Ausgabe 59/6

Total Page:16

File Type:pdf, Size:1020Kb

Ausgabe 59/6 Spain et. al.·Silvae Genetica (2011) 60-6, 241-249 Genetic consequences of subtropical rainforest fragmentation on Macadamia tetraphylla (Proteaceae) By C. S. SPAIN1),2) and A. J. LOWE3),*) (Received 4th December 2010) Abstract is now a ubiquitous feature of much of the planet’s Habitat fragmentation can bring about a variety of forested areas (YOUNG and MITCHELL, 1994; LAURANCE gene-flow alterations in plant populations, potentially and BIERREGAARD, 1997; HOBBS and YATES, 2003). Empir- threatening adaptive potential and local persistence. It ical studies examining the genetic impacts of habitat is expected that following habitat fragmentation an fragmentation have demonstrated that the process can increased level of inbreeding will be evident. In addition, bring about a variety of gene-flow alterations. Frequent- a reduction in genetic diversity and increased genetic ly, plant populations experience increased levels of differentiation is expected following severe or long term inbreeding and random genetic drift following fragmen- population bottlenecks. We examined population genetic tation (YOUNG et al., 1996; DAYANANDAN et al., 1999; parameters for the subtropical rainforest tree COLLEVATTI et al., 2001; LIRA et al., 2003; CARDOSO et al., Macadamia tetraphylla (Proteaceae) at six field sites throughout its recently fragmented range, using four 2005; LOWE et al., 2005). The magnitude of such gene flow alterations depends on the severity and duration of microsatellite loci. Genetic diversity (HE) of the juvenile cohort was significantly correlated with estimated popu- the reduction in population size (BARRET and KOHN, lation size. No significant difference was observed for 1991). Where deforestation events lead to a reduction of genetic diversity between adult and juvenile cohorts, but gene flow between forest patches, the genetic bottle- juveniles, and not adults, exhibited significant popula- necks experienced in fragmented populations can cause tion differentiation (␪ = 0.061; P < 0.0001 and ␪ = 0.016; the independent loss of alleles from fragments, resulting P = 0.23, respectively). A second, standardised measure in increased population differentiation (JUMP and of differentiation, ␪´, yielded similarly large differences PEÑUELAS, 2006). between the two cohorts, though higher estimates of dif- ferentiation overall (adults – ␪´= 0.034, juveniles – To further understand the impact of fragmentation on ␪´= 0.116). The coefficient of population inbreeding (f) an Australian subtropical rainforest species, we used was significant and positive in all juvenile, and four out microsatellites to estimate genetic parameters for the of six adult, populations, and was significantly positively midstorey tree Macadamia tetraphylla (Proteaceae). correlated with adult tree density, but not adult popula- Populations of M. tetraphylla were selected to represent tion size. Since fragmentation is relatively recent for the range of population sizes exhibited across its patchy this species, the population bottleneck must have been distribution. The study took place in and around the Mt quite severe to have produced the observed patterns of Warning Caldera, central eastern Australia (Figure 1). population differentiation and genetic diversity. Frag- mentation of forest across the study area over the last The vast majority of subtropical lowland rainforest vege- 100+ years has led to the genetic isolation of M. tetra- tation in which M. tetraphylla grows was cleared phylla populations resulting in increased population between 145 and 105 years ago, with clearing beginning divergence and likely eventual loss of genetic variation slightly earlier in more southerly areas (RITCHIE and in future generations. PUGH, 1981). Key words: Macadamia tetraphylla, subtropical rainforest, Specifically, we aimed to determine: (1) whether larger fragmentation, gene diversity, inbreeding coefficient, differenti- or denser populations have higher levels of genetic ation, microsatellites. diversity and lower levels of inbreeding, relative to smaller populations; and (2) whether the post-fragmen- Introduction tation (juvenile) cohort exhibits higher levels of inbreed- ing and differentiation among populations, compared Habitat fragmentation, the reduction of continuous with the pre-fragmentation (adult) cohort. tracts of vegetation to smaller, spatially distinct patches, 1) School of Integrative Biology, University of Queensland, Materials and Methods St Lucia, Qld 4072, Australia. Study Species 2) Current address: Biodiversity Assessment and Management, Suite 11, 2/20 Shore Street West Cleveland, QLD, 4163, Aus- Macadamia tetraphylla is a small to medium sized tralia. mid-storey rainforest tree that is endemic to central 3) Australian Centre