Brazil's Dam Collapse Underscores Need for Improved Safety Standards

Total Page:16

File Type:pdf, Size:1020Kb

Brazil's Dam Collapse Underscores Need for Improved Safety Standards Investment Research Metals & Mining Brazil’s Dam Collapse Underscores Need for Improved Safety Standards Alistair Godrich, Director, Research Analyst Lada Emelianova , Senior Vice President, Research Analyst Jennifer Anderson and Nikita Singhal, Senior Vice Presidents, Co-Heads of Sustainable Investment and ESG The collapse of a Brazilian dam owned and operated by Vale earlier this year has increased scrutiny of safety standards across the mining sector. The collapse near Brumadinho killed at least 160 people and is the second deadly dam failure in Brazil in the past five years. Lazard, like other investors, considers self-reported safety statistics and external audits completed by company- selected specialists to determine whether a company’s mining is safe and responsible. We have also had a series of meetings with mining companies since this tragedy. We have concluded that the mining industry needs improved global audit standards, alongside particular acknowledgement of the danger presented by upstream tailings dams. We believe that establishing global standards in mining practices and putting safety performance at the centre of companies’ remuneration policies are critical to prevent humanitarian disasters, address environmental risks, and protect shareholder value, especially over the long term. As we discuss below, our proxy voting and guidance will support efforts to establish an appropriate focus on long-term safety, thereby also enhancing shareholder value creation. LR31492 2 A Systemic Safety Challenge Establishing Global Standards The dam collapse near the town of Brumadinho, Brazil on 25 The failings of the Samarco and Brumadinho dams highlight January 2019 was caused by the failure of an upstream tailings the specific risks posed by the practice of storing wet mining dam. The Brumadinho disaster marked the second industrial tailings, but the mining industry has faced a number of safety accident involving a tailings dam in Brazil in the last five years. challenges in recent years. In 2017, there were a total of 219 coal In 2015, a burst dam at the Samarco mine killed 17 people, and mine accidents in China, causing 375 deaths.4 In February 2019, Vale, and co-owner BHP, are still in negotiations relating to a Glencore announced that a truck belonging to a contractor was lawsuit of approximately $41.5 billion (155 billion BRL)1. The involved in an accident that caused the death of 20 people.5 incident in Brumadinho resulted in a mudslide that killed at Meanwhile, the collapse at Brumadinho occurred despite Vale least 160 people, including mine workers and local residents.2 stating as recently as December 2018 that all of its dams had Meanwhile, the equivalent of 5,500 Olympic swimming passed a semi annual external audit.6 At the industry level, we pools of mining waste spilled into the surrounding area, the believe a more independent oversight of safety—e.g., for tailings environmental impact of which is yet to be fully understood. dams—and the establishment of a global standard are necessary. Currently, individual countries are responsible for setting their What Is a Tailings Dam? own safety standards. Brazil is now looking to decommission all More than 80 dams in Brazil are built like those at Samarco and upstream tailings dams, joining Chile and Peru. Vale announced Brumadinho. A tailings dam is an artificial reservoir designed to store wet that it intends to decommission all upstream dams over the by-products of the mining process, i.e., tailings. Tailings are stored as slurries—typically above ground—rather than released to the water table next three years at a cost of $1.3 billion (5 billion BRL), while as they contain metal residues and processing chemicals. ArcelorMittal stated that it aims to halt the construction of new An upstream dam is created by the tailings themselves as their edges mines using wet tailings from 2024. At the industry level, the harden to produce walls. The wall grows in increments, built on top of International Council on Mining & Metals (ICMM)—a body previously hardened tailings. Upstream dams seemingly carry a higher risk of failure, particularly in wet weather areas. The structural integrity tasked with improving sustainable development performance of the wall depends on low moisture content within the tailings that form the wall, placing added importance on the proper removal and in the mining and metals industry—announced plans to review recycling of water in the tailings themselves. As such, an upstream dam global best practices by the end of 2019, following growing calls is deemed to be most suitable for facilities in areas with low rainfall, low seismic activity, and relatively flat terrain.3 from a number of mining companies for the creation of a global independent regulator to monitor the safety of tailings dams. It is Downstream dams grow with the wall being reinforced on the down- stream section of the dam. This normally requires more material and is hoped that this review will lead to the creation of a classification therefore costlier than an upstream dam. A centreline dam is a mix of system and independent reviews of tailings dams. both of these methods as it builds the wall up using the tailings in the dam, like it does in upstream dams, but also involves reinforcement of the downstream side of the wall. The centreline therefore rises vertically. Downstream and centreline dams (see Sidebar: What Is a Tailings Dam?) are typically more expensive, which