Chapter Eight: Energy

Total Page:16

File Type:pdf, Size:1020Kb

Chapter Eight: Energy CHAPTER EIGHT: ENERGY NOTE: None of this chapter has been adopted by Thurston County as the joint plan with Olympia for the unincorporated part of the Olympia Growth Area. INTRODUCTION industrial and institutions. A look at the energy uses of each sector provides a picture of where to target energy conservation measures. Each Why have an energy chapter? Society spends a sector presents various degrees of possibilities lot of money on energy. Most of these dollars for local government influence on energy leave town--some even leave the country. This conservation. Understanding the various sectors has contributed to balance-of-payments and their use of energy is key to energy problems, increasing concerns about conservation policies. The transportation and dependence on foreign sources, and economic residential sectors account for 29 percent of the instability. Much of our energy use generates energy consumption in Washington State. pollution and/or relies on nonrenewable sources. Some decrease in energy use in the This is not sustainable. transportation sector can be achieved through local action. However, a reduction in the Though much is beyond our local influence, residential sector energy use seems more within some things can be done. Households (families) our scope of action. And, while commercial, spend a lot on energy. The community is better industrial and institutional uses are considerably off if these dollars can stay in the local economy smaller than transportation or residential uses, and be spent on other goods and services. local efforts can be taken in these sectors to aid Conserving energy conserves money which can the overall picture of energy conservation. then be spent elsewhere in the local economy. (Ord. 6389, 01/24/06) Besides, the energy we waste is the cheapest energy we can buy--new sources of energy cost more than conservation. Transportation In 1979, state legislation added energy The transportation sector is the largest user of energy in Thurston County and the most conservation and solar access protection to the difficult to affect at the local level. Efforts in list of permitted optional elements in local reducing transportation related uses are best comprehensive plans. This chapter will look at suited for long term measures. The two major what Olympia can and should do in this regard. factors affecting transportation energy First we analyze the sectors of energy demand, efficiency are (1) fuel efficiency of the vehicles, and the types of uses in each sector. Then we and (2) density of land use. set out goals and policies on the wise use of energy. Local government does not have the authority to regulate fuel efficiency of vehicles. Federal PATTERNS OF ENERGY USE standards and market pressures have helped reduce the fuel consumption per mile. Federal regulations require lower emissions for diesel The Big Picture engines and incentives for energy efficient vehicles. Considerable potential remains for We start by analyzing the energy demand fuel efficiency improvements. (Ord. 6389, sectors: transportation, residential, commercial, 01/24/06) ________________________________ENERGY – PAGE 1 _________________________________ January 24, 2006 Figures 8-1 through 8-4 are repealed and replaced with Figures 8-1 through 8-6 (Ord. 6389, 01/24/06) FIGURE 8-1 Energy Use by Sector Washington State 2001 Percent and BTUs WA State Total Energy Consumption by Sector 2001 (Trillion Btu) Residential, 471.2, 23% Transportation, 599.9, 29% Commercial, 376.8, 19% Industrial, 586, 29% Source: US Department of Energy’s Information Administration 2001 FIGURE 8-2 Washington State Electricity Imports and Exports Trend Net WA State Electricty Gains and Losses (Millions of kilowatts) 60,000 40,000 d te r 20,000 o p Im 0 4 4 0 0 0 60 6 66 68 70 7 76 78 8 82 84 86 9 92 94 0 9 962 9 9 972 9 9 988 9 996 998 1 1 19 19 1 1 1 19 19 1 19 19 19 1 1 19 19 1 1 1 20 h -20,000 W k n llio i -40,000 M -60,000 d te r o p -80,000 x E -100,000 -120,000 Source: US Department of Energy: Energy Information Administration ________________________________ENERGY – PAGE 2 _________________________________ January 24, 2006 FIGURE 8-3 Pacific Northwest Household Energy Use by Function Pacific NorthWest Household Energy Use (Quadrillion Btu) Appliances & lighting 21% Space heating 35% Refrigeration 5% Water supply 21% Air conditioning 18% Source: US Department of Energy’s Information Administration 2001 FIGURE 8-4 Pacific Northwest Household Space Heating Energy Source Space-Heating By Major Fuel Dependency (Quadrillion Btu) Natural Gas 74% Fuel Oil 3% Electricity Kerosene 15% 3% Liquid Petroleum Gas (LPG) 5% Source: US Department of Energy’s Information Administration 2001 ________________________________ENERGY – PAGE 3 _________________________________ January 24, 2006 FIGURE 8-5 Means of Transportation to Work Olympia 1990 FIGURE 8-6 Means of Transportation to Work Olympia 2000 Van/Carpooled; 12.3% Walked; 5.6% Worked at Home; 3.4% Bus; 5.2% Other; 2.5% Drove alone; 71.1% Source: 