Theodore Payne Nursery: a Singular Resource Since 1960 by Lili Singer, Special Projects Coordinator
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Plum Crazy: Rediscovering Our Lost Prunus Resources W.R
Plum Crazy: Rediscovering Our Lost Prunus Resources W.R. Okie1 U.S. Department of Agriculture–Agricultural Research Service, Southeastern Fruit and Tree Nut Research Laboratory, 21 Dunbar Road, Byron, GA 31008 Recent utilization of genetic resources of peach [Prunus persica (‘Quetta’ from India, ‘John Rivers’ from England, and ‘Lippiatts’ (L.) Batsch] and Japanese plum (P. salicina Lindl. and hybrids) has from New Zealand) were critical to the development of modern been limited in the United States compared with that of many crops. nectarines in California (Taylor, 1959). However, most fresh-market Difficulties in collection, importation, and quarantine throughput have peach breeding programs in the United States have used germplasm limited the germplasm available. Prunus is more difficult to preserve developed in the United States for cultivar development (Okie, 1998). because more space is needed than for small fruit crops, and the shorter Only in New Jersey was there extensive hybridization with imported life of trees relative to other tree crops because of disease and insect clones, and most of these hybrids have not resulted in named cultivars problems. Lack of suitable rootstocks has also reduced tree life. The (Blake and Edgerton, 1946). trend toward fewer breeding programs, most of which emphasize In recent years, interest in collecting and utilizing novel germplasm “short-term” (long-term compared to most crops) commercial cultivar has increased. For example, non-melting clingstone peaches from development to meet immediate industry needs, has also contributed Mexico and Brazil have been used in the joint USDA–Univ. of to reduced use of exotic material. Georgia–Univ. of Florida breeding program for the development of Probably all modern commercial peaches grown in the United early ripening, non-melting, fresh-market peaches for low-chill areas States are related to ‘Chinese Cling’, a peach imported from China (Beckman and Sherman, 1996). -
Phylogeography of a Tertiary Relict Plant, Meconopsis Cambrica (Papaveraceae), Implies the Existence of Northern Refugia for a Temperate Herb
Article (refereed) - postprint Valtueña, Francisco J.; Preston, Chris D.; Kadereit, Joachim W. 2012 Phylogeography of a Tertiary relict plant, Meconopsis cambrica (Papaveraceae), implies the existence of northern refugia for a temperate herb. Molecular Ecology, 21 (6). 1423-1437. 10.1111/j.1365- 294X.2012.05473.x Copyright © 2012 Blackwell Publishing Ltd. This version available http://nora.nerc.ac.uk/17105/ NERC has developed NORA to enable users to access research outputs wholly or partially funded by NERC. Copyright and other rights for material on this site are retained by the rights owners. Users should read the terms and conditions of use of this material at http://nora.nerc.ac.uk/policies.html#access This document is the author’s final manuscript version of the journal article, incorporating any revisions agreed during the peer review process. Some differences between this and the publisher’s version remain. You are advised to consult the publisher’s version if you wish to cite from this article. The definitive version is available at http://onlinelibrary.wiley.com Contact CEH NORA team at [email protected] The NERC and CEH trademarks and logos (‘the Trademarks’) are registered trademarks of NERC in the UK and other countries, and may not be used without the prior written consent of the Trademark owner. 1 Phylogeography of a Tertiary relict plant, Meconopsis cambrica 2 (Papaveraceae), implies the existence of northern refugia for a 3 temperate herb 4 Francisco J. Valtueña*†, Chris D. Preston‡ and Joachim W. Kadereit† 5 *Área de Botánica, Facultad deCiencias, Universidad de Extremadura, Avda. de Elvas, s.n. -
Restoring Western Ranges and Wildlands