will likely Upstream bring extra costs to those companies that need to replace their upstream dams or for those looking at new dams with new mine Wall Increase Upstream production. While tighter safety standards would likely increase Tailings operating costs, all the major miners we engaged with expected this to be manageable at prevailing commodity prices, including that of iron ore, which has strengthened considerably following the significant loss of output since the Brumadinho disaster (see Sidebar: Impact on Iron Ore Prices). Downstream Wall Increase While higher iron ore prices could support some companies in Downstream funding additional regulatory costs, should they be sustained, we believe that companies with safe storage methods and well- Tailings invested assets are better positioned over the medium term. On the other hand, assets that are under invested or with poor storage methods will face substantial extra costs as safety standards tighten. Over the longer term, the risk remains that investors increasingly Centreline shun the mining sector because of its relatively poor track record Wall Increase Up Centreline in mitigating its safety, environmental, and societal impact. This would imply a higher cost of finance and lower earnings Tailings multiples, and a reduction in shareholder value that would likely exceed the cost of meeting tighter safety regulations. In addition, failure to meet safety standards could result in fines and other penalties, more stringent regulatory checks, and an inability to Source: Rio Tinto attract employees or to win new mining concessions. 3 Aligning Safety Performance with Impact on Iron Ore Prices Remuneration Capacity for about 70 million tonnes of annual Brazilian iron ore production In addition to establishing global safety standards and oversight, (of a total 1.5 billion tonnes of global production per annum) has been shut down as the safety of tailings dams undergoes a series of checks. we believe management compensation could be an effective lever to help address risks. While safety measures are included in the Lost Production Has Led to a Steep Rise in Iron Ore Prices short-term compensation frameworks for the CEOs of Anglo ($/Tonne) American, BHP, and Rio Tinto, safety targets within long-term 100 incentive plans are notably lacking (Exhibit 1). The weighting of safety in mining companies’ short-term incentive plans, and its contribution to overall remuneration, is, in our view, insufficient 90 given that the companies have such high risk exposure. Lazard’s Response to the Brumadinho 80 Disaster We have had a series of meetings and discussions with the 70 management of mining companies since Brumadinho, focusing on tailings dams specifically, as well as broader mining safety issues. We have interacted with Vale, ArcelorMittal, BHP 60 Jan 18 Mar 18 May 18 Jul 18 Sep 18 Nov 18 Jan 19 Mar 19 Billiton, Anglo American, Ferrexpo, Kaz Minerals, Glencore, Alrosa, Grupo Mexico, Ternium, and Rio Tinto. As of 19 March 2019 Source: FactSet We strongly believe that the mining industry should improve the safety of its operations and we also plan to engage with the ICMM to exert our influence where possible to help facilitate the creation of an independent review system for monitoring the safety Our Ongoing Commitment to ESG of tailings dams. Additionally, we recognise that improved safety within the mining industry requires greater focus on incentive Active engagement with companies across all sectors remains frameworks and remuneration policies. a key investment principle at Lazard. Our recent discussions In order to ensure that management is appropriately aligned and with management in the mining industry have: incentivised with these goals we will make recommendations • Further informed our assessments of the most pressing to the remuneration committees of mining companies to help challenges and sustainability issues facing the sector them develop structures that we believe establish an appropriate • Enabled us to better reflect the cost and benefit of focus on long-term operational
Recommended publications
  • A Wild Ride Foundations of a Company Coming of Age
    What still stands is what we created. The dams, the roads, the bridges, the schemes, The idea of forming consortiums always struck me as a good one, as problems The more difficult projects in which I was involved required detailed attention by me. That wasn’t My boss asked if I would be interested in working in Africa and got me a job interview with A valley failed where a company was building a mining tailings dam in Papua New Guinea called Ok When I joined Klohn Leonoff, I brought a capability in rock mechanics and a background in tunnelling. The variety of clients and market sectors is a driver as to why I came back into consulting We realized in the early 2000s that we had to fundamentally change the culture of the company to survive. That meant teaching professional engineers and I have found KCB to be a company that values the “why.” Our focus is on understanding the problems and KCB is a purpose-driven enterprise. Our purpose is the application of engineering and science for the betterment of our world. We and all the construction did not disappear with the company. These structures show FOUNDATIONS OF A COMPANY could be ironed out around the Board table. When there were problems on site dictated by me—it was dictated by the projects. The concentration that was required on these projects METAMORPHOSES COMING OF AGE PROJECTS AND PROGRESS ONE CHAPTER CLOSES A NEW MILLENNIUM A WILD RIDE C.B.A. Engineering. Don Bazett hired me and sent me to be the dam engineer on the Hadejia Tedi.