2000 US Census ________________________________ENERGY – PAGE 4 _________________________________ January 24, 2006 Local government's biggest influence can come energy consumption. Therefore it was a through its policies on land use patterns. significant positive step when the Northwest Careful blending of residential units with work Energy Code was incorporated into the City of places promotes energy efficiency. Higher Olympia's Building Code. New homes built to densities contribute to the success of bus these newer building code standards are 25 systems. Higher densities close to offices and percent more energy efficient compared to those commercial districts help reduce fuel built under the 1986 Energy Code. consumption by reducing overall commuter and shopper mileage. Suburban sprawl makes When combined with appropriate insulation people spend a lot of time and energy on levels, solar energy can easily meet half the transportation. With a more compact heating needs of a home in Olympia. Many development pattern (double our current newer homes in our community now meet this residential and mixed-use density), and other level of performance. transportation improvements, Thurston County's percentage of drive-alone commuters could be Effective layout of subdivisions can also cut from 85 to 60 percent. But it would take at increase energy efficiency by allowing for solar least 20 years to evolve to such a pattern. access and protection from winter winds. It is often no more difficult to design a subdivision Group transportation mechanisms also can assist so up to 80 percent of the lots can take in lower density areas of the city and region. advantage of the sun. Park-and- ride lots, vanpooling, ridesharing and flexible work schedules help reduce the number Public education on energy conservation of vehicle miles and congestion. Both the promotes further reduction in consumption. public and private sectors can encourage transit Tips to the consumer can be given through a use by offering employees bus passes and other variety of means, including notes on utility incentives. Over a decade or two we could billings, school presentations, brochures, fair accomplish a 10-15 percent energy savings from displays, etc. For several years Olympia has more use of transit and other types of group been supporting energy education services transportation. through the Energy Outreach Center. In addition, our local utilities offer conservation A well-laid-out transportation system will also programs for the homes they serve. aid in conserving energy. Smoother traffic flows can increase vehicle efficiency by up to Industrial/Commercial five percent. Proper provisions for pedestrian and bicycle traffic can promote use of these The industrial and commercial sectors together energy saving means of commuting. do not use as much energy as either the transportation or residential sector. The Residential competitive environment of industry and commerce stimulates energy efficiency as a In the residential sector, heating the home is the sound business practice to reduce production primary use of energy at 35 percent. Water costs and thus increase profit margins. heaters are next at 21 percent (Figure 8.4). In 2001, natural gas was the predominant source of On the local level, governments have few energy, with 74 percent of energy demand alternatives for influencing industrial and (Figure 8.5). (Ord. 6389, 01/24/06) commercial energy uses. Education and some incentives are the only practical means to Strengthening building code requirements for influence existing business. The commercial energy efficiency is an effective way to reduce and industrial sectors use energy in very diverse ________________________________ENERGY – PAGE 5 _________________________________ January 24, 2006 ways: heating, cooling, refrigeration, a electricity, then the use of "waste heat" from multitude of industrial processes, lighting, LOTT could potentially give customers electronics, etc. significant savings on their energy costs. Building codes applied to new construction Institutions provide some influence, but even here the diversity of business operations limits the City's Although the institutions sector is a small ability to influence energy use. To a varying percentage of the energy consumption picture in extent, existing buildings can be improved in Thurston County, it is a very visible part of that energy efficiency. Utility programs are picture because of the public's interest in its tax available in some cases. The City may also be dollar. As the price of energy rises, citizens able to develop incentive programs for become more attentive to their own use of conservation in existing buildings. In one energy as well as to the energy use efficiencies incentive program, the Washington State Energy of their institutional structures. Office gave an "Energy Edge" award to a new restaurant built on Percival Landing. As a promoter of energy conservation, local government should set the example for efficient Commercial lighting appears to be a particularly and conscientious energy use.