for Evolutionary Biology and Biodiversity, eastern Australia. Listed as vulnerable under both State and School of Earth and Environmental Sciences, University of and Federal legislation, concerns have been raised about Adelaide, North Terrace, Adelaide SA 5005; State Herbarium of its viability in the wild, over both the medium and long South Australia, Science Resource Centre, Department of Envi- ronment and Natural Resources, Hackney Road, Adelaide, SA term (GROSS, 1995). The species is patchily distributed 5005, Australia. within the regional landscape matrix, and is poorly rep- *) Author for correspondence: ANDREW J. LOWE. Phone: +61 434 resented in the reserve system. Populations are small 607 705. E-mail: [email protected]. (usually about 5–25 adults), with < 1000 individuals Silvae Genetica 60, 6 (2011) 241 DOI:10.1515/sg-2011-0032 edited by Thünen Institute of Forest Genetics Spain et. al.·Silvae Genetica (2011) 60-6, 241-249 Figure 1. – Field sites used in this study, showing the distribution of all adult trees present within each site. Each dot represents a tree. Site abbreviations are shown in the corner of each box: CV – Crookes Valley; CC – Cave Creek; MO – Mooball; Mullumbimby Creek; LH – Lennox Head; MF – Minyon Falls. estimated to be within conservation areas (PISANU, The level of fragmentation experienced by M. tetra- 2001). Its preservation is considered important, both in phylla in natural populations is relevant to many other terms of biodiversity maintenance, and also because of species in the region, especially endemics with limited the species’ significance to the macadamia nut industry. population size or distribution, and so it can be consid- The species is hermaphroditic, and flowers are borne on ered a suitable case study species to examine the impact long racemes. The European honeybee, Apis mellifera, of fragmentation on the genetic dynamics of threatened and native stingless bees, Trigona spp., are important plant populations in the region. pollinators in Australian macadamia orchards (HEARD, 1993, 1994; HEARD and EXLEY, 1994). In the wild, both of Study sites and spatial mapping these pollinators have been observed on M. tetraphylla, with A. mellifera the more common of the two. However, Six study sites were selected (Figure 1; Table 1), overall pollinator activity appears to be low (PISANU, encompassing a range of adult population sizes. This 2001; pers. obs.), with potential pollen limitation range of population sizes is regarded as representative (PISANU, 2001). M. tetraphylla is estimated to have a of the variety of situations in which M. tetraphylla can lifespan of over 100 years, of which up to six years con- be found in the regional landscape matrix. All six of stitutes the juvenile period (QUEENSLAND CRA/RFA these study sites are bona fide wild populations, not the STEERING COMMITTEE, 1997). result of plantings by early settlers. 242 DOI:10.1515/sg-2011-0032 edited by Thünen Institute of Forest Genetics Spain et. al.·Silvae Genetica (2011) 60-6, 241-249 Table 1. – Site characteristics and stratification for six populations of M. tetraphylla, central eastern, Australia. Sample collection, DNA extraction and microsatellite les (AO) and effective number of alleles (AE) using POP- survey GENE (YEH et al., 1997). For each population, genomic DNA from every adult Inbreeding coefficient (f) and an index of differentia- (6–37) and 15–20 randomly selected juveniles was tion (␪) were calculated following the formula of WEIR extracted using the QIAGEN DNeasy™ Plant Mini Kit. and COCKERHAM (1984), using FSTAT 2.9.3 (GOUDET, The standard protocol was followed, and success of DNA 1995). The significance of obtained global FST (≈ ␪) val- extractions and quantity of yield was determined by ues were tested by performing 50,000 randomisations of visualisation on 1.8% agarose gels (stained with ethidi- genotypes among samples. P-values were generated by a um bromide), using a 1000 BP ladder (HyperLadder I, simulation of 50,000 random permutations of genotypes Bioline). Based on screening and optimisation experi- among populations. Tests did not assume H-W within ments, four polymorphic loci (Minµs2, Minµs7, MinµS14 populations. The influence of each locus on generating and MinµS74) were selected from Schmidt et al. (2006) global FST estimates was examined by successive jack- for genotyping the six populations. Samples were plated knifing across loci using GENETIX 4.01 (BELKHIR et al., out onto 96 well trays and diluted 1:10. Ten percent of 1998). We also calculated ␪´, a standardised measure of individuals were repeated in order to estimate the fre- ␪. This was done by transforming our genotype data in quency of genotyping errors. Polymerase chain reaction the utility RECODEDATA (MEIRMANS, 2006)
Recommended publications
  • Macadamia Tetraphylla L.)