United States Department of Agriculture Restoring Western Forest Service Rocky Mountain Research Station General Technical Ranges and Wildlands Report RMRS-GTR-136-vol. 3 September 2004 Volume 3 Chapters 24–29, Appendices, Index Abstract ______________________________________ Monsen, Stephen B.; Stevens, Richard; Shaw, Nancy L., comps. 2004. Restoring western ranges and wildlands. Gen. Tech. Rep. RMRS-GTR-136-vol-3. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. Pages 699– 884 plus appendices and index. This work, in three volumes, provides background on philosophy, processes, plant materials selection, site preparation, and seed and seeding equipment for revegetating disturbed rangelands, emphasizing use of native species. The 29 chapters include guidelines for planning, conducting, and managing, and contain a compilation of rangeland revegetation research conducted over the last several decades to aid practitioners in reestablishing healthy communities and curbing the spread of invasive species. Volume 3 contains chapters 24-29 plus appendices and index. Keywords: rehabilitation, revegetation, plant ecology, seed, plant communities, wildlife habitat, invasive species, equipment, plant materials, native plants A B A—Hand-harvesting grass seed. B—Certification tag. C—Native plant propagation in greenhouse. D—Brush machine. E—Flail-vac harvesting needle-and thread grass. Restoring Western Ranges and Wildlands Compilers Stephen B. Monsen Volume 3 Richard Stevens Nancy L. Shaw Chapters 24–29, Appendices, Index D C E i The Compilers _____________________________________ Stephen B. Monsen (retired), Botanist, U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Shrub Sciences Laboratory, Provo, Utah Richard Stevens, Project Leader (retired), Utah Division of Wildlife Resources, Great Basin Research Center, Ephraim, Utah Nancy L. -
Thomas Coulter's 1832 Visits
Thomas Coulter’s Visits in 1832 the “narrow valley” of the San Luis Rey River, then crossed the Lake Hen- shaw plain and proceeded down the San Felipe valley to Vallecitos. En- Thomas Coulter (1793-1843) first came to the San Diego region in during hot days without water or much forage, the group finally passed April 1832, accompanying a group of Americans who purchased mules the Algodones Dunes and arrived south of the confluence of the Gila and and horses from the California missions and were driving them east to Colorado Rivers around May 8, 1832. Coulter camped ten days near pres- be sold in the United States [43]. He was 38 years old. He had arrived in ent-day Yuma while the Americans worked strenuously to ford the river Monterey six months earlier after working for five years in Mexico. at its seasonal height. From there he wrote a letter to de Candolle’s son, Coulter grew up Presbyterian in northeast Ireland and in 1820 be- dated May 16, 1832, saying “...here is nothing, nothing. This is truly the came a medical doctor or surgeon [44]. In 1822 he studied botany at kingdom of desolation” [49]. He then turned back west, accompanying the Jardin des Plantes in Paris and in Geneva under Augustin-Pyramus de Young, Warner, Kit Carson’s older brother Moses Carson, Isaac Williams Candolle (1778–1841), his mentor. In 1824 he took a position as surgeon and a few other men, reaching Pala around May 27. He returned to San for a British mining company and moved to central Mexico. -
Qty Size Name 9 1G Abies Bracteata 5 1G Acer Circinatum 4 5G Acer
REGIONAL PARKS BOTANIC GARDEN, TILDEN REGIONAL PARK, BERKELEY, CALIFORNIA Celebrating 77 years of growing California native plants: 1940-2017 **FIRST PRELIMINARY**PLANT SALE LIST **FIRST PRELIMINARY** First Preliminary Plant Sale List 9/29/2017 visit: www.nativeplants.org for the most up to date plant list, updates are posted until 10/6 FALL PLANT SALE OF CALIFORNIA NATIVE PLANTS SATURDAY, October 7, 2017 PUBLIC SALE: 10:00 AM TO 3:00 PM MEMBERS ONLY SALE: 9:00 AM TO 10:00 AM MEMBERSHIPS ARE AVAILABLE AT THE ENTRY TO THE SALE AT 8:30 AM Qty Size Name 9 1G Abies bracteata 5 1G Acer circinatum 4 5G Acer circinatum 7 4" Achillea millefolium 6 1G Achillea millefolium 'Island Pink' 15 4" Achillea millefolium 'Island Pink' 6 1G Actea rubra f. neglecta (white fruits) 15 1G Adiantum aleuticum 30 4" Adiantum capillus-veneris 15 4" Adiantum x tracyi (A. jordanii x A. aleuticum) 5 1G Alnus incana var. tenuifolia 1 1G Alnus rhombifolia 1 1G Ambrosia pumila 13 4" Ambrosia pumila 7 1G Anemopsis californica 6 1G Angelica hendersonii 1 1G Angelica tomentosa 6 1G Apocynum cannabinum 10 1G Aquilegia eximia 11 1G Aquilegia eximia 10 1G Aquilegia formosa 6 1G Aquilegia formosa 1 1G Arctostaphylos andersonii 3 1G Arctostaphylos auriculata 5 1G Arctostaphylos bakeri 10 1G Arctostaphylos bakeri 'Louis Edmunds' 5 1G Arctostaphylos catalinae 1 1G Arctostaphylos columbiana x A. uva-ursi 10 1G Arctostaphylos confertiflora 3 1G Arctostaphylos crustacea subsp. subcordata 3 1G Arctostaphylos cruzensis 1 1G Arctostaphylos densiflora 'James West' 10 1G Arctostaphylos edmundsii 'Big Sur' 2 1G Arctostaphylos edmundsii 'Big Sur' 22 1G Arctostaphylos edmundsii var. -
