Triangulating the Evolution of the Vertebral Column in the Last Common Ancestor: Thoracolumbar Transverse Process Homology in the Hominoidea

Total Page:16

File Type:pdf, Size:1020Kb

Triangulating the Evolution of the Vertebral Column in the Last Common Ancestor: Thoracolumbar Transverse Process Homology in the Hominoidea TRIANGULATING THE EVOLUTION OF THE VERTEBRAL COLUMN IN THE LAST COMMON ANCESTOR: THORACOLUMBAR TRANSVERSE PROCESS HOMOLOGY IN THE HOMINOIDEA A dissertation submitted to Kent State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy by Burt A. Rosenman May 2008 Dissertation written by Burt A. Rosenman B.A., Wesleyan University, 1995 M.A., Kent State University, 1998 Ph.D., Kent State University, 2008 Approved by Dr. C. Owen Lovejoy Chair, Doctoral Dissertation Committee Dr. Richard S. Meindl Member, Doctoral Dissertation Committee Dr. Christopher J. Vinyard Member, Doctoral Dissertation Committee Dr. John R. D. Stalvey Member, Doctoral Dissertation Committee Accepted by Dr. Robert V. Dorman Director, School of Biomedical Sciences Dr. John R. D. Stalvey Dean, College of Arts and Sciences ii TABLE OF CONTENTS LIST OF FIGURES…………………………………………………………….....v LIST OF TABLES………………………………………………………………..xi ACKNOWLEDGEMENTS .................................................................................. xii Chapter I. INTRODUCTION .............................................................................1 II. SERIAL HOMOLOGY OF THE CATARHINE LUMBAR TRANSVERSE PROCESS ...............................................................5 Introduction and Background ...........................................................5 Materials and Methods ....................................................................10 Results .............................................................................................11 TTP Seriation ..................................................................................11 Illustrative Specimens .....................................................................23 Discussion .....................................................................................160 Similarities Among Taxa ..............................................................161 Autapomorphies in Taxa ...............................................................162 The Evolution of Short Backs in the Great Apes ..........................164 III. AUSTRALOPITHECINES HAD A MINIMUM OF SIX LUMBAR VERTEBRAE .............................................................166 Introduction ...................................................................................166 Materials and Methods ..................................................................167 Results ...........................................................................................169 Sts 14 .............................................................................................169 Stw 431 .........................................................................................177 Discussion .....................................................................................185 Developmental Considerations .....................................................185 Selective Considerations ...............................................................190 Conclusion ....................................................................................191 IV. INTERSPECIFIC DIFFERENCES IN RELATIVE LUMBO- SACRAL TRANSVERSE PROCESS DIMENSIONS…………192 iii Introduction ...................................................................................192 Materials and Methods ..................................................................193 Results ...........................................................................................196 Relative Last Rib Length ..............................................................196 Relative Mean LTP Width ............................................................196 Relative Sacral Width ...................................................................202 Discussion and Conclusions .........................................................202 V. TRIANGULATING THE LAST COMMON ANCESTOR: EVIDENCE FROM THE VERTEBRAL COLUMN ...................206 Introduction ...................................................................................206 Miocene Hominoid Vertebral Evolution ......................................207 Lumbar reduction in the apes ........................................................209 Summary: A Model for Hominoid Spinal Evolution ...................212 REFERENCES ....................................................................................................214 iv LIST OF FIGURES 1. Owen’s archetypal vertebra ...............................................................................6 2. USNM 396188 ..................................................................................................13 3. USNM 153801 ..................................................................................................15 4. USNM 270807 ..................................................................................................16 5. HTB 1857..........................................................................................................18 6. HTB 2025..........................................................................................................19 7. HTB 1741..........................................................................................................21 8. HTH 2303 .........................................................................................................22 9. USNM 3837831 ................................................................................................24 10. USNM 354989 ................................................................................................26 11. USNM 395439 ................................................................................................27 12. AMNH 35042 .................................................................................................28 13. AMNH 80774 .................................................................................................30 14. AMNH 202416 ...............................................................................................31 15. AMNH 235289 ...............................................................................................32 16. AMNH 238099 ...............................................................................................34 17. HTB 3891........................................................................................................35 18. HTB 3899........................................................................................................37 19. HTB 