Recommended publications
  • Energy Conservation
    2016 Centre County Planning Opportunities Energy Conservation Centre County Comprehensive Plan — Phase II Implementation Strategies Introduction County-wide In 2003, the Centre County Board of Commissioners Planning adopted a County-wide Comprehensive Plan which included Goals background studies, inventories of existing conditions, goals and recommendations. These recommendations, revised Adopted 2003 and updated, continue to serve as a vision and a general direction for policy and community improvement. Those specific to energy conservation will be discussed here along with implementation strategies to achieve the recom- #1 — Identify, pre- mendations. For more detailed background information serve, enhance and monitor agricultural please refer to the 2003 Comprehensive Plan available on resources. the Centre County Planning and Community Development webpage: #2 — Identify, pre- serve, and monitor http://centrecountypa.gov/index.aspx?nid=212. environmental and Centre County seeks to balance growth, protection of natural resources. resources, investment in compatible new building Small wind turbines like erected #3 — Preserve his- development, and incentives for sustainable development. at the DEP Moshannon Office, toric and cultural Much of this effort includes stewardship, community can help offset electricity costs resources. outreach and expert professional service. to the property. #4 — Ensure decent, safe, sanitary and affordable housing in suitable living surroundings, com- patible with the en- vironment for all The Keystone Principles individuals. In 2005, Pennsylvania adopt- Redevelop first #5 — Appropriately ed the “Keystone Principles Provide efficient infrastructure locate and maintain for Growth, Investment and existing and pro- Resource Conservation”, a Concentrate development posed community set of principles that have Increase job opportunities facilities, utilities, focused Pennsylvania on and services for all Foster sustainable businesses reinvestment and reuse of its residents.
    [Show full text]
  • National Policies and the Role of Communities, Cities and Regions
    CLIMATE CHANGE AND RENEWABLE ENERGY NATIONAL POLICIES AND THE ROLE OF COMMUNITIES, CITIES AND REGIONS A report from the International Renewable Energy Agency (IRENA) to the G20 Climate Sustainability Working Group (CSWG) JUNE 2019 © IRENA 2019 Unless otherwise stated, material in this publication may be freely used, shared, copied, reproduced, printed and/or stored, provided that appropriate acknowledgement is given to IRENA as the source and copyright holder. Material in this publication that is attributed to third parties may be subject to separate terms of use and restrictions, and appropriate permissions from these third parties may need to be secured before any use of such material. ISBN: 978-92-9260-136-2 Citation: IRENA (2019), Climate Change and Renewable Energy: National policies and the role of communities, cities and regions (Report to the G20 Climate Sustainability Working Group (CSWG)), International Renewable Energy Agency, Abu Dhabi. About IRENA The International Renewable Energy Agency (IRENA) is an intergovernmental organisation that supports countries in their transition to a sustainable energy future and serves as the principal platform for international co-operation, a centre of excellence, and a repository of policy, technology, resource and financial knowledge on renewable energy. IRENA promotes the widespread adoption and sustainable use of all forms of renewable energy, including bioenergy, geothermal, hydropower, ocean, solar and wind energy, in the pursuit of sustainable development, energy access, energy security and low-carbon economic growth and prosperity. www.irena.org Acknowledgements G20 Climate Sustainability Working Group members provided valuable comments and suggestions on this study. The report was prepared by Elisa Asmelash and Ricardo Gorini.