    MACADAMIA (Macadamia tetraphylla L.) Marisol Reyes M. 5 Arturo Lavín A. 5.1. Clasificación botánica El género Macadamia pertenece a la familia Proteaceae, el que incluye al menos cinco especies en Australia y diez a escala mundial. Debido a que su semilla es comestible, Macadamia integrifolia Maiden & Betche y Macadamia tetraphylla L., junto a algunos híbridos entre ambas, son las especies de esta familia que actualmente tienen importancia económica. Ambas son nativas de Australia (Nagao and Hirae, 1992). En Chile esta familia está representada por árboles de gran valor maderero como lo son, entre otras, Gevuina avellana Mol. (Avellano chileno, de fruta similar a macadamia), Embothrium coccineum Forst. (“Notro” y “Ciruelillo), Lomatia ferruginea (Cav.) R. Br., (“Fuinque”, ”Huinque”), Lomatia hirsuta (Lam.) Diels, (“Radal”) y Orites myrtoidea (Poepp. et Endl.) Benth et Hook, (“Mirtillo, Radal de hojas chicas”) (Muñoz, 1959; Sudzuki, 1996). 5.2. Origen de la especie Las macadamias originarias de Australia (entre los 25° y 31° de latitud sur), corresponden a especies relativamente nuevas en cuanto a la comercialización de su fruta y son las únicas plantas nativas de Australia que han sido incorporadas al cultivo comercial por su fruto comestible (Moncur et al., 1985). 103 M. integrifolia es originaria de los bosques húmedos subtropicales del sudeste de Queensland, lo que la hace poco tolerante a las bajas temperaturas, mientras que M. tetraphylla es de origen más meridional, lo que la hace más tolerante a áreas con clima temperado (Nagao and Hirae, 1992). La macadamia fue introducida a Hawai desde Australia hacia fines de los 1.800, pero no fue comercialmente cultivada hasta los inicios de los 1.900 (Nagao and Hirae, 1992).
    [Show full text]
  • Seeds and Plants Imported
    V? * •';' {."i'V i U. S. DEPARTMENT OF AGRICULTURE BOREAD OF PLANT INDUSTRY-BULLETIN NO. 132. B. T. GALLOWAY, Chief,of Bureau. SEEDS AND PLANTS IMPORTED DURING THE PERIOD FROM JULY, 1906, TO DECEMBER 31,1907: INVENTORY No. 13; Nos. 19058 TO 21730. ISSUED DECEMBER 4, 1908. WASHINGTON: GOVERNMENT PRINTING OFFICE. 190 8. BULLETINS OF THE BUREAU OF PLANT IJTOUSTRY. The scientific and technical publications of the Bureau of P.lant Industry, which was organized July 1, 1901, are issued in a single series of bulletins, a list of which follows. Attention is directed to the fact that the publications in this series are not for general distribution. The Superintendent ox Documents, Government Printing Office, Washington, D. cr, is authorised by law to sell them at cost, and to him all applications for these bulletins should be made, accompanied by a postal money order for the required amount or by cash. Numbers omitted from this list can not be furnished. No. 1. The Relation of Lime and Magnesia to Plant Growth. 1901. Price? 10 cents. 2. Spermatogenesis and Fecundation of Zamia. 1901, Price, 20 cents. 3. Macaroni Wheats. 1901. Price, 20 cents. 4.'Range Improvement in Arizona. 1901. Price, 10 cents. 6. A List of American Varieties of Peppers. 1902. Price, 10 cents. 7. The Algerian Durum Wheats. 1902. Price, 15 cents. 9. The North American Specie's'of Spartina. 1902. Price, 10 cents. 10. Records of Seed Distribution, etc. 1902. Price, 10 cents. 11. Johnson Grass. 1902. Price, 10 cents. , • 12. Stock Ranges of Northwestern California. 1902. Price, 15 cents.