3903........................................................................................................38 20. HTB 3907........................................................................................................40 v 21. USNM 49657 ..................................................................................................41 22. USNM 198840 ................................................................................................42 23. USNM 271047 ................................................................................................44 24. USNM 347647 ................................................................................................45 25. USNM 347648 ................................................................................................46 26. USNM 545009 ................................................................................................48 27. AMNH 43065 .................................................................................................49 28. MCZ 41420 .....................................................................................................50 29. MCZ 41426 .....................................................................................................51 30. MCZ 41454 .....................................................................................................53 31. HTB 1030........................................................................................................54 32. HTB 1055........................................................................................................56 33. USNM 142170 ................................................................................................57 34. USNM 145300 ................................................................................................58 35. MCZ 37362 .....................................................................................................60 36. MCZ 50958 .....................................................................................................61 37. HTB 374..........................................................................................................63 38. HTB 1409........................................................................................................64 39. HTB 1419........................................................................................................66 40. HTB 1422........................................................................................................67 41. HTB 1730........................................................................................................68 42. HTB 1733........................................................................................................70 43. HTB 1743........................................................................................................71 vi 44. HTB 1751........................................................................................................72
Recommended publications
  • The Structure and Function of Breathing
    CHAPTERCONTENTS The structure-function continuum 1 Multiple Influences: biomechanical, biochemical and psychological 1 The structure and Homeostasis and heterostasis 2 OBJECTIVE AND METHODS 4 function of breathing NORMAL BREATHING 5 Respiratory benefits 5 Leon Chaitow The upper airway 5 Dinah Bradley Thenose 5 The oropharynx 13 The larynx 13 Pathological states affecting the airways 13 Normal posture and other structural THE STRUCTURE-FUNCTION considerations 14 Further structural considerations 15 CONTINUUM Kapandji's model 16 Nowhere in the body is the axiom of structure Structural features of breathing 16 governing function more apparent than in its Lung volumes and capacities 19 relation to respiration. This is also a region in Fascla and resplrstory function 20 which prolonged modifications of function - Thoracic spine and ribs 21 Discs 22 such as the inappropriate breathing pattern dis- Structural features of the ribs 22 played during hyperventilation - inevitably intercostal musculature 23 induce structural changes, for example involving Structural features of the sternum 23 Posterior thorax 23 accessory breathing muscles as well as the tho- Palpation landmarks 23 racic articulations. Ultimately, the self-perpetuat- NEURAL REGULATION OF BREATHING 24 ing cycle of functional change creating structural Chemical control of breathing 25 modification leading to reinforced dysfunctional Voluntary control of breathing 25 tendencies can become complete, from The autonomic nervous system 26 whichever direction dysfunction arrives, for Sympathetic division 27 Parasympathetic division 27 example: structural adaptations can prevent NANC system 28 normal breathing function, and abnormal breath- THE MUSCLES OF RESPIRATION 30 ing function ensures continued structural adap- Additional soft tissue influences and tational stresses leading to decompensation.
    [Show full text]
  • Vertebral Column and Thorax
    Introduction to Human Osteology Chapter 4: Vertebral Column and Thorax Roberta Hall Kenneth Beals Holm Neumann Georg Neumann Gwyn Madden Revised in 1978, 1984, and 2008 The Vertebral Column and Thorax Sternum Manubrium – bone that is trapezoidal in shape, makes up the superior aspect of the sternum. Jugular notch – concave notches on either side of the superior aspect of the manubrium, for articulation with the clavicles. Corpus or body – flat, rectangular bone making up the major portion of the sternum. The lateral aspects contain the notches for the true ribs, called the costal notches. Xiphoid process – variably shaped bone found at the inferior aspect of the corpus. Process may fuse late in life to the corpus. Clavicle Sternal end – rounded end, articulates with manubrium. Acromial end – flat end, articulates with scapula. Conoid tuberosity – muscle attachment located on the inferior aspect of the shaft, pointing posteriorly. Ribs Scapulae Head Ventral surface Neck Dorsal surface Tubercle Spine Shaft Coracoid process Costal groove Acromion Glenoid fossa Axillary margin Medial angle Vertebral margin Manubrium. Left anterior aspect, right posterior aspect. Sternum and Xyphoid Process. Left anterior aspect, right posterior aspect. Clavicle. Left side. Top superior and bottom inferior. First Rib. Left superior and right inferior. Second Rib. Left inferior and right superior. Typical Rib. Left inferior and right superior. Eleventh Rib. Left posterior view and left superior view. Twelfth Rib. Top shows anterior view and bottom shows posterior view. Scapula. Left side. Top anterior and bottom posterior. Scapula. Top lateral and bottom superior. Clavicle Sternum Scapula Ribs Vertebrae Body - Development of the vertebrae can be used in aging of individuals.