    [Show full text]
  • Energy and Buildings
    Joint Research Centre The European Commission’s in-house science service Energy and Buildings Renewable Energies and Energy Efficiency Energy consumption About 37% of final energy consumption is taken by the building sector (households and services). A gradual shift over the last five years is observed from fossil fuels to renewable energy sources, such as solar energy, wind power and bio-energy. By means of Directives, Recommendations and Regulations the European Commission is giving direction to the future of sustainable energy use and supporting the low carbon energy policy. Energy performance of buildings and efficient energy end-use are the important topics of interest. European standardisation facilitates exchange of goods, information and services to ensure a competition in a single The Energy Performance of Buildings Directive (EPBD 2010/31/EU) concerns the European market. residential and the tertiary sector (offices, public buildings, etc.). Member states must apply minimum requirements as regards the energy performance of new and existing buildings. A common calculation methodology should include all the aspects which determine the final and primary energy consumption of the building. This integrated approach should take into account aspects such as heating and cooling installations, lighting, the position and orientation of the building, heat recovery and the application of renewable energy. The member states are responsible for setting the minimum standards for buildings that are calculated on the basis of the above methodology. The philosophy that supports the reduction of energy consumption in buildings is presented in three priority steps: 1. Energy saving (improve insulation), 2. Increase energy efficiency (building installations), Contact: 3.
    [Show full text]
  • Energy Efficiency in OECD Countries: a DEA Approach
    energies Article Energy Efficiency in OECD Countries: A DEA Approach Filip Fidanoski 1,*, Kiril Simeonovski 2 and Violeta Cvetkoska 2 1 School of Economics, UNSW Business School, University of New South Wales, Sydney 2052, Australia 2 Faculty of Economics, Ss. Cyril and Methodius University in Skopje, Skopje 1000, Macedonia; [email protected] (K.S.); [email protected] (V.C.) * Correspondence: f.fi[email protected]; Tel.: +61-466-337-561 Abstract: This paper deals with energy efficiency examined through an integrated model that links energy with environment, technology, and urbanisation as related areas. Our main goal is to discover how efficiently developed countries use primary energy and electricity (secondary energy). We additionally want to find out how the inclusion of environmental care and renewable energy capacity affects efficiency. For that purpose, we set up an output-oriented BCC data envelopment analysis that employs a set of input variables with non-negative values to calculate the efficiency scores on minimising energy use and losses as well as environmental emissions for a sample of 30 OECD member states during the period from 2001 to 2018. We develop a couple of baseline models in which we find that countries have mean inefficiency margins of 16.1% for primary energy and from 10.8 to 13.5% for electricity. The results from the extended models show that taking care about environment does not affect efficiency in general, while the reliance on energy produced from renewable sources does slightly reduce it. Keywords: energy efficiency; primary energy; electricity; DEA analysis Citation: Fidanoski, F.; Simeonovski, K.; Cvetkoska, V.
    [Show full text]
  • Give Your Imaging Equipment a Credible Sign of Environmental Excellence
    The EU Ecolabel for Imaging Equipment "The official European label for Greener Products” Choose the EU Ecolabel for your Imaging Equipment if you want to show your commitment to a better environment. Once it's on your products, the Meet your customers' demand EU Ecolabel guarantees Today, consumers are more aware that Efficient paper management protecting the environment is fundamental. Efficient energy use Four out of five European consumers would Minimised use of hazardous substances like to buy more environmentally friendly products, provided that they are properly The EU Ecolabel shall comprise products which are certified by an independent organisation. marketed for office and/or domestic use, and produce printed images in the form of a paper document, With the EU Ecolabel on your products, you photo, or digital image. Furthermore, imaging offer consumers a reliable logo to easily equipment which produces a digital image from a identify the best environmentally friendly hard copy through a scanning process is additionally products that are available on the European included in this product group’s scope. market. Give your Imaging Equipment a credible sign of environmental excellence... apply for the EU Ecolabel! ◊ For a quick test, use the check list on the back! For more information… … on the scheme, its feature, the actors involved, the application process: http://ec.europa.eu/environment/ecolabel … on the detailed criteria for Imaging Equipment product group: http://ec.europa.eu/environment/ecolabel/products-groups-and-criteria.html They said it! “The main environmental impacts of imaging equipment are linked to the use phase. Printers, copiers and multifunctional devices awarded with the EU Ecolabel are designed so that the paper consumption can easily be limited (i.e.
