Systems Thinking in Action Learning and Action Research

Total Page:16

File Type:pdf, Size:1020Kb

Systems Thinking in Action Learning and Action Research Special issue: Systems Thinking in Action Learning and Action Research ALAR Journal Vol 21 No 1 August 2015 ALAR Journal is published by the Action Learning, Action Research Association Inc (ALARA) . Managing editor: Susan Goff Issue editor: Debora Hammond, Shankar Sankaran and Susan Goff Editorial team in alphabetical order, for this issue: Michael Dent, Susan Goff, Vasudha Kamat, Margaret O’Connell, Zada Pajalic, Rachel Perry, Riripeti Reedy, Steve Smith, Emmanuel Tetteh, Lesley Wood Editorial inquiries: The editor, ALAR Journal ALARA Inc PO Box 1748 Toowong, Qld 4066 Australia [email protected] ALAR Journal Volume 21 No 1 August 2015 ISSN 1326-964X CONTENTS Editorial 3 Debora Hammond, Shankar Sankaran and Susan Goff Application of the Structured Dialogic Design 11 Process to Examining Economic Integration and Free Trade in Cyprus Yiannis Laouris, Tatjana Taraszow, Mustafa Damdelen, Ilke Dağlı, Derya Beyatlı, Andros Karayiannis, Kevin Dye, & Alexander N. Christakis Systemic Pedagogy: A Design for Action 53 Researcher Collective Self Development Ross Colliver, Susan Goff, Riripeti Reedy and Vicki Vaartjes ALAR Journal Vol 21 No 1 August 2015 Page 1 ALARj 21 (1) (2015) 1-2 © 2015 Action Learning, Action Research Association Inc www.alarassociation.org All rights reserved. Developing Pictorial Conceptual Metaphors as a 77 means of understanding and changing the Australian Health System for Indigenous People Bronwyn Fredericks, Kathleen Clapham, Dawn Bessarab, Patricia Dudgeon, Roxanne Bainbridge, Rowena Ball, Marlene Thompson (Longbottom), Clair Andersen, Mick Adams, Len Collard, Deb Duthie and Carolyn Daniel Negotiating the right path: Working together to 108 effect change in healthcare service provision to Aboriginal peoples Michael Wright and Margaret O’Connell Scaffolding of task complexity awareness and its 124 impact on actions and learning Pia Andersson Communal-Photosynthesis Metaphor: 148 Autobiographical Action-Research Journeys and Heuristic-Action-Learning Frameworks of Living Educational Theories Emmanuel Nii Ayikwei Tetteh ALARA membership information and 177 article submissions © 2015. ALARA Inc and the author(s) jointly hold the copyright of ALAR Journal articles. ALAR Journal Vol 21 No 1 August 2015 Page 2 ALARj 21 (1) (2015) 3-10 © 2015 Action Learning, Action Research Association Inc www.alarassociation.org All rights reserved. Editorial Debora Hammond, Shankar Sankaran and Susan Goff Dear Readers, A warm welcome to this special issue on ‘Systems Sciences and Action Research’, a joint effort between the Action Learning and Action Research Journal (ALARj) and the Action Research Special Integration Group (AR SIG) of the International Society for the Systems Sciences (ISSS), which is intended to explore the relationship and encourage integration between action research and systems thinking. As the organizer of the AR SIG in 2013, Professor Shankar Sankaran, in collaboration with Professor Debora Hammond, proposed the theme for this issue and worked with Managing Editor Dr. Susan Goff to issue a call for papers and to serve as co-editors in the project. We are grateful to the reviewers, from ALARA, ISSS, ANZSYS (The Australia New Zealand Systems Society), and INCOSE (International Council for Systems Engineering), who generously contributed their time to review papers. Robert Flood, who edits Systemic Practice and Action Research, elaborates on the link between systems thinking and action research by stating that ‘action research carried out with a systemic perspective in mind promises to construct meaning that resonates strongly with our experiences within a profoundly systemic world’. (Flood 2010: 282). Foster-Fisherman & Foster (2010: 248) make a strong argument for systemic AR by stating that ‘Systemic AR has a great promise as a method for promoting large-scale systems change. Systems thinking is one framework that can be useful for action researchers who hope to pursue transformative change and reveal, among other things, the axiomatic knowledge within a targeted context’ (p. 248-249). ALAR Journal Vol 21 No 1 August 2015 Page 3 ALARj 21 (1) (2015) 3-10 © 2015 Action Learning, Action Research Association Inc www.alarassociation.org All rights reserved. The practice is more recently recognised in the publication “The SAGE Encyclopedia of Action Research” (Coghlan and Brydon- Miller, 2014) who identify Systemic Action Research as having