaxin (ATX); ovarian cancer (OC); cancer stem cell (CSC); electrospray ionization tandem mass spectrometry (ESI-MS/MS); G-protein coupled receptor (GPCR); lipid phosphate phosphatase enzymes (LPPs); lysophosphatidic acid (LPA); phospholipase A2 enzymes (PLA2s); nuclear receptor peroxisome proliferator-activated receptor (PPAR); sphingosine-1 phosphate (S1P) 1.
    [Show full text]
  • Supplementary Table S5. Differentially Expressed Gene Lists of PD-1High CD39+ CD8 Tils According to 4-1BB Expression Compared to PD-1+ CD39- CD8 Tils
    BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance Supplemental material placed on this supplemental material which has been supplied by the author(s) J Immunother Cancer Supplementary Table S5. Differentially expressed gene lists of PD-1high CD39+ CD8 TILs according to 4-1BB expression compared to PD-1+ CD39- CD8 TILs Up- or down- regulated genes in Up- or down- regulated genes Up- or down- regulated genes only PD-1high CD39+ CD8 TILs only in 4-1BBneg PD-1high CD39+ in 4-1BBpos PD-1high CD39+ CD8 compared to PD-1+ CD39- CD8 CD8 TILs compared to PD-1+ TILs compared to PD-1+ CD39- TILs CD39- CD8 TILs CD8 TILs IL7R KLRG1 TNFSF4 ENTPD1 DHRS3 LEF1 ITGA5 MKI67 PZP KLF3 RYR2 SIK1B ANK3 LYST PPP1R3B ETV1 ADAM28 H2AC13 CCR7 GFOD1 RASGRP2 ITGAX MAST4 RAD51AP1 MYO1E CLCF1 NEBL S1PR5 VCL MPP7 MS4A6A PHLDB1 GFPT2 TNF RPL3 SPRY4 VCAM1 B4GALT5 TIPARP TNS3 PDCD1 POLQ AKAP5 IL6ST LY9 PLXND1 PLEKHA1 NEU1 DGKH SPRY2 PLEKHG3 IKZF4 MTX3 PARK7 ATP8B4 SYT11 PTGER4 SORL1 RAB11FIP5 BRCA1 MAP4K3 NCR1 CCR4 S1PR1 PDE8A IFIT2 EPHA4 ARHGEF12 PAICS PELI2 LAT2 GPRASP1 TTN RPLP0 IL4I1 AUTS2 RPS3 CDCA3 NHS LONRF2 CDC42EP3 SLCO3A1 RRM2 ADAMTSL4 INPP5F ARHGAP31 ESCO2 ADRB2 CSF1 WDHD1 GOLIM4 CDK5RAP1 CD69 GLUL HJURP SHC4 GNLY TTC9 HELLS DPP4 IL23A PITPNC1 TOX ARHGEF9 EXO1 SLC4A4 CKAP4 CARMIL3 NHSL2 DZIP3 GINS1 FUT8 UBASH3B CDCA5 PDE7B SOGA1 CDC45 NR3C2 TRIB1 KIF14 TRAF5 LIMS1 PPP1R2C TNFRSF9 KLRC2 POLA1 CD80 ATP10D CDCA8 SETD7 IER2 PATL2 CCDC141 CD84 HSPA6 CYB561 MPHOSPH9 CLSPN KLRC1 PTMS SCML4 ZBTB10 CCL3 CA5B PIP5K1B WNT9A CCNH GEM IL18RAP GGH SARDH B3GNT7 C13orf46 SBF2 IKZF3 ZMAT1 TCF7 NECTIN1 H3C7 FOS PAG1 HECA SLC4A10 SLC35G2 PER1 P2RY1 NFKBIA WDR76 PLAUR KDM1A H1-5 TSHZ2 FAM102B HMMR GPR132 CCRL2 PARP8 A2M ST8SIA1 NUF2 IL5RA RBPMS UBE2T USP53 EEF1A1 PLAC8 LGR6 TMEM123 NEK2 SNAP47 PTGIS SH2B3 P2RY8 S100PBP PLEKHA7 CLNK CRIM1 MGAT5 YBX3 TP53INP1 DTL CFH FEZ1 MYB FRMD4B TSPAN5 STIL ITGA2 GOLGA6L10 MYBL2 AHI1 CAND2 GZMB RBPJ PELI1 HSPA1B KCNK5 GOLGA6L9 TICRR TPRG1 UBE2C AURKA Leem G, et al.