    [Show full text]
  • Dynamics of Energy Systems: Methods of Analysing Technology Change
    Dynamics of Energy Systems Methods of analysing technology change Lena Neij May 1999 Thesis for the Degree of Doctor of Philosophy in Engineering Department Environmental and Energy Systems Studies Lund University © 1999, Lena Neij and the respective publishers Printed at KFS AB, Lund, Sweden ISRN LUTFD2/TFEM—99/1019—SE + (1-136) ISBN 91-88360-42-3 LenaNeij Department of Environmental and Energy Systems Studies Lund Institute of Technology Lund University P.O. Box 118 SE-221 00 Lund, Sweden DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. Organization Document name LUND UNIVERSITY DOCTORAL DISSERTATION Department of Environmental and Date of issue Energy Systems Studies May 21,19 99 Gerdagatan 13, SE-223 62 LUND, SWEDEN CODEN. LUTFD2/TFEM - - 99/1019 - - SE + (1-136) Author(s) Sponsoring Organization Lena Neij Title and subtitle Dynamics of Energy Systems: Methods of analysing technology change Abstract Technology change will have a central role in achievinga sustainable energy system. This calls for methods of analysing the dynamics of energy systems in view of technology change and policy instruments for effecting and accelerating technology change. In this thesis, such methods have been developed, applied, and assessed. Two types of methods have been considered, methods of analysing and projecting the dynamics of future technology change and methods of evaluating policy instruments effecting technology change, i.e. market transformation programmes. Two methods are focused on analysing the dynamics of future technology change; vintage models and experience curves. Vintage models, which allow for complex analysis of annual streams of energy and technological investments, are applied to the analysis of the time dynamics of electricity demand for lighting and air-distribution in Sweden.
    [Show full text]
  • Exergetic Aspects of Hydrogen Energy Systems—The Case Study of a Fuel Cell Bus
    sustainability Article Exergetic Aspects of Hydrogen Energy Systems—The Case Study of a Fuel Cell Bus Evanthia A. Nanaki * and Christopher J. Koroneos Department of Mechanical Engineering, University of Western Macedonia, Bakola and Salviera, Kozani 50100, Greece; [email protected] * Correspondence: [email protected] Academic Editor: Arnulf Jäger-Waldau Received: 1 October 2016; Accepted: 10 February 2017; Published: 15 February 2017 Abstract: Electrifying transportation is a promising approach to alleviate climate change issues arising from increased emissions. This study examines a system for the production of hydrogen using renewable energy sources as well as its use in buses. The electricity requirements for the production of hydrogen through the electrolysis of water, are covered by renewable energy sources. Fuel cells are being used to utilize hydrogen to power the bus. Exergy analysis for the system is carried out. Based on a steady-state model of the processes, exergy efficiencies are calculated for all subsystems. The subsystems with the highest proportion of irreversibility are identified and compared. It is shown that PV panel has exergetic efficiency of 12.74%, wind turbine of 45%, electrolysis of 67%, and fuel cells of 40%. Keywords: exergy analysis; fuel cell bus; hydrogen; sustainable transportation 1. Introduction Road transport energy supply mainly depends on fossil fuels, the use of which is responsible for climate change emissions, such as CO2, SO2, NOx, and other particulate matters. To be more specific, the transportation sector accounts for approximately one-fifth of global primary energy use and one quarter of all energy relates carbon dioxide (CO2) emissions with nearly half of those emissions originating from passenger vehicles [1].