distinctive practices including: building pictures of the system, multiple starting points for inquiry, multiple and parallel inquiry strands, and fluid inquiry groups which follow the issues. The works of Danny Burns, Yoland Wadsworth, Merinda Epstein, and Susan Weil are discussed amongst others. Historically, there has been a close association between action research and systems theory and practice, particularly in the United Kingdom. Growing out of his involvement with a group of action researchers at the University of Lancaster in the 1960s, Peter Checkland developed Soft Systems Methodology, which has been very influential in the evolution of applied systems theory. Action research has been a foundational practice in the socio-technical systems approach, developed by Eric Trist and Fred Emery of the Tavistock Institute. Trist was initially inspired by Kurt Lewin, who is credited with the development of the concept of action research, and the open system concept introduced by Ludwig von Bertalanffy, father of general systems theory. Midgley (2001) brought the focus on critical systems thinking at work in boundary creation within participatory inquiry environments underpinning much of the methodology of current Systemic Action Research praxis: “Boundary critique gives rise to the possibility of embracing theoretical pluralism. This is because different theories imply different boundaries of analysis, meaning that choice between boundaries also involves choice between theories.” (p. 103). Although the connections are not quite as explicit in the United States, there was a close association between Trist & Emery and Russ Ackoff, who was one of the leading figures in the evolution of applied systems theory in the U.S. He introduced an interactive approach to planning that embodies key features of action research, including the involvement of all stakeholders in the planning process and a continuous process of planning, action and reflection. Similar principles can be seen in 1) the practice of ALAR Journal Vol 21 No 1 August 2015 Page 4 ALARj 21 (1) (2015) 3-10 © 2015 Action Learning, Action Research Association Inc www.alarassociation.org All rights reserved. interactive management introduced by John Warfield in collaboration with Alexander Christakis, who went on to develop co-laboratories of democracy with Kenneth Bausch, and 2) the process of idealized design developed by Bela H. Banathy. Many of these threads are explicitly interwoven in the article by Yiannis Laouris et al ("Examining Economic Integration and Free Trade within Cyprus using Structured Dialogic Design"), which builds on Warfield's interactive management and Christakis's and Bausch's co-laboratories of democracy to describe the implementation of a structured dialogic design (SDD) process. Including economists and business experts representing both communities, the project sought to address the challenges of economic integration between Turkish and Greek Cyprus. The process involves articulating a clear vision of desired outcomes, identifying obstacles to the realization of the vision, and exploring the relationships between the obstacles to discover the root cause. As the authors note, "[a]n effective and realistic action plan needs to first deal with the identified root causes of the root cause map in order to reach the desired situation, that is, the idealized vision." In contrast to Laouris et al, who draw primarily on developments in the applied systems field that reflect the basic principles of action research, Ross Colliver et al ("Systemic pedagogy: A Design for Action Researcher collective self-development"), describe the facilitation of a conference intensive for action researchers with the intention of integrating a more systemic approach to learning participatory knowledge generation skills. The following passage reflects the explicit focus on collaborative inquiry in addressing the dynamics of power and seeking meaningful change: Action Researchers ask questions about significant concerns in everyday organisational and public contexts. Through facilitating collaborative learning, they assist people to form the knowledge that informs actions with the intent to reduce the impact of those significant concerns. The process of inquiry itself develops the practices that not only constitute change; they also build awareness of the power and associated ethics, to do so. Ethics are essential in the reconfigurations of power, authority and agency that come with action. ALAR Journal Vol 21 No 1 August 2015 Page 5 ALARj 21 (1) (2015) 3-10 © 2015 Action Learning, Action Research Association Inc www.alarassociation.org All rights reserved. In connection with the focus on issues relating to power and agency, the authors highlight the importance of honouring different worldviews, particularly the knowledges and languages of communities that have traditionally been marginalized, empowering them to "co-construct a future rather than simply submit to a mono-cultural and dominant form of power to control a future that only reflects the past." This process of nurturing mutual understanding in multi-cultural