    [Show full text]
  • Supplementary Material
    Supplementary Material Table S1: Significant downregulated KEGGs pathways identified by DAVID following exposure to five cinnamon- based phenylpropanoids (p < 0.05). p-value Term: Genes (Benjamini) Cytokine-cytokine receptor interaction: FASLG, TNFSF14, CXCL11, IL11, FLT3LG, CCL3L1, CCL3L3, CXCR6, XCR1, 2.43 × 105 RTEL1, CSF2RA, TNFRSF17, TNFRSF14, CCNL2, VEGFB, AMH, TNFRSF10B, INHBE, IFNB1, CCR3, VEGFA, CCR2, IL12A, CCL1, CCL3, CXCL5, TNFRSF25, CCR1, CSF1, CX3CL1, CCL7, CCL24, TNFRSF1B, IL12RB1, CCL21, FIGF, EPO, IL4, IL18R1, FLT1, TGFBR1, EDA2R, HGF, TNFSF8, KDR, LEP, GH2, CCL13, EPOR, XCL1, IFNA16, XCL2 Neuroactive ligand-receptor interaction: OPRM1, THRA, GRIK1, DRD2, GRIK2, TACR2, TACR1, GABRB1, LPAR4, 9.68 × 105 GRIK5, FPR1, PRSS1, GNRHR, FPR2, EDNRA, AGTR2, LTB4R, PRSS2, CNR1, S1PR4, CALCRL, TAAR5, GABRE, PTGER1, GABRG3, C5AR1, PTGER3, PTGER4, GABRA6, GABRA5, GRM1, PLG, LEP, CRHR1, GH2, GRM3, SSTR2, Chlorogenic acid Chlorogenic CHRM3, GRIA1, MC2R, P2RX2, TBXA2R, GHSR, HTR2C, TSHR, LHB, GLP1R, OPRD1 Hematopoietic cell lineage: IL4, CR1, CD8B, CSF1, FCER2, GYPA, ITGA2, IL11, GP9, FLT3LG, CD38, CD19, DNTT, 9.29 × 104 GP1BB, CD22, EPOR, CSF2RA, CD14, THPO, EPO, HLA-DRA, ITGA2B Cytokine-cytokine receptor interaction: IL6ST, IL21R, IL19, TNFSF15, CXCR3, IL15, CXCL11, TGFB1, IL11, FLT3LG, CXCL10, CCR10, XCR1, RTEL1, CSF2RA, IL21, CCNL2, VEGFB, CCR8, AMH, TNFRSF10C, IFNB1, PDGFRA, EDA, CXCL5, TNFRSF25, CSF1, IFNW1, CNTFR, CX3CL1, CCL5, TNFRSF4, CCL4, CCL27, CCL24, CCL25, CCL23, IFNA6, IFNA5, FIGF, EPO, AMHR2, IL2RA, FLT4, TGFBR2, EDA2R,
    [Show full text]
  • Individual Protomers of a G Protein-Coupled Receptor Dimer Integrate Distinct Functional Modules
    OPEN Citation: Cell Discovery (2015) 1, 15011; doi:10.1038/celldisc.2015.11 © 2015 SIBS, CAS All rights reserved 2056-5968/15 ARTICLE www.nature.com/celldisc Individual protomers of a G protein-coupled receptor dimer integrate distinct functional modules Nathan D Camp1, Kyung-Soon Lee2, Jennifer L Wacker-Mhyre2, Timothy S Kountz2, Ji-Min Park2, Dorathy-Ann Harris2, Marianne Estrada2, Aaron Stewart2, Alejandro Wolf-Yadlin1, Chris Hague2 1Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA; 2Department of Pharmacology, University of Washington School of Medicine, Seattle, WA, USA Recent advances in proteomic technology reveal G-protein-coupled receptors (GPCRs) are organized as large, macromolecular protein complexes in cell membranes, adding a new layer of intricacy to GPCR signaling. We previously reported the α1D-adrenergic receptor (ADRA1D)—a key regulator of cardiovascular, urinary and CNS function—binds the syntrophin family of PDZ domain proteins (SNTA, SNTB1, and SNTB2) through a C-terminal PDZ ligand inter- action, ensuring receptor plasma membrane localization and G-protein coupling. To assess the uniqueness of this novel GPCR complex, 23 human GPCRs containing Type I PDZ ligands were subjected to TAP/MS proteomic analysis. Syntrophins did not interact with any other GPCRs. Unexpectedly, a second PDZ domain protein, scribble (SCRIB), was detected in ADRA1D complexes. Biochemical, proteomic, and dynamic mass redistribution analyses indicate syntrophins and SCRIB compete for the PDZ ligand, simultaneously exist within an ADRA1D multimer, and impart divergent pharmacological properties to the complex. Our results reveal an unprecedented modular dimeric architecture for the ADRA1D in the cell membrane, providing unexpected opportunities for fine-tuning receptor function through novel protein interactions in vivo, and for intervening in signal transduction with small molecules that can stabilize or disrupt unique GPCR:PDZ protein interfaces.