    [Show full text]
  • Flooding the Missouri Valley the Politics of Dam Site Selection and Design
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Great Plains Quarterly Great Plains Studies, Center for Summer 1997 Flooding The Missouri Valley The Politics Of Dam Site Selection And Design Robert Kelley Schneiders Texas Tech University Follow this and additional works at: https://digitalcommons.unl.edu/greatplainsquarterly Part of the Other International and Area Studies Commons Schneiders, Robert Kelley, "Flooding The Missouri Valley The Politics Of Dam Site Selection And Design" (1997). Great Plains Quarterly. 1954. https://digitalcommons.unl.edu/greatplainsquarterly/1954 This Article is brought to you for free and open access by the Great Plains Studies, Center for at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Great Plains Quarterly by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. FLOODING THE MISSOURI VALLEY THE POLITICS OF DAM SITE SELECTION AND DESIGN ROBERT KELLEY SCHNEIDERS In December 1944 the United States Con­ Dakota is 160 feet high and 10,700 feet long. gress passed a Rivers and Harbors Bill that The reservoir behind it stretches 140 miles authorized the construction of the Pick-Sloan north-northwest along the Missouri Valley. plan for Missouri River development. From Oahe Dam, near Pierre, South Dakota, sur­ 1946 to 1966, the United States Army Corps passes even Fort Randall Dam at 242 feet high of Engineers, with the assistance of private and 9300 feet long.! Oahe's reservoir stretches contractors, implemented much of that plan 250 miles upstream. The completion of Gar­ in the Missouri River Valley. In that twenty­ rison Dam in North Dakota, and Oahe, Big year period, five of the world's largest earthen Bend, Fort Randall, and Gavin's Point dams dams were built across the main-stem of the in South Dakota resulted in the innundation Missouri River in North and South Dakota.
    [Show full text]
  • Policy for Dam Safety and Geotechnical Mining Structures
    Policy for Dam Safety and Geotechnical Mining Structures DCA 108/2020 Rev.: 00 – 08/10/2020 Nº: POL-0037- G PUBLIC Objective: To establish guidance and commitments for the Safe Management of Dams and Geotechnical Mining Structures such that critical assets are controlled as well as to deal with the risk controls associated with the implemented Management Systems. Aplicação: This Policy applies to Vale and its 100% controlled subsidiaries. It must be reproduced for its direct and indirect subsidiaries, within Brazil and overseas, always in compliance to the articles of incorporation and the applicable legislation. Its adoption is encouraged at other entities in which Vale has a shareholding interest, in Brazil and overseas. References: • POL-0001-G – Code of Conduct • POL-0009-G – Risk Management Policy • POL-0019-G – Sustainability Policy • ABNT NBR ISO 9001:2015 – Sistema de Gestão da Qualidade (SGQ). • Technical Bulletin – Application of Dam Safety Guidelines to Mining Dams from the Canadian Dams Association (CDA). • Guidelines on Tailings Dams – Planning, Design, Construction, Operation and Closure from the Australian Committee on Large Dams (ANCOLD). • Tailings Dam Safety Bulletin from the International Committee on Large Dams (ICOLD). • Guide to the Management of Tailings Facilities & Developing an Operation, Maintenance, and Surveillance. • Manual for Tailings and Water Management Facilities (the OMS Guide) from the Mining Association of Canada (MAC). • Global Industry Standard on Tailings Management (GISTM) from the Global Tailings Review (ICMM-UNEP-PRI) & Tailings Management: Good Practice Guides from the International Council on Mining and Metals (ICMM). • Slope Design Guidelines for Large Open Pit Project (LOP) from the Commonwealth Scientific and Industrial Research Organization (CSIRO da Australia).