Recommended publications
  • Collective Intelligence Through Structured Dialogue
    Collective Intelligence through Structured Dialogue A methodology for tackling complex challenges with multiple stakeholders INCOSE UK Bristol Local Group, 11 th March 2019 1 Overview Systems Engineers often need to engage with Collective stakeholders and address complex or wicked problems. Intelligence Structured Dialogic Design is a methodology that evolved from the field of Interactive Management in the US, through starting in the 1980s. In its various forms (and under different names) it has been widely applied across the Structured globe in enabling groups to tackle wicked problems and complex challenges, but is not well known in the UK, Dialogue despite applications in MoD, Rolls Royce and the NHS. This presentation will outline the methodology, it’s provenance, and the current state of practice. 2 Applications In today’s world many of the problems are not complicated, they are complex and wicked. The methodology delivers consulting redesigned specifically for these situations. Complex and wicked problems can only be resolved by bringing together people with the necessary variety of perspectives and expertise in a collaborative setting where their ideas are freed, protected, and equally Forecasting an Unknown Wicked Problems and Future and Strategic Planning Complex Challenges considered with all others. 3 The Demosophia Methodology Discover Diagnose Design Define Do Discover Diagnose the Design the Define strategic Implement required system at work path forward priorities and adaptively diversity of develop plans perspectives Colabs 4 Colabs A Colab is a gathering of stakeholders who together share, learn, and create a deep understanding of a complex problem using the Structured Democratic Dialogue (SDD) process. • A unique and powerful type of facilitated meeting • Specifically designed to address wicked problems • Efficiently tapping into the collective wisdom of a wide variety of stakeholders • Harnessing cognitive diversity (knowledge, experience, worldview etc.) • Enabled and supported by technology 5 Colab Principles 1.
    [Show full text]
  • Toward a Common Language for Systems
    IFSR Conversation– April 2012 Sponsored by the International Federation for Systems Research (IFSR) Team 4: Towards a Common Language for Systems Praxis © 2012 IFSR unless otherwise indicated (reprinted with permission) James Martin (USA), [email protected] (Team Leader) Johan Bendz (SE), [email protected] Gerhard Chroust (AUT), [email protected] Duane Hybertson (USA), [email protected] Harold “Bud” Lawson (SE), [email protected] Richard Martin (USA), [email protected] Hillary Sillitto (UK), [email protected] Janet Singer (USA), [email protected] Michael Singer (USA), [email protected] Tatsumasa Takaku (JP), [email protected] Abstract: We explored developing “common language for systems praxis” to help systems theorists and systems practitioners deal with the major cross-discipline, cross-domain problems facing human society in the 21st Century. For the first three days, we explored a broad range of issues, from previous efforts at standardization; to the nature of language, culture, and praxis; to the relationship between systems science, systems thinking, and systems approaches to practice. On day 4, we used Checkland’s CATWOE approach to understand the usage, context, and constraints for any common language for systems praxis. On day 5, this checklist helped us develop a diagram showing how an integrated approach to Systems Praxis could put theories from Systems Science and Systems Thinking into action through technical Systems Engineering and social Systems Intervention. We learned that the best medium for communication across different ‘tribes’ is patterns, and that a common language for systems praxis could use system patterns and praxis patterns to relate core concepts, principles, and paradigms, allowing stakeholder ‘silos’ to more effectively work together.