    [Show full text]
  • The Partial Skeleton Stw 431 from Sterkfontein – Is It Time to Rethink the Plio-Pleistocene Hominin Diversity in South Africa?
    doie-pub 10.4436/JASS.98020 ahead of print JASs Reports doi: 10.4436/jass.89003 Journal of Anthropological Sciences Vol. 98 (2020), pp. 73-88 The partial skeleton StW 431 from Sterkfontein – Is it time to rethink the Plio-Pleistocene hominin diversity in South Africa? Gabriele A. Macho1, Cinzia Fornai 2, Christine Tardieu3, Philip Hopley4, Martin Haeusler5 & Michel Toussaint6 1) Earth and Planetary Science, Birkbeck, University of London, London WC1E 7HX, England; School of Archaeology, University of Oxford, Oxford OX1 3QY, England email: [email protected]; [email protected] 2) Institute of Evolutionary Medicine, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; Department of Anthropology, University of Vienna, Althanstraße 14, 1090 Vienna, Austria 3) Muséum National d’Histoire Naturelle, 55 rue Buffon, 75005 Paris, France 4) Earth and Planetary Science, Birkbeck, University of London, London WC1E 7HX; Department of Earth Sciences, University College London, London, WC1E 6BT, England 5) Institute of Evolutionary Medicine, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland 6) retired palaeoanthropologist, Belgium email: [email protected] Summary - The discovery of the nearly complete Plio-Pleistocene skeleton StW 573 Australopithecus prometheus from Sterkfontein Member 2, South Africa, has intensified debates as to whether Sterkfontein Member 4 contains a hominin species other than Australopithecus africanus. For example, it has recently been suggested that the partial skeleton StW 431 should be removed from the A. africanus hypodigm and be placed into A. prometheus. Here we re-evaluate this latter proposition, using published information and new comparative data. Although both StW 573 and StW 431 are apparently comparable in their arboreal (i.e., climbing) and bipedal adaptations, they also show significant morphological differences.
    [Show full text]
  • Copyrighted Material
    C01 10/31/2017 11:23:53 Page 1 1 1 The Normal Anatomy of the Neck David Bainbridge Introduction component’ of the neck is a common site of pathology, and the diverse forms of neck The neck is a common derived characteristic disease reflect the sometimes complex and of land vertebrates, not shared by their aquatic conflicting regional variations and functional ancestors. In fish, the thoracic fin girdle, the constraints so evident in this region [2]. precursor of the scapula, coracoid and clavi- Unlike the abdomen and thorax, there is no cle, is frequently fused to the caudal aspect of coelomic cavity in the neck, yet its ventral part the skull. In contrast, as vertebrates emerged is taken up by a relatively small ‘visceral on to the dry land, the forelimb separated from compartment’, containing the larynx, trachea, the head and the intervening vertebrae speci- oesophagus and many important vessels, alised to form a relatively mobile region – the nerves and endocrine glands. However, I neck – to allow the head to be freely steered in will not review these structures, as they do many directions. not represent an extension of the equine ‘back’ With the exception of the tail, the neck in the same way that the more dorsal locomo- remains the most mobile region of the spinal tor region does. column in modern-day horses. It permits a wide range of sagittal plane flexion and exten- sion to allow alternating periods of grazing Cervical Vertebrae 3–7 and predator surveillance, as well as frontal plane flexion to allow the horizon to be scan- Almost all mammals, including the horse, ned, and rotational movement to allow possess seven cervical vertebrae, C1 to C7 nuisance insects to be flicked off.