    [Show full text]
  • G Protein-Coupled Receptors
    S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2015/16: G protein-coupled receptors. British Journal of Pharmacology (2015) 172, 5744–5869 THE CONCISE GUIDE TO PHARMACOLOGY 2015/16: G protein-coupled receptors Stephen PH Alexander1, Anthony P Davenport2, Eamonn Kelly3, Neil Marrion3, John A Peters4, Helen E Benson5, Elena Faccenda5, Adam J Pawson5, Joanna L Sharman5, Christopher Southan5, Jamie A Davies5 and CGTP Collaborators 1School of Biomedical Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK, 2Clinical Pharmacology Unit, University of Cambridge, Cambridge, CB2 0QQ, UK, 3School of Physiology and Pharmacology, University of Bristol, Bristol, BS8 1TD, UK, 4Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK, 5Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2015/16 provides concise overviews of the key properties of over 1750 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/ 10.1111/bph.13348/full. G protein-coupled receptors are one of the eight major pharmacological targets into which the Guide is divided, with the others being: ligand-gated ion channels, voltage-gated ion channels, other ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading.
    [Show full text]
  • G Protein‐Coupled Receptors
    S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2019/20: G protein-coupled receptors. British Journal of Pharmacology (2019) 176, S21–S141 THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: G protein-coupled receptors Stephen PH Alexander1 , Arthur Christopoulos2 , Anthony P Davenport3 , Eamonn Kelly4, Alistair Mathie5 , John A Peters6 , Emma L Veale5 ,JaneFArmstrong7 , Elena Faccenda7 ,SimonDHarding7 ,AdamJPawson7 , Joanna L Sharman7 , Christopher Southan7 , Jamie A Davies7 and CGTP Collaborators 1School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK 2Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria 3052, Australia 3Clinical Pharmacology Unit, University of Cambridge, Cambridge, CB2 0QQ, UK 4School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK 5Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK 6Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK 7Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide represents approximately 400 pages, the material presented is substantially reduced compared to information and links presented on the website.
    [Show full text]
  • A Peripheral Blood Gene Expression Signature to Diagnose Subclinical Acute Rejection
    CLINICAL RESEARCH www.jasn.org A Peripheral Blood Gene Expression Signature to Diagnose Subclinical Acute Rejection Weijia Zhang,1 Zhengzi Yi,1 Karen L. Keung,2 Huimin Shang,3 Chengguo Wei,1 Paolo Cravedi,1 Zeguo Sun,1 Caixia Xi,1 Christopher Woytovich,1 Samira Farouk,1 Weiqing Huang,1 Khadija Banu,1 Lorenzo Gallon,4 Ciara N. Magee,5 Nader Najafian,5 Milagros Samaniego,6 Arjang Djamali ,7 Stephen I. Alexander,2 Ivy A. Rosales,8 Rex Neal Smith,8 Jenny Xiang,3 Evelyne Lerut,9 Dirk Kuypers,10,11 Maarten Naesens ,10,11 Philip J. O’Connell,2 Robert Colvin,8 Madhav C. Menon,1 and Barbara Murphy1 Due to the number of contributing authors, the affiliations are listed at the end of this article. ABSTRACT Background In kidney transplant recipients, surveillance biopsies can reveal, despite stable graft function, histologic features of acute rejection and borderline changes that are associated with undesirable graft outcomes. Noninvasive biomarkers of subclinical acute rejection are needed to avoid the risks and costs associated with repeated biopsies. Methods We examined subclinical histologic and functional changes in kidney transplant recipients from the prospective Genomics of Chronic Allograft Rejection (GoCAR) study who underwent surveillance biopsies over 2 years, identifying those with subclinical or borderline acute cellular rejection (ACR) at 3 months (ACR-3) post-transplant. We performed RNA sequencing on whole blood collected from 88 indi- viduals at the time of 3-month surveillance biopsy to identify transcripts associated with ACR-3, developed a novel sequencing-based targeted expression assay, and validated this gene signature in an independent cohort.