    [Show full text]
  • Clean Energy for the 21St Century
    For More Information Write us at: Visit our Web sites at: U.S. Department of Energy, EE-1 I U.S. Department of Energy Office of Energy Efficiency and www.doe.gov Renewable Energy I Office of Energy Efficiency and 1000 Independence Avenue, S.W. Renewable Energy Washington, DC 20585-0121 www.eren.doe.gov/ee.html I Clean Energy for the 21st Century To obtain print copies of this www.eren.doe.gov/cleanenergy document or any DOE/EERE publications contact: I Energy Efficiency and Renewable Energy Efficiency and Renewable Energy Energy Network (EREN) Clearinghouse (EREC) www.eren.doe.gov P.O. Box 3048 I Office of Building Technology, Merrifield, VA 22116 State and Community Programs Fax: (703) 893-0400 www.eren.doe.gov/buildings BBS: (800) 273-2955 NA002446, PHOTODISC I Office of Industrial Technologies Phone: (800) DOE-EREC www.oit.doe.gov (800-363-3732) “It’s hard to think of a greater E-mail: [email protected] I Office of Power Technologies www.eren.doe.gov/power gift we could give at the turn EREC can also answer questions I Office of Transportation Technologies of the century ... than a clean concerning clean energy technologies. www.ott.doe.gov energy future.” I Federal Energy Management Program PRESIDENT BILL CLINTON, AUGUST 1999 www.eren.doe.gov/femp/ I DOE/EERE’s Regional Offices www.eren.doe.gov/rso.html I DOE Golden Field Office www.eren.doe.gov/golden/ I State Energy Program www.eren.doe.gov/buildings/ state_energy/ I Weatherization Assistance Program www.eren.doe.gov/buildings/ weatherization_assistance/ Produced for the U.S.
    [Show full text]
  • The Renewable Route to Sustainable Transport, a Working Paper Based
    THE RENEWABLE ROUTE TO SUSTAINABLE TRANSPORT A WORKING PAPER BASED ON REMAP AUGUST 2016 WORKING PAPER Copyright © IRENA 2016 Unless otherwise stated, this publication and material featured herein are the property of the International Renewable Energy Agency (IRENA) and are subject to copyright by IRENA. Material in this publication may be freely used, shared, copied, reproduced, printed and/or stored, provided that all such material is clearly attributed to IRENA and bears a notation that it is subject to copyright (© IRENA 2016). Material contained in this publication attributed to third parties may be subject to third-party copyright and separate terms of use and restrictions, including restrictions in relation to any commercial use. ISBN 978-92-95111-68-4 (Print) ISBN 978-92-95111-67-7 (PDF) AboutIRENA The International Renewable Energy Agency (IRENA) is an intergovernmental organisation that supports countries in their transition to a sustainable energy future, and serves as the principal platform for international co-operation, a centre of excellence, and a repository of policy, technology, resource and fi nancial knowledge on renewable energy. IRENA promotes the widespread adoption and sustainable use of all forms of renewable energy, including bioenergy, geothermal, hydropower, ocean, solar and wind energy, in the pursuit of sustainable development, energy access, energy security and low-carbon economic growth and prosperity. Acknowledgements This working paper has benefi ted from the valuable engagement of the REmap Transport Action Team and the authors thank all of those involved. Additionally, valuable comments and feedback was provided by Kerstin Geppert (FU-Berlin), Marc Londo (ECN), Gerard Ostheimer (Novozymes), Jacob Teter (IEA), Tali Trigg (GIZ) and Martijn van Walwijk (HAN).