    [Show full text]
  • Pollen Morphology of Proteaceae Native to Argentina: a New Dichotomus Key for Their Identification
    Rev. Mus. Argentino Cienc. Nat., n.s. 19(1): 25-37, 2017 ISSN 1514-5158 (impresa) ISSN 1853-0400 (en línea) Pollen morphology of Proteaceae native to Argentina: a new dichotomus key for their identification Damián Andrés FERNÁNDEZ Sección Paleopalinología, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Av. A. Gallardo 470, C1405DJR Buenos Aires, Argentina. E-mail: [email protected]. Abstract: A dichotomous key for the identification of eight proteaceous species, native to Argentina, based on pollen morphology is presented. These species are: Embothrium coccineum, Gevuina avellana, Lomatia den- tata, L. ferruginea, L. hirsuta, Orites myrtoidea, Roupala meisneri and R. montana. The pollen morphology was analyzed with both, light and electron scanning microscopes. The morphological characters selected for species/ genera recognition are: ornamentation, pore number, equatorial diameter, the ratio of sexine/nexine thickness, and equatorial diameter/pore diameter ratio. Key words: Proteaceae, Argentina, palynology, dichotomous key. Resumen: Morfología polínica de las Proteaceae nativas de Argentina: una nueva clave dicotómi- ca para su identificación. Se presenta una clave dicotómica para la identificación de las ocho especies de Proteacea nativas de la Argentina. Las especies son: Embothrium coccineum, Gevuina avellana, Lomatia dentata, L. ferruginea, L. hirsuta, Orites myrtoidea, Roupala meisneri and R. montana. La morfología polínica fue analiza- da utilizando microscopio óptico y microscopio electrónico de barrido. Los caracteres morfológicos elegidos para reconocer las especies/géneros son: tipo de ornamentación, número de poros, diámetro ecuatorial, relación de espesor sexina/nexina y relación diámetro ecuatorial/diámetro de poro. Palabras clave: Proteaceae, Argentina, palinología, clave dicotómica. _____________ INTRODUCTION three tribes within Grevilleoideae (Embothrieae, Macadamieae, and Oriteae) are currently found The Proteaceae family comprises 83 gen- in Argentina.
    [Show full text]
  • Gardens and Stewardship
    GARDENS AND STEWARDSHIP Thaddeus Zagorski (Bachelor of Theology; Diploma of Education; Certificate 111 in Amenity Horticulture; Graduate Diploma in Environmental Studies with Honours) Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy October 2007 School of Geography and Environmental Studies University of Tasmania STATEMENT OF AUTHENTICITY This thesis contains no material which has been accepted for any other degree or graduate diploma by the University of Tasmania or in any other tertiary institution and, to the best of my knowledge and belief, this thesis contains no copy or paraphrase of material previously published or written by other persons, except where due acknowledgement is made in the text of the thesis or in footnotes. Thaddeus Zagorski University of Tasmania Date: This thesis may be made available for loan or limited copying in accordance with the Australian Copyright Act of 1968. Thaddeus Zagorski University of Tasmania Date: ACKNOWLEDGEMENTS This thesis is not merely the achievement of a personal goal, but a culmination of a journey that started many, many years ago. As culmination it is also an impetus to continue to that journey. In achieving this personal goal many people, supervisors, friends, family and University colleagues have been instrumental in contributing to the final product. The initial motivation and inspiration for me to start this study was given by Professor Jamie Kirkpatrick, Dr. Elaine Stratford, and my friend Alison Howman. For that challenge I thank you. I am deeply indebted to my three supervisors Professor Jamie Kirkpatrick, Dr. Elaine Stratford and Dr. Aidan Davison. Each in their individual, concerted and special way guided me to this omega point.