    [Show full text]
  • Good and Bad Dams
    Latin America and Caribbean Region 1 Sustainable Development Working Paper 16 Public Disclosure Authorized Good Dams and Bad Dams: Environmental Criteria for Site Selection of Hydroelectric Projects November 2003 Public Disclosure Authorized Public Disclosure Authorized George Ledec Public Disclosure Authorized Juan David Quintero The World Bank Latin America and Caribbean Region Environmentally and Socially Sustainable Development Department (LCSES) Latin America and the Caribbean Region Sustainable Development Working Paper No. 16 Good Dams and Bad Dams: Environmental Criteria for Site Selection of Hydroelectric Projects November 2003 George Ledec Juan David Quintero The World Bank Latin America and the Caribbean Region Environmentally and Socially Sustainable Development Sector Management Unit George Ledec has worked with the World Bank since 1982, and is presently Lead Ecologist for the Environmen- tally and Socially Sustainable Development Unit (LCSES) of the World Bank’s Latin America and Caribbean Re- gional Office. He specializes in the environmental assessment of development projects, with particular focus on biodiversity and related conservation concerns. He has worked extensively with the environmental aspects of dams, roads, oil and gas, forest management, and protected areas, and is one of the main authors of the World Bank’s Natural Habitats Policy. Dr. Ledec earned a Ph.D. in Wildland Resource Science from the University of California-Berkeley, a Masters in Public Affairs from Princeton University, and a Bachelors in Biology and Envi- ronmental Studies from Dartmouth College. Juan David Quintero joined the World Bank in 1993 and is presently Lead Environmental Specialist for LCSES and Coordinator of the Bank’s Latin America and Caribbean Quality Assurance Team, which monitors compli- ance with environmental and social safeguard policies.
    [Show full text]
  • BHP “Extreme” Consequence Tailings Dams with Potential to Cause Fatality of 100 Employees
    BHP “Extreme” consequence tailings dams with potential to cause fatality of 100 employees: Briefing Paper by David Noonan, Independent Environment Campaigner - 22 May 2020 BHP has Questions to answer on Worker Safety, Transparency and Accountability at Olympic Dam BHP took over Olympic Dam copper-uranium mine in 2005, operating the mine for a decade before a GHD “TSF Dam Break Safety Report”1 to BHP in August 2016 concluded all existing Tailings Storage Facilities (TSFs) are “Extreme” consequence tailings dams with a failure potential to cause the death of 100 BHP employees: “BHP OD has assessed the consequence category of the TSFs according to ANCOLD (2012a,b). A dam break study, which considered 16 breach scenarios of TSFs 1 to 5, was completed by GHD (2016) and indicated a potential for tailings and water flow into the mine’s backfill quarry and underground portal. The following conclusions were drawn: • The population at risk (PAR) for a TSF embankment breach is greater than 100 to less than 1000 mine personnel primarily as a result of the potential flow of tailings into the adjacent backfill quarry and entrance to the underground mine. • The financial cost to BHP OD for a tailings dam failure was assessed by BHP OD to be greater than US$1B, a “catastrophic” loss according to ANCOLD guidelines (2012a,b). Based on these criteria, the TSFs at Olympic Dam have been given a consequence category of “Extreme” to guide future assessments and designs. Note that this is an increase compared to the assessment prior to the FY16 Annual Safety Inspection and Review (Golder Associates, 2016a) which classified TSF 1-4 and TSF 5 as “High A” and “High B”, respectively.