    [Show full text]
  • Part 1 the Thorax ECA1 7/18/06 6:30 PM Page 2 ECA1 7/18/06 6:30 PM Page 3
    ECA1 7/18/06 6:30 PM Page 1 Part 1 The Thorax ECA1 7/18/06 6:30 PM Page 2 ECA1 7/18/06 6:30 PM Page 3 Surface anatomy and surface markings The experienced clinician spends much of his working life relating the surface anatomy of his patients to their deep structures (Fig. 1; see also Figs. 11 and 22). The following bony prominences can usually be palpated in the living subject (corresponding vertebral levels are given in brackets): •◊◊superior angle of the scapula (T2); •◊◊upper border of the manubrium sterni, the suprasternal notch (T2/3); •◊◊spine of the scapula (T3); •◊◊sternal angle (of Louis) — the transverse ridge at the manubrio-sternal junction (T4/5); •◊◊inferior angle of scapula (T8); •◊◊xiphisternal joint (T9); •◊◊lowest part of costal margin—10th rib (the subcostal line passes through L3). Note from Fig. 1 that the manubrium corresponds to the 3rd and 4th thoracic vertebrae and overlies the aortic arch, and that the sternum corre- sponds to the 5th to 8th vertebrae and neatly overlies the heart. Since the 1st and 12th ribs are difficult to feel, the ribs should be enu- merated from the 2nd costal cartilage, which articulates with the sternum at the angle of Louis. The spinous processes of all the thoracic vertebrae can be palpated in the midline posteriorly, but it should be remembered that the first spinous process that can be felt is that of C7 (the vertebra prominens). The position of the nipple varies considerably in the female, but in the male it usually lies in the 4th intercostal space about 4in (10cm) from the midline.
    [Show full text]
  • Evaluation and Treatment of Selected Sacral Somatic Dysfunctions
    Evaluation and Treatment of Selected Sacral Somatic Dysfunctions Using Direct and HVLA Techniques including Counterstrain and Muscle Energy AND Counterstrain Treatment of the Pelvis and Sacrum F. P. Wedel, D.O. Associate Adjunct Professor in Osteopathic Principles and Practice A.T. Still University School of Osteopathic Medicine in Arizona, and private practice in Family Medicine in Tucson, Arizona Learning Objectives HOURS 1 AND 2 Review the following diagnostic and treatment techniques related to sacral torsion Lumbosacral spring test Sacral palpation Seated flexion test HOURS 3 AND 4 Counterstrain treatments of various low back pathologies Sacral Techniques Covered : 1. Prone, direct, muscle energy, for sacral rotation on both same and opposite axes 2. HVLA treatment for sacral rotation on both same and opposite axes 3. Counterstain treatment of sacral tender points and of sacral torsion Counterstrain Multifidi and Rotatores : UP5L Gluteii – maximus: HFO-SI, HI, P 3L- P 4L ,medius, minimus Piriformis Background and Basis The 4 Osteopathic Tenets (Principles) 1. The body is a unit; the person is a unit of body, mind, and spirit. 2. Structure and function are reciprocally inter-related. 3. The body is capable of self- regulation, self-healing, and health maintenance. 4. Rational treatment is based upon an understanding of these basic principles. Somatic Dysfunction - Defined • “Impaired or altered function of related components of the somatic (body framework) system: • Skeletal, arthrodial, and myofascial structures, • And… • Related vascular, lymphatic, and neural elements” Treatment Options for Somatic Dysfunctions All somatic dysfunctions have a restrictive barrier which are considered “pathologic” This restriction inhibits movement in one direction which causes asymmetry within the joint: The goal of osteopathic treament is to eliminate the restrictive barrier thus restoring symmetry….
    [Show full text]
  • Study Guide Medical Terminology by Thea Liza Batan About the Author
    Study Guide Medical Terminology By Thea Liza Batan About the Author Thea Liza Batan earned a Master of Science in Nursing Administration in 2007 from Xavier University in Cincinnati, Ohio. She has worked as a staff nurse, nurse instructor, and level department head. She currently works as a simulation coordinator and a free- lance writer specializing in nursing and healthcare. All terms mentioned in this text that are known to be trademarks or service marks have been appropriately capitalized. Use of a term in this text shouldn’t be regarded as affecting the validity of any trademark or service mark. Copyright © 2017 by Penn Foster, Inc. All rights reserved. No part of the material protected by this copyright may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the copyright owner. Requests for permission to make copies of any part of the work should be mailed to Copyright Permissions, Penn Foster, 925 Oak Street, Scranton, Pennsylvania 18515. Printed in the United States of America CONTENTS INSTRUCTIONS 1 READING ASSIGNMENTS 3 LESSON 1: THE FUNDAMENTALS OF MEDICAL TERMINOLOGY 5 LESSON 2: DIAGNOSIS, INTERVENTION, AND HUMAN BODY TERMS 28 LESSON 3: MUSCULOSKELETAL, CIRCULATORY, AND RESPIRATORY SYSTEM TERMS 44 LESSON 4: DIGESTIVE, URINARY, AND REPRODUCTIVE SYSTEM TERMS 69 LESSON 5: INTEGUMENTARY, NERVOUS, AND ENDOCRINE S YSTEM TERMS 96 SELF-CHECK ANSWERS 134 © PENN FOSTER, INC. 2017 MEDICAL TERMINOLOGY PAGE III Contents INSTRUCTIONS INTRODUCTION Welcome to your course on medical terminology. You’re taking this course because you’re most likely interested in pursuing a health and science career, which entails ­proficiency­in­communicating­with­healthcare­professionals­such­as­physicians,­nurses,­ or dentists.