    [Show full text]
  • Universidad Austral De Chile Facultad De Ciencias Escuela De Ciencias
    Universidad Austral de Chile Facultad de Ciencias Escuela de Ciencias PROFESOR PATROCINANTE Alejandra Zúñiga-Feest Instituto de Ciencias Ambientales y Evolutivas Facultad de Ciencias, Universidad Austral de Chile EFECTO DEL FÓSFORO EN EL CRECIMIENTO Y DESARROLLO DE RAÍCES PROTEOIDEAS EN TRES PROTEÁCEAS CHILENAS (Embothrium coccineum, Gevuina avellana y Orites myrtoidea) Tesis de Grado presentada como parte de los requisitos para optar al Grado de Licenciado en Ciencias Biológicas. MARGARITA AURORA DÍAZ SOTO VALDIVIA – CHILE 2012 2 AGRADECIMIENTOS En primer lugar, agradezco a Dios por darme la oportunidad de poder llegar a estas instancias y abrir puertas que veía imposibles, muchas gracias a mis maravillosos padres, Benjamín Díaz C. y Jacqueline Soto S., por todo el apoyo que siempre me han brindado, tanto en lo académico como en lo espiritual. A mi hermano Benjamín Díaz y a mi hermana Silvana Ulloa, por estar en cada momento de mi vida, entregándome su cariño y el ánimo de seguir adelante. La realización de este trabajo, no habría sido posible sin el apoyo y consejo de la Dra. Alejandra Zúñiga, quien me entregó las herramientas necesarias para completar este ciclo, además de su compañerismo y confianza, a la Dra. Susana Valle. Junto a ellas, agradezco el apoyo del equipo del laboratorio de Fisiología Vegetal: Ángela, Andrea, Fernanda y Vanessa. Y a mis compañeras y amigas de la Universidad. No puedo dejar de agradecer también a todos mis amigos, jóvenes y hermanos en la Fe de mi amada Iglesia Pentecostal de Chile que día tras día me demostraban su cariño y oraban por mí. Gracias a mis amados pastores que siempre tenían un consejo sabio en los momentos difíciles.
    [Show full text]
  • Lincoln University Campus: a Guide to Some of the Shrubs Currently Growing There”
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Lincoln University Research Archive “Lincoln University campus: a guide to some of the shrubs currently growing there” Roy Edwards Department of Agricultural Science Lincoln University May 2009 The purpose of this book is to illustrate some of the range of shrubs currently grown on the Lincoln University campus. There are also a few trees that were not covered in the 1st book. This should be read in conjunction with its companion - “Lincoln University campus - a guide to some of the trees currently growing there” (April 2008). This also is a first draft and hopefully there will be further editions that will add species to address some of the obvious gaps. ISBN 978-0-86476-213-9 Cover image: Clianthus puniceus (kaka beak) “Lincoln University campus: a guide to some of the shrubs currently growing there” Roy Edwards May 2009 As with the first book “Lincoln University campus – a guide to some of the trees currently growing there” (April 2008) the purpose of this guide is primarily to increase the awareness for those people who are interested in plants of the Lincoln University campus. At this point in time the list is incomplete and it is my intention to hopefully add others at a later date. In this second book I have largely concentrated on shrubs and in some instances have included a few trees that were not covered in the first book. Documenting what is currently growing on the campus provides some sort of historical record and possibly the basis for some thoughts around future planting options.
    [Show full text]
  • The Effect of Phosphorus on Growth and Cluster-Root Formation in the Chilean Proteaceae: Embothrium Coccineum (R
    Plant Soil (2010) 334:113–121 DOI 10.1007/s11104-010-0419-x REGULAR ARTICLE The effect of phosphorus on growth and cluster-root formation in the Chilean Proteaceae: Embothrium coccineum (R. et J. Forst.) Alejandra Zúñiga-Feest & Mabel Delgado & Miren Alberdi Received: 10 July 2009 /Accepted: 3 May 2010 /Published online: 26 May 2010 # Springer Science+Business Media B.V. 2010 Abstract One of the main factors that favours the were measured. Also acid exudation of CR was formation of cluster roots is a low supply of phosphorus assayed using bromocresol purple on sterile agar (P). The soils of southern Chile are mainly formed from plates. Treatments significantly affected growth and volcanic ash, characterized by low levels of available P. proportion of CR, the highest growth was observed Embothrium coccineum, a Chilean Proteaceae species with H. Under all treatments plants produced a similar produces cluster roots (CR). The factors that control number of CR. However, the proportion of CR CR formation in Chilean Proteaceae have not been biomass was higher with W and H-P than with H. extensively studied. The objective of this work was to Plants under W exhibited the lowest growth and low assess the effects of P on the growth and cluster-root shoot/root ratio. Acid exudation of CR was not formation of E. coccineum. Plants were produced from detectable in our experiment. These results are dis- seeds collected at two different locations: Valdivia and cussed comparing CR formation in low P conditions Pichicolo both at 39ºS. They were cultured under on Lupinus albus and other Proteaceae species, and the similar greenhouse conditions, from June to Septem- possible role of CR formation in E.