    [Show full text]
  • Topological Aspects of Biosemiotics
    tripleC 5(2): 49-63, 2007 ISSN 1726-670X http://tripleC.uti.at Topological Aspects of Biosemiotics Rainer E. Zimmermann IAG Philosophische Grundlagenprobleme, U Kassel / Clare Hall, UK – Cambridge / Lehrgebiet Philosophie, FB 13 AW, FH Muenchen, Lothstr. 34, D – 80335 München E-mail: [email protected] Abstract: According to recent work of Bounias and Bonaly cal terms with a view to the biosemiotic consequences. As this (2000), there is a close relationship between the conceptualiza- approach fits naturally into the Kassel programme of investigat- tion of biological life and mathematical conceptualization such ing the relationship between the cognitive perceiving of the that both of them co-depend on each other when discussing world and its communicative modeling (Zimmermann 2004a, preliminary conditions for properties of biosystems. More pre- 2005b), it is found that topology as formal nucleus of spatial cisely, such properties can be realized only, if the space of modeling is more than relevant for the understanding of repre- orbits of members of some topological space X by the set of senting and co-creating the world as it is cognitively perceived functions governing the interactions of these members is com- and communicated in its design. Also, its implications may well pact and complete. This result has important consequences for serve the theoretical (top-down) foundation of biosemiotics the maximization of complementarity in habitat occupation as itself. well as for the reciprocal contributions of sub(eco)systems with respect
    [Show full text]
  • The Social System of Systems Intelligence – a Study Based on Search Engine Method
    In Essays on Systems Intelligence, eds. Raimo P. Hämäläinen and Esa Saarinen: pp. 119-133 Espoo: Aalto University, School of Science and Technology, Systems Analysis Laboratory Chapter 5 The Social System of Systems Intelligence – A Study Based on Search Engine Method Kalevi Kilkki This essay offers an preliminary study on systems intelligence as a social system based on four cornerstones: writings using the terminology of systems intelligence, search engines, models to describe the behavior of social phenomena, and a theory of social systems. As a result we provide an illustration of systems intelligence field as a network of key persons. The main conclusion is that the most promising area for systems intelligence as social system is to systematically apply positive psychology to develop organizational management and to solve our everyday problems. Introduction The social system of systems intelligence is an ambitious topic, particularly for a person without any formal studies in sociology. Moreover, systems intelligence is a novel area of science and, hence, the development of its social structures is in early phase. It is even possible to argue that there is not yet any social system of systems intelligence. The approach of this study is based on four cornerstones: first, the literature that has used concept of systems intelligence, second, search engines, third, models to describe the behavior of social phenomena, and forth, a theory of social systems. As a result we may be able to say something novel about the development of systems intelligence as a social system. As to the social systems this essay relies on the grand theory developed by Niklas Luhmann (Luhmann 1995).
    [Show full text]
  • General Systems Theory
    General Systems Theory Prepared by: Kenneth R. Thompson Head Researcher System-Predictive Technologies © Copyright 1996 to 2016 by Kenneth R. Thompson, System-Predictive Technologies, 2096 Elmore Avenue, Columbus, Ohio 43224-5019; All rights reserved. Intellectual materials contained herein may not be copied or summarized without written permission from the author. General Systems Theory Page 2 of 10 General Systems Theory General Systems Theory Background Summary In the 1920’s, Ludwig von Bertalanffy envisioned a General Systems Theory1. As a biologist, von Bertalanffy was concerned with behavioral and intentional systems. He clearly stated the mathematical foundations of his theory in his report “The History and Status of General Systems Theory”2: The goal obviously is to develop general systems theory in mathematical terms – a logico-mathematical field – because mathematics is the exact language permitting rigorous deductions and confirmation (or refusal) of theory. In the 1960’s, there were two major independent efforts made relating to developments in General Systems Theory. One was by the engineer and mathematician Mihajlo D. Mesarović, and the other was by the philosopher Elizabeth Steiner and the historian and mathematician George S. Maccia. The developments by Mesarović were more restrictive and in line with traditional developments of engineering models simulating various intentional systems, while the developments by Steiner and Maccia were more comprehensive and provided the first formalization of a Scientific Education Theory derived from General Systems Theory. Mesarović’s work, however, did lead to critical developments in mathematical models of General Systems; however, such characterizations were restricted to systems represented by a single relation.3 A true mathematical analysis of General Systems Theory requires the ability to recognize multiple relations for one system.