    [Show full text]
  • Be Aware of Potential Risk of Dam Failure in Your Community
    Be Aware of Potential Risk of Dam Failure in Your Community Approximately 15,000 dams in the United States are classified as high-hazard potential (HHP), meaning that their failure could result in loss of life. Dams can fail for a number of reasons, including overtopping caused by floods, acts of sabotage, or structural failure of materials used in dam construction. The worst dam failure in the United States occurred in 1889 in Johnstown, Pennsylvania. Over 2,200 died, with many more left homeless. Dams present risks but they also provide many benefits, including irrigation, flood control, and recreation. Dams have been identified as a key resource of our national infrastructure that is vulnerable to terrorist attack. States have the primary responsibility for protecting their populations from dam failure. Of the approximately 94,400 dams in the United States, State governments regulate about 70 percent. About 27,000 dams throughout our Nation could incur damage or fail, resulting in significant property damage, lifeline disruption (utilities), business disruption, displacement of families from their homes, and environmental damage. The most important steps you can take to protect yourself from dam failure are to know your risk. Contact government offices to learn if an Emergency Action Plan (EAP) is in place and to evacuate when directed by emergency response officials. An EAP is a formal document that identifies potential emergency conditions at a dam and specifies preplanned actions to be followed by the dam owner to reduce property damage and loss of life. The plan may save lives and property damage through timely evacuations of those who live, work, or enjoy recreation near a high-hazard potential dam.
    [Show full text]
  • Effects of the Glen Canyon Dam on Colorado River Temperature Dynamics
    Effects of the Glen Canyon Dam on Colorado River Temperature Dynamics GEL 230 – Ecogeomorphology University of California, Davis Derek Roberts March 2nd, 2016 Abstract: At the upstream end of the Grand Canyon, the Glen Canyon Dam has changed the Colorado River from a run-of-the-river flow to a deep, summer-stratified reservoir. This change in flow regime significantly alters the temperature regime of the Colorado River. Seasonal temperature variation, once ranging from near to almost , is now limited to 7 . The lack of warm summer temperatures has prevented spawning of endangered 0℃ 30℃ humpback chub in the Colorado River. Implementation of a temperature control device, to − 14℃ allow for warmer summer releases to mitigate negative temperature effects on endangered fish, was considered by the federal government. Ultimately, this proposal was put on indefinite hold by the Bureau of Reclamation and U.S. Fish and Wildlife Service due to concerns of cost and unintended ecological consequences. The low-variability of the current dam-induced Colorado River temperature regime will continue into the foreseeable future. Agencies are reviewing humpback chub conservation efforts outside of temperature control. Keywords: Colorado River, Grand Canyon, Glen Canyon Dam, thermal dynamics 1.0 Introduction Temperature in natural water bodies is a primary driver of both ecological and physical processes. Freshwater plant and animal metabolisms are heavily affected by temperature (Coulter 2014). Furthermore, the thermal structure of a water body has significant impacts on the physical processes that drive ecosystem function (Hodges et al 2000); fluid dynamics drive transport of nutrients, oxygen, and heat. Human action, often the introduction of dams or industrial cooling systems, can alter the natural thermal regimes of rivers and lakes leading to reverberating impacts throughout associated ecosystems.
    [Show full text]
  • Hydroelectric Power -- What Is It? It=S a Form of Energy … a Renewable Resource
    INTRODUCTION Hydroelectric Power -- what is it? It=s a form of energy … a renewable resource. Hydropower provides about 96 percent of the renewable energy in the United States. Other renewable resources include geothermal, wave power, tidal power, wind power, and solar power. Hydroelectric powerplants do not use up resources to create electricity nor do they pollute the air, land, or water, as other powerplants may. Hydroelectric power has played an important part in the development of this Nation's electric power industry. Both small and large hydroelectric power developments were instrumental in the early expansion of the electric power industry. Hydroelectric power comes from flowing water … winter and spring runoff from mountain streams and clear lakes. Water, when it is falling by the force of gravity, can be used to turn turbines and generators that produce electricity. Hydroelectric power is important to our Nation. Growing populations and modern technologies require vast amounts of electricity for creating, building, and expanding. In the 1920's, hydroelectric plants supplied as much as 40 percent of the electric energy produced. Although the amount of energy produced by this means has steadily increased, the amount produced by other types of powerplants has increased at a faster rate and hydroelectric power presently supplies about 10 percent of the electrical generating capacity of the United States. Hydropower is an essential contributor in the national power grid because of its ability to respond quickly to rapidly varying loads or system disturbances, which base load plants with steam systems powered by combustion or nuclear processes cannot accommodate. Reclamation=s 58 powerplants throughout the Western United States produce an average of 42 billion kWh (kilowatt-hours) per year, enough to meet the residential needs of more than 14 million people.