    [Show full text]
  • Chilean Fire Trees in the Arboretum and Beyond
    CRIMSON SCARLET Chilean Fire Trees in the Arboretum and Beyond B Y J OHN A . W OTT y interest in the Chilean fire Chilean entry garden and forest in the Pacific tree or Chilean fire bush, Connections Garden, and I knew the fire tree M Embothrium coccineum, inten- was to be included. I made it my special quest to sified in 2004, during a chance conversation ensure that we made a home for some offspring with Van Bobbitt, retired horticulture instruc- from Van’s tree—subsequently nicknamed the tor at South Seattle College and former UW “Bobbitt Tree”—in the Arboretum. Botanic Gardens employee. He told me about Native throughout the temperate forests of a very floriferous specimen growing in his front Chile—at many altitudes, as well as in parts of garden. A short time later, I drove by to see it Argentina—Embothrium coccineum is a bit of a in full flower, and (WOW!) it was fabulous. botanical chameleon. Though usually evergreen, At the time, plans were being drawn up for the it is occasionally deciduous, and these latter forms ABOVE: The Chilean fire tree is prized for its stunning late spring flowers and handsome foliage. (Photo by Niall Dunne) Spring 2016 v 7 are reputedly hardier. It also varies in habit across special Award of Merit that was given to a speci- its native range, from a diminutive shrub to a small men named ‘Norquinco form’ in 1947 because slender tree—but it has been known to grow up the racemes were set so close together on the to 60 feet in cultivation.
    [Show full text]
  • WUCOLS List S Abelia Chinensis Chinese Abelia M ? ? M / / Copyright © UC Regents, Davis Campus
    Ba Bu G Gc P Pm S Su T V N Botanical Name Common Name 1 2 3 4 5 6 Symbol Vegetation Used in Type WUCOLS List S Abelia chinensis Chinese abelia M ? ? M / / Copyright © UC Regents, Davis campus. All rights reserved. bamboo Ba S Abelia floribunda Mexican abelia M ? M M / / S Abelia mosanensis 'Fragrant Abelia' fragrant abelia ? ? ? ? ? ? bulb Bu S Abelia parvifolia (A. longituba) Schuman abelia ? ? ? M ? ? grass G groundcover GC Gc S Abelia x grandiflora and cvs. glossy abelia M M M M M / perennial* P S Abeliophyllum distichum forsythia M M ? ? ? ? palm and cycad Pm S Abelmoschus manihot (Hibiscus manihot) sunset muskmallow ? ? ? L ? ? T Abies pinsapo Spanish fir L L L / / / shrub S succulent Su T N Abies spp. (CA native and non-native) fir M M M M / / P N Abronia latifolia yellow sand verbena VL VL VL / ? ? tree T P N Abronia maritima sand verbena VL VL VL / ? ? vine V California N native S N Abutilon palmeri Indian mallow L L L L M M S Abutilon pictum thompsonii variegated Chinese lantern M H M M ? ? Sunset WUCOLS CIMIS ET Representative Number climate 0 Region zones** Cities zones* S Abutilon vitifolium flowering maple M M M / ? ? Healdsburg, Napa, North- San Jose, Salinas, Central 14, 15, 16, 17 1, 2, 3, 4, 6, 8 San Francisco, Coastal San Luis Obispo S Abutilon x hybridum & cvs. flowering maple M H M M / / 1 Auburn, Central Bakersfield, Chico, 8, 9, 14 12, 14, 15, 16 Valley Fresno, Modesto, Sacramento S T Acacia abyssinica Abyssinian acacia / ? / ? / L 2 Irvine, Los South Angeles, Santa 22, 23, 24 1, 2, 4, 6 Coastal Barbara, Ventura,
    [Show full text]
  • Precarious Conservation Status of Pilgerodendron Uviferum
    Australian Journal of Botany 66(1), 74–84 © CSIRO 2018 http://dx.doi.org/10.1071/BT17104_AC Supplementary material Does carbon storage confer waterlogging tolerance? Evidence from four evergreen species of a temperate rainforest M. DelgadoA,B,C,D, A. Zúñiga-FeestA,D,G and F. I. Piper E,F ALaboratorio de Biología Vegetal, Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile (UACh), Valdivia, Chile. BCenter of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile. CDepartamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias. Center of Plant, Soil Interaction, Universidad de la Frontera, Temuco, Chile. DCentro de Investigaciones en Suelos Volcánicos (CISVo), UACh. ECentro de Investigación en Ecosistemas de la Patagonia (CIEP), Moraleda 16, Coyhaique, Chile. FInstituto de Ecología y Biodiversidad (IEB), Santiago, Chile. GCorresponding author. Email: [email protected] Figure S1. Effect of waterlogging on survival of Nothofagus dombeyi, Nothofagus nitida, Gevuina avellana and Embothrium coccineum seedlings after 15 and 30 days under waterlogging conditions. Figure S2. Effect of waterlogging on the health status of Nothofagus dombeyi, Nothofagus nitida, Gevuina avellana and Embothrium coccineum seedlings after 15 and 30 days under waterlogging conditions. ++ indicates healthy plants and without visible symptoms of damage, +- indicates plants with < 50% leaf shedding or < 50% attached leaves dehydrated or yellow and -- indicates plants with > 50% leaf shedding or > 50% leaves were dehydrated, yellow, or brown. 2 Figure S3. Cluster roots (CR) of Embothrium coccineum and Gevuina avellana seedlings grown under control (A - B) and waterlogged conditions (C - D).