    [Show full text]
  • Skeletal System? Skeletal System Chapters 6 & 7 Skeletal System = Bones, Joints, Cartilages, Ligaments
    Warm-Up Activity • Fill in the names of the bones in the skeleton diagram. Warm-Up 1. What are the 4 types of bones? Give an example of each. 2. Give 3 ways you can tell a female skeleton from a male skeleton. 3. What hormones are involved in the skeletal system? Skeletal System Chapters 6 & 7 Skeletal System = bones, joints, cartilages, ligaments • Axial skeleton: long axis (skull, vertebral column, rib cage) • Appendicular skeleton: limbs and girdles Appendicular Axial Skeleton Skeleton • Cranium (skull) • Clavicle (collarbone) • Mandible (jaw) • Scapula (shoulder blade) • Vertebral column (spine) • Coxal (pelvic girdle) ▫ Cervical vertebrae • Humerus (arm) ▫ Thoracic vertebrae • Radius, ulna (forearm) ▫ Lumbar vertebrae • Carpals (wrist) • Metacarpals (hand) ▫ Sacrum • Phalanges (fingers, toes) ▫ Coccyx • Femur (thigh) • Sternum (breastbone) • Tibia, fibula (leg) • Ribs • Tarsal, metatarsals (foot) • Calcaneus (heel) • Patella (knee) Functions of the Bones • Support body and cradle soft organs • Protect vital organs • Movement: muscles move bones • Storage of minerals (calcium, phosphorus) & growth factors • Blood cell formation in bone marrow • Triglyceride (fat) storage Classification of Bones 1. Long bones ▫ Longer than they are wide (eg. femur, metacarpels) 2. Short bones ▫ Cube-shaped bones (eg. wrist and ankle) ▫ Sesamoid bones (within tendons – eg. patella) 3. Flat bones ▫ Thin, flat, slightly curved (eg. sternum, skull) 4. Irregular bones ▫ Complicated shapes (eg. vertebrae, hips) Figure 6.2 • Adult = 206 bones • Types of bone
    [Show full text]
  • The Influence of the Rib Cage on the Static and Dynamic Stability
    www.nature.com/scientificreports OPEN The infuence of the rib cage on the static and dynamic stability responses of the scoliotic spine Shaowei Jia1,2, Liying Lin3, Hufei Yang2, Jie Fan2, Shunxin Zhang2 & Li Han3* The thoracic cage plays an important role in maintaining the stability of the thoracolumbar spine. In this study, the infuence of a rib cage on static and dynamic responses in normal and scoliotic spines was investigated. Four spinal fnite element (FE) models (T1–S), representing a normal spine with rib cage (N1), normal spine without rib cage (N2), a scoliotic spine with rib cage (S1) and a scoliotic spine without rib cage (S2), were established based on computed tomography (CT) images, and static, modal, and steady-state analyses were conducted. In S2, the Von Mises stress (VMS) was clearly decreased compared to S1 for four bending loadings. N2 and N1 showed a similar VMS to each other, and there was a signifcant increase in axial compression in N2 and S2 compared to N1 and S1, respectively. The U magnitude values of N2 and S2 were higher than in N1 and S1 for fve loadings, respectively. The resonant frequencies of N2 and S2 were lower than those in N1 and S1, respectively. In steady-state analysis, maximum amplitudes of vibration for N2 and S2 were signifcantly larger than N1 and S1, respectively. This study has revealed that the rib cage improves spinal stability in vibrating environments and contributes to stability in scoliotic spines under static and dynamic loadings. Scoliosis, a three-dimensional deformity, prevents healthy development.