    [Show full text]
  • Multiple Perspective of Mobile Money System Development: Action Case of E-Masary Wallet
    Multiple Perspective of Mobile Money System Development: Action Case of e-Masary Wallet A thesis submitted to The University of Manchester for the degree of Doctor of Philosophy In the Faculty of Humanities 2015 Mostafa Mohamad Manchester Business School University of Manchester 1 TABLE OF CONTENTS TABLE OF CONTENTS ...................................................................................................................... 2 LIST OF FIGURES .............................................................................................................................. 8 LIST OF TABLES ............................................................................................................................. 11 ABBREVIATIONS ............................................................................................................................ 12 DECLARATION ............................................................................................................................... 16 COPYRIGHT STATEMENT ............................................................................................................... 17 ACKNOWLEDGEMENT ................................................................................................................... 18 ABSTRACT ..................................................................................................................................... 16 CHAPTER ONE: INTRODUCTION Area of concern ................................................................................................................................
    [Show full text]
  • Download Download
    Participatory Knowing: A Story-Centered Approach to Human Systems Jack Petranker Center for Creative Inquiry, 2425 Hillside Avenue, Berkeley, CA 94704, USA [email protected] Abstract The tendency of systems approaches to rely on and look for causal explanations creates problems for democratic practice. Causal analysis must generalize and thus assign fixed identities, which inevitably encourages viewing society in terms of competing interest groups whose conflicting goals move them inexorably toward conflict. A second problem with reliance on causality is the sheer complexity of causal analysis of complex social systems, which gives the expert analyst enjoys a claim to superior knowledge and de facto authority over community members. An alternative to causal analysis is to approach systems in ‘story-centered’ terms. Treating the story that the individual or collective ‘inhabits’ as the relevant system for analysis counters the anti-democratic tendencies identified above. Since stories—understood as such—are fluid and shifting, it becomes less natural to define individuals by their interests and identities; in turn, this encourages community participants to engage other community members as cohabitants rather than adversaries. And since story-inhabitants are better equipped than the expert to investigate the story within which they live and act, the authority of the expert is correspondingly reduced. Of the many levels at which story-centric analysis can proceed, a focus on the systemic nature of the environing story is especially appropriate to the needs of today’s complex and heterogeneous democracies. To engage the story at this level allows for honoring multiple stories in society without focusing exclusive at the level of story content, thus creating a foundation for dialog and shared inquiry even among those who inhabit widely varying story-worlds.
    [Show full text]
  • Conservation Psychology
    COMMUNITY ORGANIZING FOR WATERSHED RESTORATION: The Cotati Creek Critters Outreach Program by Jenny Blaker A project submitted to Sonoma State University in partial fulfillment of the requirements for the degree of MASTER OF ARTS in Interdisciplinary Studies : Conservation Psychology May 2006 COMMUNITY ORGANIZING FOR WATERSHED RESTORATION The Cotati Creek Critters Outreach Program by Jenny Blaker A project submitted to Sonoma State University in partial fulfillment of the requirements for the degree of MASTER OF ARTS in Interdisciplinary Studies : Conservation Psychology _______________________________________ Dr. Debora Hammond, Chair _______________________________________ Dr. Ardath Lee _______________________________________ Dr. Anna Warwick Sears _______________________________________ Date i Copyright 2006 By Jenny Blaker ii AUTHORIZATION FOR REPRODUCTION OF MASTER’S PROJECT Reproduction of this project is permitted with the condition that credit be given to the author. DATE:_______________________________ _______________________________ Signature _______________________________ Street Address _______________________________ City, State, Zip iii COMMUNITY ORGANIZING FOR WATERSHED RESTORATION The Cotati Creek Critters Outreach Program Project by Jenny Blaker ABSTRACT The Cotati Creek Critters is a watershed group conducting a habitat restoration project along the Laguna de Santa Rosa in Cotati. In June 2005 the group was awarded an Urban Stream Restoration grant from the California Department of Water Resources to involve the local community in planting 2,000 native trees and shrubs along the Laguna de Santa Rosa in Cotati over a two year period. The purpose of the Outreach Program is to recruit volunteers for the planting project and to foster a sense of stewardship in the local community by raising awareness of related issues in the Cotati area. This project embodies the intent of Conservation Psychology to understand and encourage behavior that promotes environmental sustainability.