The Pubescent-Fruited Species of Prunus of the Southwestern States
THE PUBESCENT-FRUITED SPECIES OF PRUNUS OF THE SOUTHWESTERN STATES By SIMS C. MASON, Arboriculturist, Crop Physiology and Breeding Investigations, Bureau of Plant Industry INTRODUCTION The species of the genus Prunus described in this article occupy a unique position in the flora of the western United States from the fact that their relationship with the wild plums of the country is remote and they are more closely allied to some of the Asiatic species of this genus. Their economic importance arises chiefly from their close adaptation to the climatic and soil conditions of the Southwest, where fluctuations of heat and cold, severe drought, and considerable alkalinity of the soil must be endured by most tree crops. Adaptable stocks for the cultivated forms of Prunus capable of meeting such conditions are eagerly sought. Species with such characters which are capable of being hybridized with the old-established cultivated forms of the genus offer attractive possibilities to the plant breeder. This is especially true of the one edible-fruited form, Prunus texana, which affords in aroma and flavor of fruit most attractive characters for combi- nation with other stone fruits of larger size and more staple commercial character. Instead of forming a homogeneous group, as has usually been be- lieved, these species fall into small groups of quite diverse character and affinities. To the plant breeder and student of their economic possibilities these relationships are of such importance that the following detailed study of them is deemed essential -
University of California, San Diego
UNIVERSITY OF CALIFORNIA, SAN DIEGO Evolutionary Genetics of Self-incompatibility in Solanaceae and Papaveraceae A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Biology by Timothy Paape Committee in charge: Professor Joshua R. Kohn, Chair Professor Ronald S. Burton Professor Lin Chao Professor Stephen G. Weller Professor Christopher Wills 2009 Copyright Timothy Paape, 2009 All rights reserved. ii The dissertation of Timothy Paape is approved, and it is acceptable in quality and form for publication on microfilm and electronically: Chair University of California, San Diego iii Table of Contents Signature Page............................................................................................................. iii Table of Contents ........................................................................................................ iv List of Tables .............................................................................................................. vi List of Figures ............................................................................................................. viii Acknowledgements ..................................................................................................... x Vita and Publications................................................................................................... xi Abstract of the Dissertation ......................................................................................... xiii Chapter I .................................................................................................................... -
Matilija Poppies by Wes Janssen, UCCE Master Gardener