    [Show full text]
  • 10 Rchhn 84-2-Lusk
    LEAF LIFESPANS OF CHILEAN PROTEACEAE 269 REVISTA CHILENA DE HISTORIA NATURAL Revista Chilena de Historia Natural 84: 269-277, 2011 © Sociedad de Biología de Chile RESEARCH ARTICLE Effects of light availability and growth rate on leaf lifespan of four temperate rainforest Proteaceae Efectos de la luminosidad y de las tasas de crecimiento sobre longevidad foliar de cuatro Proteáceas del bosque templado lluvioso CHRISTOPHER H. LUSK1, 2 * & LUIS J. CORCUERA3 1 Department of Biological Sciences, Macquarie University, NSW 2109, Australia 2 Current address: Department of Biological Sciences, The University of Waikato, Private Bag 3105, Hamilton, New Zealand 3 Departmento de Botánica, Universidad de Concepción, Casilla 160-C, Concepción, Chile *Corresponding author: [email protected] ABSTRACT Although comparative studies have revealed much about the environmental correlates of leaf lifespan and its integration with other leaf traits, a comprehensive theory of leaf lifespan is still lacking. The influence of growth rate on self-shading may be a key proximate determinant of both inter- and intra-specific variation in leaf lifespans. If this were the case, we would expect leaf lifespans of fast-growing light-demanding species to respond more strongly to light environment than those of shade-tolerant species. We monitored growth and leaf survival of juvenile trees of four temperate rainforest Proteaceae in southern Chile, in order to explore the influences of light environment and self-shading on leaf lifespan. Leaf lifespans tended to decrease with increasing diffuse light availability, and slopes of these relationships were steeper in two light-demanding species (Embothrium coccineum, Lomatia hirsuta) than in two more shade-tolerant species (Lomatia ferruginea, Gevuina avellana).
    [Show full text]
  • Proteas with Altitude
    proteas With Altitude Annual report May 2018 – April 2019 Robbie Blackhall-Miles and Ben Ram Abstract This report aims to show how the ‘proteas With Altitude’ project progressed over During 2018. It is an opportunity to review the ongoing process of setting up the nursery site, analyse data gathered about the species grown and set aims for the year ahead. Background ‘proteas With Altitude’ is an ongoing research project studying the horticulture of Proteaceae in the UK. In 2015, an initial expedition was undertaken to study in-situ plants and collect seeds of Proteaceae, growing at high altitude, in the Western Cape of South Africa. One hundred and fifteen separate observations covering fifty-five distinct species were made, of which thirty species were collected as seed. A further collecting trip was made during December 2017 with 43 species being collected as seed, of which 16 were new to us and 6 new to cultivation, and plants and cuttings of some species being imported under phytosanitary certificate. A full report detailing progress up to the beginning of 2018 can be found in the 2016 and 2017 annual reports. This report will discuss the period between May 2018 – April 2019. Nursery Infrastructure A new irrigation system was partially installed during the summer of 2018. At present this consists of micro soaker-hose irrigation lines to the 1L pots on half of the bench in the polytunnel. This is working well, and we intend to install further such lines during 2019. Additionally, drip irrigation lines were installed in the area used to stand out the large potted plants during the summer months.
    [Show full text]