    [Show full text]
  • Blackstone State Park to Pratt Dam – Intermediate Tours, Rhode Island
    BLACKSTONE RIVER & CANAL GUIDE Blackstone State Park to Pratt Dam – Intermediate Tours, Rhode Island [Map: USGS Pawtucket] Level . Intermediate Start . Ashton Dam / Lincoln Ashton Dam End . Lonsdale Village Portage River Miles Approx. 3 miles each way (6 mile loop) Ro River Time . 1 hour / 2 hour loop ut e 116 Access 0 miles Bikeway Description Quickwater, Class I-II (in river); II Flatwater (in canal) Parking Scenery . Towns, mills, wetlands 6 2 Portages. One portage from River to Canal for loop; portage over Pratt 1 Kelly House Bikeway Parking e Dam to continue downriver or take out t Transportation u o Museum Ashton Mill R Rout Blackstone Canal e 116 The heart of Rhode Island’s Blackstone River State Park, with a choice between the river and canal or a river to canal trail “loop”. Blackstone River State Park This section can be navigated either in the river or in the canal. Paddlers Blackstone can also make this a water trail loop by paddling down the Blackstone River River and back up the Blackstone Canal to the Kelly House Canal Quinnville d Ashton R oa Museum. o u R t r e e v 1 i NOTE: Currently (2005-06), construction at the Martin Street Bridge 26 R r e does not allow paddlers access through the canal. Check on the status of w o Martin L the construction before planning your trip. 1 Street Bridge RIVER ROUTE / RIVER AND CANAL TRAIL LOOP To put-in the Blackstone River, carry up the road under the viaduct Ma towards the dam where there is a portage trail to the right just past the rtin St R o pedestrian bridge or put-in just below the bikeway bridge behind the u t e Blackstone River State Park’s Kelly House Museum 1 2 2 The Wilbur Kelly House Museum describes the evolution of transportation M in the Blackstone River Valley, from primitive trails through the canal, the e n d railroad and on to modern highways.
    [Show full text]
  • Tailings Facilities Disclosure: Response to the Church of England Pensions Board and the Council on Ethics Swedish National Pension Funds
    BHP Tailings Facilities Disclosure Tailings Facilities Disclosure: Response to the Church of England Pensions Board and the Council on Ethics Swedish National Pension Funds 7 June 2019 In April 2019, the Church of England Pensions Board and the Council on Ethics Swedish National Pension Funds wrote to approximately 700 mining firms to request specific disclosures of their tailings facilities. This document contains the response of BHP and that of our Non-operated joint ventures to this request. This disclosure has been certified by BHP’s Chief Executive Officer, in line with this request. BHP Tailings Facilities Disclosure DISCLAIMER Forward-looking statements This document contains forward-looking statements, which may include statements regarding: trends in commodity prices and currency exchange rates; demand for commodities; plans, strategies and objectives of management; closure or divestment of certain operations or facilities (including associated costs); anticipated production or construction commencement dates; capital costs and scheduling; operating costs and shortages of materials and skilled employees; anticipated productive lives of projects, mines and facilities; provisions and contingent liabilities; tax and regulatory developments. Forward-looking statements can be identified by the use of terminology including, but not limited to, ‘intend’, ‘aim’, ‘project’, ‘anticipate’, ‘estimate’, ‘plan’, ‘believe’, ‘expect’, ‘may’, ‘should’, ‘will’, ‘continue’, ‘annualised’ or similar words. These statements discuss future expectations concerning the results of operations or financial condition, or provide other forward- looking statements. These forward-looking statements are not guarantees or predictions of future performance, and involve known and unknown risks, uncertainties and other factors, many of which are beyond our control, and which may cause actual results to differ materially from those expressed in the statements contained in this presentation.