    [Show full text]
  • Anatomical Study of the Superior Cluneal Nerve and Its Estimation of Prevalence As a Cause of Lower Back Pain in a South African Population
    Anatomical study of the superior cluneal nerve and its estimation of prevalence as a cause of lower back pain in a South African population by Leigh-Anne Loubser (10150804) Dissertation to be submitted in full fulfilment of the requirements for the degree Master of Science in Anatomy In the Faculty of Health Science University of Pretoria Supervisor: Prof AN Van Schoor1 Co-supervisor: Dr RP Raath2 1 Department of Anatomy, University of Pretoria 2 Netcare Jakaranda Hospital, Pretoria 2017 DECLARATION OF ORIGINALITY UNIVERSITY OF PRETORIA The Department of Anatomy places great emphasis upon integrity and ethical conduct in the preparation of all written work submitted for academic evaluation. While academic staff teach you about referencing techniques and how to avoid plagiarism, you too have a responsibility in this regard. If you are at any stage uncertain as to what is required, you should speak to your lecturer before any written work is submitted. You are guilty of plagiarism if you copy something from another author’s work (e.g. a book, an article, or a website) without acknowledging the source and pass it off as your own. In effect, you are stealing something that belongs to someone else. This is not only the case when you copy work word-for-word (verbatim), but also when you submit someone else’s work in a slightly altered form (paraphrase) or use a line of argument without acknowledging it. You are not allowed to use work previously produced by another student. You are also not allowed to let anybody copy your work with the intention of passing if off as his/her work.
    [Show full text]
  • Virtual Reconstruction of the Australopithecus Africanus Pelvis Sts 65 with Implications for Obstetrics and Locomotion
    Journal of Human Evolution 99 (2016) 10e24 Contents lists available at ScienceDirect Journal of Human Evolution journal homepage: www.elsevier.com/locate/jhevol Virtual reconstruction of the Australopithecus africanus pelvis Sts 65 with implications for obstetrics and locomotion * Alexander G. Claxton a, , Ashley S. Hammond b, c, Julia Romano a, Ekaterina Oleinik d, Jeremy M. DeSilva a, e a Department of Anthropology, Boston University, Boston, MA 02215, USA b Center for Advanced Study of Human Paleobiology, Department of Anthropology, The George Washington University, Washington, DC 20052, USA c Department of Anatomy, Howard University College of Medicine, Washington, DC 20059, USA d Scientific Computing and Visualization, Boston University, Boston, MA 02215, USA e Department of Anthropology, Dartmouth College, Hanover, NH 03755, USA article info abstract Article history: Characterizing australopith pelvic morphology has been difficult in part because of limited fossilized Received 24 February 2014 pelvic material. Here, we reassess the morphology of an under-studied adult right ilium and pubis (Sts Accepted 3 June 2016 65) from Member 4 of Sterkfontein, South Africa, and provide a hypothetical digital reconstruction of its overall pelvic morphology. The small size of the pelvis, presence of a preauricular sulcus, and shape of the sciatic notch allow us to agree with past interpretations that Sts 65 likely belonged to a female. The Keywords: morphology of the iliac pillar, while not as substantial as in Homo, is more robust than in A.L. 288-1 and Australopithecus africanus Sts 14. We created a reconstruction of the pelvis by digitally articulating the Sts 65 right ilium and a Sterkfontein Pelvis mirrored copy of the left ilium with the Sts 14 sacrum in Autodesk Maya.
    [Show full text]
  • Biomechanics of the Thoracic Spine - Development of a Method to Measure the Influence of the Rib Cage on Thoracic Spine Movement
    Universität Ulm Zentrum für Chirurgie Institut für Unfallchirurgische Forschung und Biomechanik Direktor: Prof. Dr. A. Ignatius Biomechanics of the Thoracic Spine - Development of a Method to Measure the Influence of the Rib Cage on Thoracic Spine Movement Dissertation zur Erlangung des Doktorgrades der Medizin der Medizinischen Fakultät der Universität Ulm vorgelegt von: Konrad Appelt geboren in: Pforzheim 2012 Amtierender Dekan: Prof. Dr. Thomas Wirth 1. Berichterstatter: Prof. Dr. H.-J. Wilke 2. Berichterstatter: Prof. Dr. Tobias Böckers Tag der Promotion: 06.06.2013 Index List of abbreviations ......................................................................................IV 1 Introduction .............................................................................................. 1 1.1 Background ............................................................................................................. 1 1.2 State of Research .................................................................................................... 4 1.3 Objectives ............................................................................................................... 6 2 Material and methods .............................................................................. 7 2.1 Testing machines and devices ................................................................................. 7 2.1.1 Spine loading simulator ................................................................................... 7 2.1.2 Vicon – MX Motion Capture System
    [Show full text]