    [Show full text]
  • Using Energy and Materials More Efficiently – Large and Profitable Potentials, but Little Attention from Energy and Climate Policy
    Vierteljahrshefte zur Wirtschaftsforschung 76 (2007), 1, S. 50–64 Using Energy and Materials More Efficiently – Large and Profitable Potentials, But Little Attention from Energy and Climate Policy By Eberhard Jochem* Zusammenfassung: Der Beitrag skizziert zunächst die gegenwärtigen Herausforderungen an das globale Energiesystem und stellt das vorhandene Wissen zu energieeffizienten Lösungen in allen Sek- toren dar. Dabei geht es nicht nur um die Umwandlung von Primär- in Nutzenergie, sondern – wichti- ger noch – von Nutzenergie in Energiedienstleistungen (Materialeffizienz und Substitution). Bei der Analyse der Effizienzpotentiale werden die Lebenszyklen von Gebäuden und Infrastruktur berücksich- tigt, die den Energieverbrauch der nächsten 60 bis 70 Jahre bestimmen. Das Ergebnis – eine Vermin- derung des gegenwärtigen Pro-Kopf-Energieverbrauchs um den Faktor 3, auch 2000-Watt-Gesell- schaft genannt, wird kurz diskutiert, ebenso wie organisatorische Maßnahmen und unternehmerische Innovationen, die unmittelbar umsetzbar wären. Neben einer Abhandlung der klassischen Gründe für die fehlende Umsetzung profitabler Energieeffizienzpotentiale plädiert der Beitrag für mehr Kreativi- tät und Vertrauen in die Motivation und Gelegenheiten von Akteuren und für eine Analyse der rele- vanten Akteure des betroffenen Innovationssystems. Abschließend werden die Aktivitäten zum Ener- giegipfel sowie der Aktionsplan der EU für Energieeffizienz kurz unter Verwendung der entwickelten Kriterien diskutiert. Summary: The paper first outlines the challenges the global energy system is facing. It then summa- rises the present knowledge of energy efficient solutions in all energy using sectors from primary energy to useful energy and, more importantly, from useful energy to energy services (material effi- ciency and substitution) The examination of these efficiency potentials considers the lifetimes of manufactured artefacts: buildings and infrastructure that will save or waste energy over the next 60 to 70 years.
    [Show full text]
  • Sustainble Urban Energy Planning
    SUSTAINBLE URBAN ENERGY PLANNING: A STRATEGIC APPROACH TO MEETING CLIMATE AND ENERGY GOALS Prepared By Larisa Dobriansky Director, Global Energy Network Board Member, National Energy Center for Sustainable Communities United States (01 703 920-1377; [email protected]) www.globalenergynetwork.org; www.necsc.us For World Energy Congress Call for Papers ©2009, National Energy Center for Sustainable Communities www.necsc.us 1 KEY WORDS: Sustainable Energy Planning SUMMARY Meeting our 21st century challenges will require sustainable energy planning by our cities, where over half of the world’s population resides. This already has become evident in the State of California, which has set rigorous greenhouse gas (GHG) emission reduction targets and timeframes. To attain these targets will necessitate technically-integrated and cost-optimum solutions for innovative asset development and management within urban communities. Using California as a case study, this paper focuses on the crucial role for sustainable energy planning in creating the context and conditions for integrating and optimizing clean and efficient energy use within the urban built environment. ©2009, National Energy Center for Sustainable Communities www.necsc.us 2 BACKGROUND: Global trends, including our growing concerns about climate change, energy security and the adverse impacts of rapid urbanization, are providing substantial “market push” for energy efficiency and renewable energy to support sustainable development. These socio-economic and environmental developments are especially challenging cities, where over half of the world’s population resides, to increase the efficiency, reliability and sustainability of their energy use through innovative infrastructure solutions and new governance approaches. Due to their population densities, industrial and commercial activity, and complex energy systems, our cities can become drivers for a new clean energy future.
    [Show full text]
  • Studies and Perspectives Series – the Caribbean – No
    ISSN 1727-9917 eclac subregional studies and headquarters SERIES PERSPECTIves for the caribbean An assessment of fiscal and regulatory barriers to deployment of energy efficiency and renewable energy technologies in Guyana Devon O. Niel Gardner Dillon Alleyne Charmaine Gomes 27 An assessment of fiscal and regulatory barriers to deployment of energy efficiency and renewable energy technologies in Guyana Devon O. Niel Gardner Dillon Alleyne Charmaine Gomes The views expressed in this document, which has been reproduced without formal editing, are those of the authors and do not necessarily reflect the views of the Organization. United Nations Publication ISSN 1727-9917 LC/L.3755 LC/CAR/L.406 Copyright © United Nations, February 2014. All rights reserved Printed in United Nations, Santiago, Chile Member States and their governmental institutions may reproduce this work without prior authorization, but are requested to mention the source and inform the United Nations of such reproduction. ECLAC – Studies and Perspectives Series – The Caribbean – No. 27 An assessment of fiscal and regulatory barriers… Contents Abstract ...................................................................................................................................................... 7 I. Introduction .................................................................................................................................... 9 A. Context ....................................................................................................................................
    [Show full text]