    [Show full text]
  • What Is Systems Theory?
    What is Systems Theory? Systems theory is an interdisciplinary theory about the nature of complex systems in nature, society, and science, and is a framework by which one can investigate and/or describe any group of objects that work together to produce some result. This could be a single organism, any organization or society, or any electro-mechanical or informational artifact. As a technical and general academic area of study it predominantly refers to the science of systems that resulted from Bertalanffy's General System Theory (GST), among others, in initiating what became a project of systems research and practice. Systems theoretical approaches were later appropriated in other fields, such as in the structural functionalist sociology of Talcott Parsons and Niklas Luhmann . Contents - 1 Overview - 2 History - 3 Developments in system theories - 3.1 General systems research and systems inquiry - 3.2 Cybernetics - 3.3 Complex adaptive systems - 4 Applications of system theories - 4.1 Living systems theory - 4.2 Organizational theory - 4.3 Software and computing - 4.4 Sociology and Sociocybernetics - 4.5 System dynamics - 4.6 Systems engineering - 4.7 Systems psychology - 5 See also - 6 References - 7 Further reading - 8 External links - 9 Organisations // Overview 1 / 20 What is Systems Theory? Margaret Mead was an influential figure in systems theory. Contemporary ideas from systems theory have grown with diversified areas, exemplified by the work of Béla H. Bánáthy, ecological systems with Howard T. Odum, Eugene Odum and Fritj of Capra , organizational theory and management with individuals such as Peter Senge , interdisciplinary study with areas like Human Resource Development from the work of Richard A.
    [Show full text]
  • Reflections on Constructivist Systemic Inquiry Traversing Territorial Scales
    Reflections on constructivist systemic inquiry traversing territorial scales: The procedure of reaching authenticity of architectural research design project generated from social dynamics AR3A160 Lecture Series Research Methods Transitional Territories Studio Haozhuo Li 4734912 I INTRODUCTION Being aware: Know-that, know-how and know-why Research-methodological awareness is being aware of what, how, and why we use certain approaches during architectural research, thus a combination of ontological (know-that) and epistemological (know-how and know-why) inquiry. Fundamentally, it is a realization of the iterative process of research and design. Such a process helps us to define and sustain the essence of a research-design project,1 as the project should be coherent in terms of legibility. Research, defined as a systematic inquiry to generate new knowledge,2 means that knowing what we are doing in a reductionist way to systemize and organize our steps in practice, and that finally know how and why we have manipulated on certain foci, from which we are able to evaluate. Framing the assumptions during a research process into paradigms help us to communicate our understanding to broader audience, which is also beneficial for academic quality.3 Therefore, research-methodology includes critical thinking for design practices. It also triggers reflections on architectural profession, which is vital to the future role of architects. Both the study of certain tactics and methods that are culled from a methodology pool and outcomes of analysis can inform us possible tendency and dynamics of the world, from which we think of what role we are playing and will play in the future, and to what direction we can expand the scope of the discipline.