Mastering Your Garden Matilija Poppies By Wes Janssen, UCCE Master Gardener ecember of 1890. After a few years of friendly disagreement are prohibitively difficult to propagate from seed, so propagation over three nominated candidates, the California State Floral is typically done by carefully selecting segments of rhizome in SocietyD made its selection for a proposed official state flower. November or December. It is recommended that you buy plants The California Legislature doesn’t seem to have considered the in one-gallon containers from a nursery that provides native matter as urgent, passing a bill in 1903 that, when signed by plants. Select the healthiest plants and be careful not to disturb Governor George Pardee, conferred that honor on Eschscholzia the roots when planting. The easiest way to do that is to cut off californica, the California poppy. Most agreed, and most still do: the bottom of the pot and then cut the pot down the sides, once in it was the obvious choice. the planting hole, to remove. Newly transplanted Matilija poppies There were dissenters. A minority had advocated for need to be watered until established. However once established Coulter’s Matilija Poppy, Romneya coulteri. The plant takes its your patience and resolve will be rewarded. These plants will common name from Chief Matilija of the Chumash peoples of need no supplemental watering and will flower spectacularly present-day Santa Barbara and Ventura counties and the Channel through each spring and early summer. Islands. Most commonly known as Matilija Poppy, the perennial Space is a second requirement because once established plant is also called California Tree Poppy, as the flower stems are Matilija poppies will demand plenty of three-dimensional space. -
Managing Intermountain Rangelands
This file was created by scanning the printed publication. Errors identified by the software have been corrected; however, some errors may remain. USE OF ROSACEOUS SHRUBS FOR WILDLAND PLANTINGS IN THE INTERMOUNTAIN WEST Robert B. Ferguson ABSTRACT: This paper summarizes information on While many of the early efforts to use shrub Rosaceous shrubs to assist range or wildlife species in artificial revegetation centered on managers in planning range improvement projects. bitterbrush, other members of the Rosaceae were Species from at least 16 different genera of the being studied and recommended. Plummer and Rosaceae family have been used, or are others (1968) listed species that could be used potentially useful, for revegetating disturbed in revegetation programs in Utah, including true wildlands in the Intermountain West. mountain mahogany (Cercocarpus montanus Raf.), Information is given on form and rate of growth, curlleaf mountain mahogany (C. ledifolius reproduction, longevity, and geographical Nutt.), cliffrose (Cowania mexicana var. distribution of useful Rosaceous shrubs. stansburiana [Torr.] Jeps.), desert bitterbrush Information is also presented on forage value, (Purshia glandulosa Curran), Saskatoon response to fire and herbicides, and the effects serviceberry (Amelanchier alnifolia Nutt.), Utah of insects and disease. Finally, methods used serviceberry (A. utahensis Koehne), Woods rose for the establishment of the Rosaceous shrubs (Rosa woodsii Lindl.), apache plume (Fallugia are described. paradoxa·[D. Don] Endl.), black chokecherry (Prunus virginiana L. var. melanocarpa [A. Nels.] Sarg.), desert peachbrush (P. fasciculata INTRODUCTION [Torr.] Gray), American plum (P. americana Marsh), squawapple (Peraphyllum ramosissimum William A. Dayton (1931), early plant ecologist Nutt.), and bush cinquefoil (Potentilla of the Forest Service, stated, "The rose group fruticosa L.). -
Letter Report (December 7, 2020)
Appendix B Biological Letter Report (December 7, 2020) STREET 605 THIRD 92024 CALIFORNIA ENCINITAS. F 760.632.0164 T 760.942.5147 December 7, 2020 11575 John R. Tschudin, Jr. Director – Design & Construction Encompass Health 9001 Liberty Parkway Birmingham, Alabama 35242 Subject: Biology Letter Report for Encompass Health Chula Vista, City of Chula Vista, California Dear Mr. Tschudin: This letter report provides an analysis of potential biological resource impacts associated with Encompass Health Chula Vista (proposed project) located in the City of Chula Vista (City), California (Assessor’s Parcel Number 644- 040-01-00). This biology letter report also includes a discussion of any potential biological resources that may be subject to regulation under the City of Chula Vista Multiple Species Conservation Program (MSCP) Subarea Plan (Subarea Plan) (City of Chula Vista 2003). Project Location The property (i.e., on-site; Assessor’s Parcel Number 644-040-01-00) occupies 9.79 acres and is