    [Show full text]
  • Initial, Transient, and Specific Interaction Between G Protein
    Sato T. et al. Medical Research Archives, vol. 6, issue 9, September 2018 Page 1 of 25 ARTICLE Initial, transient, and specific interaction between G protein-coupled receptor and target G protein in parallel signal processing: a case of olfactory discrimination of cancer-induced odors Takaaki Sato1, Mutsumi Matsukawa2, Yoichi Mizutani3, Toshio Iijima4, Hiroyoshi Matsumura5 Authors’ affiliations: 1 Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Osaka, Japan 2 Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine, Tokyo, Japan 3 Department of Medical Engineering, Faculty of Health Science, Aino University, Osaka, Japan 4 Graduate School of Life Sciences, Tohoku University, Sendai, Japan 5 College of Life Sciences, Ritsumeikan University, Kusatsu, Japan * Corresponding author: Takaaki Sato, Biomedical Research Institute, National Institute of Ad- vanced Industrial Science and Technology, 1-8-31 Midorioka, Ikeda, Osaka 563-8577, Japan, E-mail: taka-sato@aist.go.jp Abstract: G protein-coupled receptors (GPCRs) detect and distinguish between various subtypes of extracellular sig- nals, such as neurotransmitters, hormones, light, and odorous chemicals. As determinants for robust and appropriate cellular responses, common and unique features of interactions between GPCRs and their target G proteins provide insights into structure-based drug design for treatment of GPCR-related diseases. Re- cently, we found that the hydrophobic core buried between GPCR helix 8 and TM1–2 is essential for acti- vation of both specific and nonspecific G proteins. Furthermore, the 2nd residue of helix 8 is responsible for initial, transient, and specific interaction with a target G protein. Analysis of human and murine olfactory receptors (ORs) and other class-A GPCRs revealed that several amino acids, such as Glu, Gln, and Asp, are conserved at this position.
    [Show full text]
  • S1PR1-Mediated IFNAR1 Degradation Modulates Plasmacytoid Dendritic Cell Interferon-Α Autoamplification
    S1PR1-mediated IFNAR1 degradation modulates plasmacytoid dendritic cell interferon-α autoamplification John R. Teijaroa,b,1,2, Sean Studerb,1, Nora Leafb, William B. Kiossesc, Nhan Nguyenb, Kosuke Matsukid, Hideo Negishid, Tadatsugu Taniguchid, Michael B. A. Oldstonea,2, and Hugh Rosenb,2 aDepartment of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037; bDepartment of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037; cCore Microscopy Facility, The Scripps Research Institute, La Jolla, CA 92037; and dDepartment of Molecular Immunology, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan Contributed by Michael B. A. Oldstone, December 23, 2015 (sent for review November 16, 2015; reviewed by Arturo Casadevall and Herbert W. Virgin) Blunting immunopathology without abolishing host defense is the curb resulting immune pathology during both infectious and foundation for safe and effective modulation of infectious and autoimmune disease states. autoimmune diseases. Sphingosine 1-phosphate receptor 1 (S1PR1) The goal of the current study was to generate a detailed mech- agonists are effective in treating infectious and multiple autoimmune anistic understanding of how S1PR1 selectively suppresses type I pathologies; however, mechanisms underlying their clinical efficacy IFN and cytokine amplification. Within this study, we demonstrate are yet to be fully elucidated. Here, we uncover an unexpected that S1PR1 signaling limits the IFN-α autoamplification loop in mechanism of convergence between S1PR1 and interferon alpha pDCs. S1PR1 agonist suppression is pertussis toxin (PT)-resistant, receptor 1 (IFNAR1) signaling pathways. Activation of S1PR1 signaling but it is inhibited by an S1PR1 C-terminal–derived transactivating by pharmacological tools or endogenous ligand sphingosine-1 phos- transcriptional activator (Tat)-fusion peptide that blocks receptor phate (S1P) inhibits type 1 IFN responses that exacerbate numerous internalization.
