The Mountain Pass rare earth ore body in Southern California, 86 km (54 mi) south-southwest of LasLas Vegas,Vegas, Nevada,Nevada, isis oneone ofof thethe largest,largest, richest,richest, andand mostmost readilyreadily mineablemineable rarerare earthearth depositsdeposits inin thethe worldworld (N35°(N35° 28.7428.74 W115°W115° 31.98).31.98). ItsIts provenproven andand probableprobable reservesreserves exceedexceed 1.31.3 millionmillion metricmetric tonstons ofof rarerare earthearth oxideoxide (REO)(REO) equivalentequivalent containedcontained inin 18.418.4 millionmillion metricmetric tonstons ofof oreore withwith ~8%~8% ore grade and a 5% cut-off grade. ItIt containscontains allall ofof thethe naturallynaturally occurringoccurring rarerare earthearth elements.elements. Photo,Photo, courtesycourtesy ofof Molycorp,Molycorp, Inc.Inc. Rediscovery ...pg 40 2016 Solicitation...pg 52 2015 Awards . ..pg 54 Collegiate News ...pg 57 FALL 2015 THE Rediscovering The Rare Earths A new series starts on page 40. Redis co very of the Elements The Rare Earth s–The Beginnings I I I James L. Marshall, Beta Eta 1971 , and Virginia R. Marshall, Beta Eta 2003 , Department of Chemistry, University of North Texas, Denton, TX 76203-5070,
[email protected] 1 Rare earths —introduction. The rare earths Figure 1. The “rare earths” are defined by IUPAC as the 15 lanthanides (green) and the upper two elements include the 17 chemically similar elements of the Group III family (yellow). These elements have similar chemical properties and all can exhibit the +3 occupying the f-block of the Periodic Table as oxidation state by the loss of the highest three electrons (two s electrons and either a d or an f electron, well as the Group III chemical family (Figure 1).