    [Show full text]
  • The Effects of Glen Canyon Dam on the Colorado River
    THE EFFECTS OF GLEN CANYON DAM ON THE COLORADO RIVER. by Margaret Gebren A SENIOR THESIS m GENERAL STUDIES Submitted to the General Studies Council in the College of Arts and Sciences at Texas Tech University in Partial fulfillment of the Requirements for the Degree of BACHELOR OF GENERAL STUDIES Approved Dr. JeffLee Depal'tmenr of Economics and Geography Co-Chair of Thesis Committee Dr. Rob Mitchell Department of R WFM Co-Chair of Thesis Committee ----~~------- Dr. Dale Davis Director of General Studies May 1999 /ILZ ''55< ' / 7 3 ACKNOWLEDGMENTS I wish to express my deep gratitude to Dr. Lee and Dr. Mitchell for taking time out to read and critique my work and also for their commitment to teaching, which is greatly underrated. Thanks also to my family, for graciously correcting my grammar and spelling all these years! TABLE OF CONTENTS ACKNOWLEDGMENTS ii CHAPTER I. INTRODUCTION 1 II. HISTORY OF THE DAM 4 III. LIFE BEFORE THE DAM 7 IV. FORMATION OF THE GRAND CANYON 9 V. LIFE AFTER THE DAM 14 Lake Powell 14 Water Releases 15 Rapids 16 Sand and Sediment 16 Vegetation 17 Backwaters 18 Water Chemistry and Temperature 18 Heavy Metals 19 Salinity 20 Endangered Species 21 VI. THE PLAN 24 VII. THE EXPERIEMENT 27 VIII. RESULTS 30 Sandbars and Sediment Transportation 30 Rapids 31 ni Camping Beaches 31 Backwater Habitats 32 Geochemistry 33 Fisheries 33 Riparian Vegetation and Resources 34 Cultural Resources 34 IX. CONCLUSIONS 35 BIBLIOGRAPHY 36 IV CHAPTER 1 INTRODUCTION Mankind has become so used to controlling nature that we often forget or over-look the consequences of our handiwork.
    [Show full text]
  • Deep Into the Mud: Ecological and Socio-Economic Impacts of the Dam
    n a t u r e z a & c o n s e r v a ç ã o 1 4 (2 0 1 6) 35–45 Natureza & Conservação Brazilian Journal of Nature Conservation Supported by Boticário Group Foundation for Nature Protection http:/ /www.naturezaeconservacao.com.br Essays and Perspectives Deep into the mud: ecological and socio-economic impacts of the dam breach in Mariana, Brazil a,b,∗ c d Geraldo Wilson Fernandes , Fernando F. Goulart , Bernardo D. Ranieri , a,e f g h Marcel S. Coelho , Kirsten Dales , Nina Boesche , Mercedes Bustamante , a i b j Felipe A. Carvalho , Daniel C. Carvalho , Rodolfo Dirzo , Stephannie Fernandes , b,k g g k Pedro M. Galetti Jr. , Virginia E. Garcia Millan , Christian Mielke , Jorge L. Ramirez , a g l m c Ana Neves , Christian Rogass , Sérvio P. Ribeiro , Aldicir Scariot , Britaldo Soares-Filho a Evolutionary Ecology & Biodiversity, Department of General Biology, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil b Department of Biology, Stanford University, Stanford, United States c Master in Modeling and Analysis of Environmental Systems, Center for Remote Sensing, Department of Cartography, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil d Norman B. Keevil Institute of Mining Engineering, University of British Columbia, Vancouver, Canada e Laboratory of Phenology, Department of Botany, Instituto de Biociências (IB), Universidade Estadual Paulista (UNESP), Rio Claro, SP, Brazil f Canadian International Resources & Development Institute, University of British Columbia, Vancouver, Canada g Helmholtz
    [Show full text]