    [Show full text]
  • Unveiling Role of Sphingosine-1-Phosphate Receptor 2 As a Brake of Epithelial Stem Cell Proliferation and a Tumor Suppressor In
    Petti et al. Journal of Experimental & Clinical Cancer Research (2020) 39:253 https://doi.org/10.1186/s13046-020-01740-6 RESEARCH Open Access Unveiling role of sphingosine-1-phosphate receptor 2 as a brake of epithelial stem cell proliferation and a tumor suppressor in colorectal cancer Luciana Petti1, Giulia Rizzo2, Federica Rubbino2, Sudharshan Elangovan2, Piergiuseppe Colombo3, Silvia Restelli1, Andrea Piontini2, Vincenzo Arena4, Michele Carvello5, Barbara Romano6, Tommaso Cavalleri7, Achille Anselmo8, Federica Ungaro2, Silvia D’Alessio2, Antonino Spinelli2,5, Sanja Stifter9, Fabio Grizzi10, Alessandro Sgambato4,11, Silvio Danese1,2, Luigi Laghi7,12, Alberto Malesci2,7 and Stefania Vetrano1,2* Abstract Background: Sphingosine-1-phosphate receptor 2 (S1PR2) mediates pleiotropic functions encompassing cell proliferation, survival, and migration, which become collectively de-regulated in cancer. Information on whether S1PR2 participates in colorectal carcinogenesis/cancer is scanty, and we set out to fill the gap. Methods: We screened expression changes of S1PR2 in human CRC and matched normal mucosa specimens [N = 76]. We compared CRC arising in inflammation-driven and genetically engineered models in wild-type (S1PR2+/+) and S1PR2 deficient (S1PR2−/−) mice. We reconstituted S1PR2 expression in RKO cells and assessed their growth in xenografts. Functionally, we mimicked the ablation of S1PR2 in normal mucosa by treating S1PR2+/+ organoids with JTE013 and characterized intestinal epithelial stem cells isolated from S1PR2−/−Lgr5-EGFP- mice. Results: S1PR2 expression was lost in 33% of CRC; in 55%, it was significantly decreased, only 12% retaining expression comparable to normal mucosa. Both colitis-induced and genetic Apc+/min mouse models of CRC showed a higher incidence in size and number of carcinomas and/or high-grade adenomas, with increased cell proliferation in S1PR2−/− mice compared to S1PR2+/+ controls.
    [Show full text]
  • S1PR4 Signaling Attenuates ILT 7 Internalization to Limit IFN- Α Production by Human Plasmacytoid Dendritic Cells
    S1PR4 Signaling Attenuates ILT 7 Internalization To Limit IFN- α Production by Human Plasmacytoid Dendritic Cells This information is current as Christina Dillmann, Christian Ringel, Julia Ringleb, Javier of September 24, 2021. Mora, Catherine Olesch, Annika F. Fink, Edward Roberts, Bernhard Brüne and Andreas Weigert J Immunol published online 18 January 2016 http://www.jimmunol.org/content/early/2016/01/15/jimmun ol.1403168 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2016/01/15/jimmunol.140316 Material 8.DCSupplemental http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 24, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published January 18, 2016, doi:10.4049/jimmunol.1403168 The Journal of Immunology S1PR4 Signaling Attenuates ILT 7 Internalization To Limit IFN-a Production by Human Plasmacytoid Dendritic Cells Christina Dillmann,* Christian Ringel,* Julia Ringleb,* Javier Mora,* Catherine Olesch,* Annika F. Fink,* Edward Roberts,† Bernhard Brune,*€ and Andreas Weigert* Plasmacytoid dendritic cells (pDCs) produce large amounts of type I IFN in response to TLR7/9 ligands.
    [Show full text]