located approximately 0.2 miles east of Interstate 805 between Main Street and Olympic Parkway (Figure 1, Project Location). The project also includes an off-site impact area of 0.22 acre located along the southeastern corner of the site where future utility connections may occur, making the total study area acreage for the project 10.01 acres. The site is located on Shinohara Lane accessed from Brandywine Avenue and is located on the U.S. Geological Service 7.5-minute series topographic Imperial Beach quadrangle map. The site exists within an urban portion of the City and is bound on the south and east by industrial buildings, to the west by single-family residences, and to the north by multi-family condominiums (Figure 2, Aerial Image). -
Flora of the Sierra Nevada Aquatic Research Laboratory Annotated Catalog of Vascular Plants
Flora of the Sierra Nevada Aquatic Research Laboratory Annotated Catalog of Vascular Plants Updated June 2013 Ann M. Howald This updated catalog for the flora of the Sierra Nevada Aquatic Research Laboratory (SNARL) includes all vascular plants identified during field studies conducted from 1978 through spring 2013. Taxonomic nomenclature is mainly consistent with The Jepson Manual, Second Edition (Baldwin et al. 2012). The families, genera, and species are arranged alphabetically. The scientific name of each species is followed by a common name of popular usage. No attempt was made to determine all common names that might apply to a given species. Scientific names of native species are in bold type; those of introduced species are in plain type. Annotations for all taxa include: 1) life form (e.g., annual herb, perennial herb, etc.); 2) flower color; and 3) the general abundance and distribution at SNARL. For flowering plants, the approximate flowering period in the eastern Sierra is given. Locations of most landscape features mentioned in the text (e.g., headquarters building, stream control structure 3, etc.) and numbering of the stream control structures, are as shown on current maps of SNARL. The most recent previously applied scientific name is given in brackets. A voucher specimen deposited at a herbarium participating in the Consortium of California Herbaria (CCH) is cited for most taxa. A set of duplicate herbarium specimens is housed at SNARL. DIVISION SPHENOPHYTA Equisetaceae. Horsetail Family Equisetum laevigatum A. Braun. Smooth Scouring Rush. Rhizomatous perennial herb. Occasional in moist areas near Convict Creek, near the laboratory and other buildings. -
Thomas Coulter's Californian Exsiccata
Aliso: A Journal of Systematic and Evolutionary Botany Volume 37 Issue 1 Issue 1–2 Article 2 2019 Plantae Coulterianae: Thomas Coulter’s Californian Exsiccata Gary D. Wallace California Botanic Garden, Claremont, CA Follow this and additional works at: https://scholarship.claremont.edu/aliso Part of the Botany Commons Recommended Citation Wallace, Gary D. (2020) "Plantae Coulterianae: Thomas Coulter’s Californian Exsiccata," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 37: Iss. 1, Article 2. Available at: https://scholarship.claremont.edu/aliso/vol37/iss1/2 Aliso, 37(1–2), pp. 1–73 ISSN: 0065-6275 (print), 2327-2929 (online) PLANTAE COULTERIANAE: THOMAS COULTER’S CALIFORNIAN EXSICCATA Gary D. Wallace California Botanic Garden [formerly Rancho Santa Ana Botanic Garden], 1500 North College Avenue, Claremont, California 91711 ([email protected]) abstract An account of the extent, diversity, and importance of the Californian collections of Thomas Coulter in the herbarium (TCD) of Trinity College, Dublin, Ireland, is presented here. It is based on examination of collections in TCD, several other collections available online, and referenced literature. Additional infor- mation on historical context, content of herbarium labels and annotations is included. Coulter’s collections in TCD are less well known than partial duplicate sets at other herbaria. He was the first botanist to cross the desert of southern California to the Colorado River. Coulter’s collections in TCD include not only 60 vascular plant specimens previously unidentified as type material but also among the first moss andmarine algae specimens known to be collected in California. A list of taxa named for Thomas Coulter is included.