    [Show full text]
  • IASCYS the International Academy for Systems & Cybernetic Sciences
    IASCYS The International Academy for Systems & CYbernetic Sciences 77 Academicians (2021/04/13) -alphabetic order- 1. Mary Catherine BATESON (USA) Cultural Anthropology & Cybernetics 2. Ockert J. H. BOSCH (New Zealand) Ecology Management 3. Paul BOURGINE (France) Cognitive Sciences and Artificial Intelligence 4. Pierre BRICAGE (France) Biologist, Secretary General 5. Søren BRIER (Denmark) Systems Cybersemiotics Philosopher 6. Pille BUNNELL (Canada) Systems Ecologist 7. Tom R. BURNS (Sweden) Sociologist 8. Xiaoqiang CAI (PR China, Hong Kong) Systems Engineering and Engineering Management, 9. Jinde CAO (PR China) Artificial Intelligence 10. Antonio CASELLES MONCHO (Spain) Applied Mathematician 11. Guangya CHEN (PR China) Operations Research & Systems Engineering 12. Hanfu CHEN (PR China) Automation & Systems Control Engineering 13. Jian CHEN (PR China) Systems Engineering & Management Science 14. C.L. Philip CHEN (PR China, Macao) Intelligent Systems Engineering 15. T.C. Edwin CHENG (PR China) Business Administration 16. Gerhard CHROUST (Austria) Systems Engineering & Automation 17. Gerard de ZEEUW (Netherlands) Architectural Design 18. Zengru DI (PR China) Socio-Economics Systems Engineering 19. Georgi M. DIMIROVSKI (R. Nth Macedonia) Computer & Control Sciences, Vice-President for membership 20. Gérard DONNADIEU (France) Systems Engineering & Management 21. Jean-Pierre DUPUY (France) Risk Management & Ethics 22. Raúl ESPEJO (UK) Systems Organization & Complexity Management, WOSC President 23. Helder Manuel FERREIRA COELHO (Portugal) Artificial Intelligence Engineering 24. Charles FRANÇOIS (Belgium) Cybernetics, Systems Theory & Systems Science 25. Ranulph GLANVILLE (UK) Cybernetics & Design 26. Jifa GU (PR China) Operations Research & Systems Engineering 27. Enrique HERRSCHER (Argentina) Economist & Systems Scientist 28. Wolfgang HOFKIRCHNER (Austria) Information Science, Internet & Society 29. Tingwen HUANG (Qatar) Systems Dynamics, Control & Optimization 30. Ray ISON (Australia) Systems Governance, IFSR President 31.
    [Show full text]
  • Volume 2, Number 1 February 2004
    INTERNATIONAL JOURNAL OF EVIDENCE BASED COACHING AND MENTORING ISSN 1741-8305 Volume 2, Number 1 February 2004 An electronic publication of College House Press International Journal of Evidence Based Coaching and Mentoring Vol. 2, No. 1, Spring 2004 Page 2 The International Journal of Evidence Based Coaching and Mentoring is an international refereed journal, which is published bi-annually (August and February). Its audience is academic specialists, postgraduate students, practitioners and managers who wish to keep abreast of scholarship, theory-building and empirical research in the field of coaching and mentoring. Editorial Board Elaine Cox Oxford Brookes University, UK Andrea Ellinger University of Illinois, USA Anthony Grant University of Sydney, Australia Bob Hamlin University of Wolverhampton, UK Grant Ledgerwood University of Greenwich, UK Sue Kinsey University of Wolverhampton, UK David Prince Prince Consultants Inc. Educational Technology Ohio, USA Pam Richardson United Kingdom College of Life Coaching, Wolverhampton, UK Sherryl Stalinski Aurora Now Foundation, Tucson, Arizona, USA Manuscripts for publication may be submitted to any member of the Editorial Board, or directly to the submissions editor, Dr. Elaine Cox, Westminster Institute of Education, Oxford Brookes University, Harcourt Hill, Oxford, OX2 9AT, UK Books for review should be sent to the Reviews Editor, Professor Bob Hamlin, Wolverhampton Business School, University of Wolverhampton, Compton Road West, Wolverhampton, WV3 9DY, UK Subscription Information UK: Individuals £20.00 Institutions: £30.00 Overseas: Individuals £25.00 Institutions £35.00 All subscription enquiries should be addressed to:- Pam Richardson College House Press United Kingdom College of Life Coaching, Science Park, Stafford Road, Wolverhampton, UK http://www.ukcollegeoflifecoaching.com International Journal of Evidence Based Coaching and Mentoring Vol.
    [Show full text]